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Hematopoiesis is a process by which all blood cells are formed. The mechanisms

controlling it have been studied for decades. Surprisingly, while hematopoietic

stem cells are among the most extensively studied stem cell types, the complete

understanding of how they are regulated during development, adulthood, or in

non-homeostatic conditions remains elusive. In this review, our primary focus is

on research findings that explore where hematopoietic precursors are found in

adults outside their primary niches in the bone marrow. This phenomenon is

termed extramedullary hematopoiesis (EMH). Early in development

hematopoietic stem cells migrate through different regions within and outside

the embryo and later the fetus. Although, the primary home for hematopoietic

progenitors is the adult bone marrow, it is now recognized that other adult

organs may act as hematopoietic progenitor reservoirs both in mice and humans.

The first reports about this topic were principally originated from clinical

observations, in cases where the bone marrow was malfunctioning, leading to

an aberrant hematopoiesis outside the bone marrow. It is worth highlighting that

those extramedullary organs, like the small intestine or fat tissue, contain subsets

of fully functioning hematopoietic progenitors demonstrated by both in vitro and

in vivo studies. Nonetheless, there are still some unanswered questions regarding

the source of these cells, how they differ in function compared to their

counterparts in the bone marrow, and the specific roles they play within the

tissues where they are located.
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1 Introduction

Stem cells are a unique cell type with the remarkable ability to

serve as building blocks for all cell types in the body. The studies of

Till and McCulloch were instrumental in shaping our understanding

of stem cells, and their work continues to have a lasting impact on

both basic research and clinical applications in the field of

regenerative medicine and beyond McCulloch and Till (1). Over

the past half-century, researchers have discovered combinations of

physical properties, cell-surface markers, and devised assays to

measure stem cell function that allow for the identification and

separation of stem cell populations in adult tissues like the skin,

intestinal epithelium, brain, and the hematopoietic system.

The best characterized stem cells are the hematopoietic stem

cells (HSCs), which reside primarily within the bone marrow (BM)

during adulthood. Murine HSCs are distinguished by the absence of

cell-surface markers present on lineage (Lin)-committed

hematopoietic cells. Additionally, these cells express high levels of

the stem cell factor receptor (c-kit, CD117) (2) and stem-cell

antigen 1 (Sca1) (3, 4); this Lin−c-kit+Sca1+ subset is commonly

referred to as LSK cells (4, 5).

HSCs account for 0.00125–0.00425% (12–42 cells per million)

of whole BM in mice (6). These HSCs are comprised of two main

types: Long-term HSCs (LT-HSCs) or dormant HSCs and short-

term HSCs (ST-HSCs) or activated HSCs. These populations of

HSCs can be differentiated by expression of the anti-adhesive

sialomucin CD34 (7); mouse LT-HSCs do not express CD34 until

they become activated ST-HSCs (6, 8, 9). Other methods of HSC

isolation often begin with enrichment of LSK cells, a heterogeneous

population of hematopoietic precursors, with only a small subset

consisting of LT-HSCs. According to flow cytometry analysis, the

frequency of LT-HSCs within the LSK population is approximately

10% (10, 11). However, in vivo analyses may vary in the frequencies

of long-term reconstituting cells measured among LSK cells:

frequencies as low as 2% (12) or as high as 20% (13) having been

reported. Frequency variation in the BM progenitor pool may be

related to mouse age (14), sex (15), and strain variation (16, 17). For

example, the frequency of LT-HSCs cells increases with age (10). In

addition to CD34, other markers of HSCs that have been used to

differentiate LSK cells are the SLAM family receptors (CD150 and

CD48) (13), CD90 (5), and the capacity of HSCs to remove

intravital dyes like Rhodamine-123 (3, 18).

In humans, the HSC population, similar to mice, is characterized

by the absence of maturity markers and the expression of CD34

(Lin−CD34+) (19). Furthermore, HSCs are found to be more abundant

among CD34+ cells expressing CD4 (20), CD90 (21), CD133 (22), and

EPCR (23), while lacking expression of CD38 (24–26), CD45RA (27),

and CD71 (28). Similar to murine HSCs, there exists a rare subset of

HSCs characterized by the absence of an extensive lineage marker

panel and CD34 (29). These CD34− HSCs have been identified in

human cord blood and are known to express GPI-80 (30), CD90 (31),

CD93 (31), and CD133 (32). While transplant success using CD34

selection suggests the presence of functional HSCs within the CD34+

fractions of neonatal and adult cells, experimental evidence indicates
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that pre-natal CD34− HSCs may be more primitive than their CD34+

counterparts (31, 33).
2 Hematopoiesis: from development
to adulthood

During embryonic development, the earliest hematopoietic

progenitor cells emerge in the yolk sac, appearing around day 17 in

humans and embryonic day 7.5 (E7.5) in mice (34). These progenitors,

originating from the mesodermal layer, form clusters known as “blood

islands” within the yolk sac, closely associated with endothelial and

hematopoietic cells. Human yolk sac development progresses through

three phases: 1) a formative period, 2) a functional period, and 3) a

period of regression. During the functional phase, which typically

occurs during the second stage, the yolk sac comprises cells of both

mesodermal and endodermal origin, housing endothelial and early

hematopoietic cells (35). In humans, at 3–4 post-conception week

(PCWs), the first generation of hematopoietic cells proliferate in the

yolk sac and extraembryonic mesenchyme, primarily consisting of

“primitive” erythroblasts (megaloblasts) which are present in

circulating blood from 4 PCWs onward (36). Shortly after the

initiation of blood island formation and primitive hematopoietic

progenitor generation, endothelial cells within the para-aortic

splanchnopleura region begin producing definitive HSCs. In the

mouse, this process typically takes place around E9.5 (37), while in

humans, it occurs briefly around Carnegie Stages (CS) 9–12 which is

equivalent to 19–27 days of embryonic development (38).

Subsequently, the para-aortic splanchnopleura region gives rise to

most tissues in the aorta-gonad-mesonephros (AGM) (37–39), which

emerges approximately after E10.5 in mouse and after the 27th day of

pregnancy in humans as an active site of hematopoiesis (38, 40–42).

In mice, HSCs are present in the placenta at the same time as they

are in the AGM region (43). Similarly, hematopoietic progenitors are

present in the human placenta at approximately 5–6 PCWs (CS 14–16)

(44–46). Human HSCs capable of long-term multilineage engraftment

in immunodeficient mice were detected from placenta as early as 6

weeks of gestation (CS 17) (45). The human chorion, an extra-

embryonic tissue that shares a developmental origin with placenta

but is much less vascularized, also contains hematopoietic precursors

andHSCs at 5–6 weeks of gestation capable of long-term reconstitution

(46, 47). Hematopoietic progenitors in the early stages of placental/

chorionic development may originate from extra-embryonic sources. A

recent study demonstrated that primitive erythromyeloid progenitors

in the placenta are distinct from definitive hematopoietic stem cells due

to their absence of HLF expression and their limited lineage

commitment primarily to the erythromyeloid lineage (48).

As embryonic development progresses, the liver becomes

another important hematopoietic niche. Intraembryonic HSCs are

located within the fetal liver of rodents (49) and humans (50)

shortly after the liver has formed. It is known that HSCs migrate

from the AGM to fetal liver, although the exact migration pathways

are still not fully understood (51) it is known to be guided in

response to stromal CXCL12 (52).
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In mice, the liver begins to form as a diverticulum from the floor

of the embryonic gut around E9 (53). Subsequently, the murine

liver bud experiences accelerated growth as it becomes vascularized

(54). It is believed that primitive progenitors from the yolk sac

migrate to the fetal liver through the vitelline vein around E11 (55).

By this stage, the murine liver harbors primitive erythromyeloid

progenitors derived from the yolk sac (56). Additionally, AGM-

derived HSCs begin to populate the murine fetal liver starting at

E11, coinciding with maximal AGM activity (57). Subsequently,

fetal liver cells at E12 undergo a significant expansion, up to 38-fold,

and exhibit long-term reconstitution capability when transplanted

into an irradiated mouse, indicating the presence of definitive HSCs

by E12, as opposed to E10 and E11 cells, which did not result in

reconstitution (58). This observation aligns with the decrease in

HSCs observed in the AGM region by E12 (57).

An early and noteworthy investigation illustrated various

hematopoietic cell lineages within the human embryonic liver as

early as 5 PCW (CS 14–15), delineating their morphological

characteristics (59). However, the cells may have comprised

circulating primitive erythro-myeloid progenitors and their

progeny, as they do not express CD34 and have been observed as

early as 23 days of development (CS 10) (50). Recent studies

indicate that the liver is initially populated by molecularly defined

HSCs around 6 PCWs (CS 16) (60). Although CD34+ progenitors

are detected in the human fetal liver as early as 30 days of

development (CS 13) (50), several investigations indicate that

transplantable HSCs are first present in the embryonic liver

shortly thereafter, at 5–6 PCWs (CS 14–16) (61–64).

From this time forward until midgestation, the human liver is

the primary intra-embryonic hematopoietic organ (65).

Erythropoiesis dominates the hematopoietic output of the liver in

order to meet the demands of an expanding blood volume (66, 67).

Indeed, flow cytometric analysis of whole fetal liver indicate that

CD235a in vitro erythroid cells are the dominant cell type in the

liver during midgestation (68). In addition to erythropoiesis, liver

hematopoiesis includes elements of myeloid and lymphoid

precursors (26, 69–71). Single-cell transcriptome profiling of

human fetal liver further confirmed the presence of HSCs and

MPPs with the capability to generate functional innate lymphoid

cells, T-, and B-lymphocytes, natural killer (NK), and CD34+

myeloid progenitors (72).

Interestingly, some long-lived myeloid cells are found in adult

tissues like the lungs or peritoneal cavity. These so-called “tissue

resident macrophages” emerge from the yolk-sac instead of

progenitors derived from the AGM Gomez (56) or fetal liver (73).

Also, some lymphoid populations like the B-1 B cells originate in

the yolk-sac, which represent part of the humoral immune response

but not the classic adaptive immune system. Similarly to tissue

resident macrophages, this subset of B cells are rarely found

circulating in the blood stream (74), and undergo self-renewal in

the periphery (75). It is noteworthy that the nature of these yolk-sac

derived leukocytes have more in common with innate immunity

than adaptive immunity as reviewed in (76). While the presence of

B-1 cells in humans has been controversial (74).However, a recent

comprehensive comparative single-cell sequencing analysis of

human fetal and adult tissues has presented compelling evidence,
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according to these authors, supporting the origin of human fetal B-1

cells (77).

Finally, the definitive hematopoietic organ, the BM, becomes

hematopoietic at E15.5 in mouse (78) and at 10.5 PCW in humans

(79). Although the first HPSCs in the murine bone marrow are

found as early as E15.5 and E16 (80) the amount of LT-HSCs found

a these stages is limited and steadily increasing until birth (78). The

mouse BM is seeded by HSCs originating in the fetal liver (81). In

humans fetal BM is also colonized by circulating hematopoietic

precursors derived from fetal liver found in relative abundance

during early gestational periods compared to neonates (82, 83).

Human fetal BM is first found in the long bones of the fetus as these

bones are the first to become large enough to contain a marrow. A

recent investigation revealed that although HSCs with defined

phenotypes are present in the human BM at 10 PCW, they attain

full functionality only after reaching 12 PCWs (84). The BM

becomes the dominant site of hematopoiesis early in the second

half of gestation as the marrow increases in size relative to the liver.

It is worth mention that the fetal spleen is an important

hematopoietic tissue in mice bridging the peri-natal period when

hematopoiesis diminishes in the liver and before the BM forms.

Humans and mice differ in this regard as the spleen contains but an

insignificant number of hematopoietic precursors at any time

during gestation (85, 86). Figure 1 illustrates the temporal

migration of HSCs in human and mouse as well as the tissues

where hematopoiesis is normally found.
3 Adult extramedullary hematopoiesis

EMH can occur in response to both homeostatic and pathologic

conditions, such as acute infection or inflammation. Organs like the

spleen and liver can start producing blood cells due to local

production of hematopoietic growth factors like GM-CSF, TNFa,
and IL-3 (87, 88). In chronic pathologies, the BMmay lose its ability

to function effectively, leading to increased reliance on organs like

the liver, spleen, or even the lungs for blood cell production. In

mice, splenic EMH readily occur when the capacity of the BM to

produce blood cells is exceeded, recalling the significant role the

spleen plays during the perinatal period in hematopoietic

development. However, large mammals possessing substantial

bone marrow reserves may not demonstrate a comparable

propensity to transition blood cell production from the bone

marrow to the spleen.

Myelofibrosis, diffuse osseous metastatic disease, leukemia, sickle

cell disease, and thalassemia are among the primary factors

contributing to human extramedullary hematopoiesis. (89). Many

reports have found the presence of hematopoietic progenitors in

extramedullary organs due to defective hematopoiesis in the BM due

to any of these diseases (Table 1). Interestingly, some cases of EMH

are found after inflammatory conditions such as inflamed joints

(115), or lung infection (116, 117). Table 1 summarizes reports were

EMH is found secondary to disease.

Pathological EMH is a secondary problem diagnosed principally

with radiological studies, computed tomography (CT) or magnetic

resonance imaging (MRI) (Table 1). Following resection, the
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anomalous mass is examined by pathologists, the most common

techniques used to determine a hematological signature include

staining for glycophorin (GPA, CD235a) for erythroid progenitors

and Giemsa (118) or H&E (Hematoxylin and Eosin) staining for

morphology (89). Sometimes immunohistochemistry (IHC) (104,

106, 111) or flow cytometry (FC) (98) with antibodies against known

progenitor and mature immune cells or colloidal scans (93, 105)

are used.

Although limited, there are some reports showing that HSPCs are

present in tissues outside the BM under homeostatic conditions both

in human and animal models. Furthermore, it has been established

that these cells exhibit re-populating properties similar to those found

in the BM. For example, tissues like the small intestine in humans

contain hematopoietic progenitors expressing CD34 and CD45 (119).

Later work showed not only a distinct phenotype but also confirmed

the presence of hematopoietic colony-forming cells using clonal

analysis in vitro (CFU-c). Additionally, it demonstrated the

potential for long-term chimerism in individuals receiving

intestinal allografts (120).

Another potential host for hematopoietic progenitors in humans

is the stromal-vascular fraction (SVF) of adipose tissue. In

pathological conditions such as chronic myeloid leukemia, adipose

tissue has the potential to transform into a hematopoietic niche. In

this context, leukemic cells express a fatty acid transporter to enhance

their communication with the adipose microenvironment and evade

chemotherapy (121). Under homeostatic conditions, this tissue

harbors a subset highly enriched in CD34+ and VEGFR2+ (KDR)

cells with absent CD45 expression. Interestingly, despite the lack of

CD45 expression, these cells were able to originate hematopoietic

colonies in a CFU-c assay (122). Notably, murine SVF within adipose

tissue contains similar progenitors defined by a LSK phenotype and
Frontiers in Hematology 04
are capable of long-term multi-lineage reconstitution when

transplanted into a recipient (123).

Among other organs known to exhibit pathology associated

EMH, the lungs are included. While there is no conclusive evidence

confirming the presence of HSCs in human lungs, there is evidence

supporting their existence in mice. Initial observations in mouse

lungs have revealed the occurrence of a cell subset, VEGFR2+CD31+

cells, which can produce endothelial cells, smooth muscle cells and

form hematopoietic colonies in vitro (124). Anatomical descriptions

of lung CD34+Sca1+-kit+ cells showed these cells are located in close

proximity to blood vessels, and possibly belong to a unknown subset

of hematopoietic progenitors (125). Furthermore it has been

reported that mouse lungs are active hematopoietic organs,

indeed they account for 50% of platelet production and are a

source of hematopoietic progenitor and HSCs with a phenotype

and repopulating activity similar to its counterparts in the murine

BM (116).

Since the lungs are not classically known to be hematopoietic

niches, it has been hypothesized that lung vasculature may function

as an adaptive niche for HSCs, principally ST-HSCs, since LT-HSCs

were not found by Lefrançais et al. in the lungs (116, 126). The lungs

harbor more than 50 different cell types (127), the most likely subset

to be nurturing HSCs are pericytes or distinct blood vessels, further

work is needed to elucidate this question.

Besides the lungs, reports have indicated that the liver and spleen

also display EMH associated with pathologies. Over the last decade,

numerous studies have revealed that both organs harbor functional

hematopoietic progenitors along with the necessary microenvironment

to sustain them. A recent report has indicated the presence of an LSK

population in the mouse spleen, along with its ability to expand when

the Txl1 gene is overexpressed in splenic stromal cells (128). As for
FIGURE 1

Ontogeny of hematopoiesis in humans and mice. The early hematopoietic progenitor cells emerged in the primitive yolk sac of both human and
mouse. While the embryo continues its development, the mesoderm gives rise to vascular structures like the AGM where the definitive
hematopoietic cells are produced. Almost at the same time the placenta and embryonic liver are colonized by AGM progenitors. Finally fetal liver
hematopoietic cells migrate to populate the bone marrow.
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hepatic hematopoiesis, there is evidence that supports that liver

sinusoid endothelial cells provide an appropriate hematopoietic

environment that supports the proliferation and differentiation of

hematopoietic progenitors in the mouse (129). Moreover, adult

murine liver was shown to support human HSC engraftment,

showing long-term multilineage hematopoiesis (130). In addition,

donor chimerism after liver transplantation is a common finding,

this comes from having a significant amount of donor-derived

hematopoietic cells in the liver graft (131, 132). Liver-derived

hematopoietic engraftment has even been documented to lead to a

complete blood group change in the recipient (133).
TABLE 1 Human adult EMH in disease.

Main
organ
or
tissue
affected

Associated
disease (s)

Diagnostic
technique

Reference

Brain
hematoma

Congenital
anomaly
and anemia

Biopsy and pathological
examination with IHC

(90)

Brain
hematoma

Unknown CT Scan, biopsy, and
pathological
examination

(91)

Brain mass Thalassemia MRI and
pathological
examination

(92)

Brain Myelofibrosis CT Scan, MRI, and
Tc99m sulfur
colloid scan

(93)

Spinal cord Unknown CT-guided biopsy,
peripheral blood smears,

BM aspirate, and
pathological
examination

(94)

Spinal cord Congenital
anomaly

MRI, CT scan, biopsy,
and

pathological
examination

(95)

Spinal cord Breast cancer MRI, biopsy, and
pathological
examination

(96)

Spinal cord Thalassemia MRI (97)

Thorax Thalassemia X-ray, MRI, biopsy and
pathological

examination and FC

(98)

Thorax Thalassemia X-ray, CT scan, biopsy
and pathological

examination with IHC

(99)

Lungs Myelodysplasia
and cirrhosis

X-ray and CT scan (100)

Lungs Myeloproliferative
disease and BM
fibrosis

X-ray, CT scan, aspirate
of pulmonary artery, and
pathological examination

(101)

Lungs Sickle cell trait/
b thalassemia

X-ray and
autopsy findings

(102)

Lungs Myelofibrosis with
myeloid
metaplasia

X-ray, CT scan, blood
smear, FC and Tc99m-
anti-CD66 lung uptake

(103)

Lungs Myelofibrosis CT99m Tc-anti-CD66,
CT scan, biopsy and

pathological
examination with IHC

(104)

Liver Myeloid
metaplasia

CT99m Tc-anti-CD66,
CT scan,

Tc99m sulfur colloid
scan and biopsy with

pathological
examination

(105)

(Continued)
TABLE 1 Continued

Main
organ
or
tissue
affected

Associated
disease (s)

Diagnostic
technique

Reference

Liver Renal cancer CT99m Tc-anti-CD66,
X-ray, CT scan, and

biopsy with
pathological

examination and IHC

(106)

Liver Myelofibrosis CT99m Tc-anti-CD66,
CT scan, biopsy, and

BM smear with
pathological
examination

(107)

Liver Myeloid
metaplasia

CT99m Tc-anti-CD66,
CT scan, BM smear,

liver mass aspirate, and
pathological
examination

(108)

Liver Lupus
erythematosus

CT99m Tc-anti-CD66,
CT scan, BM smear,

liver biopsy, and
pathological
examination

(109)

Spleen Metastatic
carcinoma

CT99m Tc-anti-CD66,
sections of spleen

and BM

(110)

Spleen Multiple myeloma CT99m Tc-anti-CD66,
Splenectomy and

pathological
examination with IHC

(111)

Spleen Gray platelet
syndrome
with myelofibrosis

CT99m Tc-anti-CD66,
BM and blood smear,

splenectomy and
pathological
examination

(112)

Spleen
& liver

Fibrous dysplasia CT99m, Tc-anti-CD66,
AP film, BM from
surgical waste, liver

biopsy, splenectomy,
pathological
examination

(113)

Spleen
& liver

Myelodysplastic
syndromes

CT99m Tc-anti-CD66,
imaging studies

and biopsies

(114)
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In summary, although EMH has been observed under both

homeostatic and emergency conditions, it remains uncertain whether

extramedullary precursors are remnants from early ontogeny or if they

come from and are constantly replenished from the BM (Figure 2).

Consequently, we wish to highlight the importance of thoroughly

researching all mechanisms involved in these phenomena.
4 Molecules
controlling hematopoiesis

The HSCs in the BM require a special microenvironment

(niche) to maintain stemness. In the BM, two types of niches

have been identified. First, the endosteal niche located in the

inner cellular lining within bone cavity in contact with BM of

trabecular bone, which is called endosteum. This region comprises

specialized osteoblasts, CXCL12-abundant reticular cells (CARs),

osteoclasts, and mesenchymal stromal cells (MSCs). Secondly, we

have the vascular niche where HSCs are found next to CARs

adjacent to BM sinusoids (134).

The molecules secreted from niche cells promote HSC

maintenance. These include stem cell factor (SCF, KL) (135–136),

CXCL12 (137, 138), angiopoietin 1 (139), and thrombopoietin (TPO)

(140). Further detailed analysis of the BM niche showed that

approximately 80% of dividing and non-dividing hematopoietic
Frontiers in Hematology 06
progenitors reside in close proximity to a sinusoid and nearly all

HSCs are in contact with leptin receptor and CXCL12 high

expressing niche cells (LEPR+CXCL12hi). The rest of the BM

hematopoietic progenitors are located near arterioles (10%) and

transition zones (10%) with only a few HSCs residing adjacent to

the endosteum (141). In general, it is well-established that BM HSCs

primarily inhabit these perivascular environments.

Other molecules are produced by a wide variety of cells that are

essential for the regulation of hematopoiesis such as: SCF, notch

ligands, bone morphogenic protein, transforming growth factor b
(TGF-b), TPO, fibroblast growth factors, and insulin-like growth

factor 2 as reviewed by (142). These molecules are necessary for

maintaining and activating the resident HSCs on demand.

On the other hand, HSC and progenitor proliferation and

differentiation is primarily regulated by cytokines like erythropoietin,

granulocyte-monocyte colony-stimulating factor (GM-CSF) (143), a-
interferon (INF-a) (144), and g-interferon (INF-g) (145).

Hematopoiesis activated by inflammatory signals is often referred to

as “emergency hematopoiesis” and it has been widely studied in

pathogen associated inflammation (146).

Furthermore, factors produced during inflammatory processes in

the mouse stimulate hematopoietic progenitors, some Toll-like

receptor (TLR) ligands like Pam3CSK4 and lipopolysaccharide (LPS)

promotes myelopoiesis in vitro (147). IFN-g promotes activation and

proliferation of HSCs both in vitro and in vivo (145). TLR3 ligand, poly
FIGURE 2

Extramedullary hematopoiesis in adults. Many reports have described the generation of progenitor cells outside the BM in adults. The major
evidence points to BM failure and inflammation being the causes of some blood progenitors to emigrate from BM to organs like liver or spleen,
although evidence of lungs or paraspinal EMH have been described. Murine models showed the presence of functional hematopoietic precursos in
those tissues even without a disease or inflammatory insult. It remains a mystery if those cells came from BM or have a prenatal origin.
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(I:C), and its downstream effector INF-a also promotes the

proliferation of dormant HSCs in vivo but chronic treatment caused

the opposite effect (144). Other pro-inflammatory cytokines like G-

CSF, interleukin (IL)-6, IL-11, and IL-12 promote not only HSC

proliferation and differentiation but also HSC mobilization from BM

to peripheral blood (148). Themobilization of HSCs is a mechanism by

which sites of EMH may be seeded with hematopoietic precursors.

There are multiple cell sources of hematopoietic growth factors

beyond innate immune cells that may contribute to EMH. In

addition to the immune response, various cell types assist in the

restoration and replenishment of hematopoietic niches. In vitro

experiments involving the cultivation of HSCs with endothelial cells

(ECs) or their soluble products have demonstrated that factors

secreted by ECs are essential for enhancing the numbers of CFU-c

(149). These factors are only partly defined. It was described that

ECs are the main source of G-CSF in BM during inflammation, a

molecule known to promote myelopoiesis (150). ECs also secrete

IFN-g and TNF-a, which promote MSC production of IL-13,

another hematopoietic regulator in mice (151, 152). BM derived

MSCs are affected by infection and inflammation, they respond to

cytotoxic CD8+ T effector-cell signals and produce high levels of IL-

6, thus promoting myelopoiesis (153). BM-MSCs primed by IFN-g
secretes hepatocyte growth factor, prostaglandin E2, that are known

by its immune-suppressive effect but also stimulates growth of

hematopoietic progenitors (154, 155). While BM niche molecules

are known and widely described, our understanding of

hematopoietic regulation outside the BM remains less understood.
5 EHM regulation by soluble factors

Hematopoietic progenitors respond to multiple signals, both in

steady state and during inflammation, some of these signals are

secreted molecules derived by numerous cell types throughout life as

described before (156). Furthermore, the same pro-inflammatory

molecules that promotes blood progenitor growth and mobilization

in BM are linked to EMH in adults, such as GM-CSF, G-CSF, IL-3,

IL-6 and IFN-g (87, 157). Unfortunately, it is unknown which

molecules outside the BM niche are specifically regulating the

hematopoietic progenitors found in the extramedullary sites. While

there are a number of potential candidates, some of them are

discussed in more detail below:
5.1 Stromal derived factor 1

Certain soluble factors exhibit their function not only within the

BM but also in extramedullary organs. For instance, stromal derived

factor 1 (SDF-1), also recognized as CXCL12, is one such factor.

Liver ECs sustain hematopoietic precursors both in vitro and in vivo

by secreting SDF-1 and expressing adhesion molecules like CD34

similar to yolk sac endothelium capable of supporting

hematopoietic proliferation and differentiation (129, 158).

During periods of stress, it is observed that blood progenitors

migrate from the bone marrow to extramedullary tissues. In the

spleen of mice, perisinusoidal ECs and tcf21+ stromal cells are found
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in the red pulp, where they produce SCF and SDF-1 (159). Moreover,

it has been shown that a humanized mouse model injected with

adenovectors expressing human SDF-1 promoted mobilization of

HSCs into the spleen and peripheral blood, leading to an increased

number of circulating human CD41+ cells (160). In addition, human

spleens exhibiting extramedullary hematopoiesis showed significantly

higher expression of SDF-1 compared to EMH-negative cases (161).
5.2 Thymic stromal lymphopoietin

Another possible EMH mediator is the thymic stromal

lymphopoietin (TSLP). TSLP is a cytokine, that plays a crucial

role in the regulation of the immune system and inflammation

(162). TSLP is primarily produced at barrier surfaces in the body,

such as the, gut, and lungs (163). Moreover, TSLP is involved in

initiating and modulating immune responses at these barrier

sites (164).

TSLP receptor is expressed by BM precursors and CD34+ cells in

the periphery, the administration of exogenous TSLP to mice increased

the percentages and numbers of Lin−CD34+ckit+ cells in the spleen,

TSLP is mostly produced by epithelial and stromal cells and is involved

in type 2 cytokine-mediated inflammation (165).
5.3 Isthmin-1

The regulation of extramedullary hematopoiesis (EMH)

remains poorly understood, especially during homeostasis. While

stress conditions offer some insights, questions persist about the

origin and presence of resident blood precursors in extramedullary

organs during steady-state conditions. As mentioned before,

murine lungs contain fully functional hematopoietic progenitors

(116). Nonetheless, a comprehensive characterization of the

hematopoietic niche in the lungs has yet to be achieved, and

certain researchers speculate that pericytes and ECs could

potentially serve as niches for hematopoietic cells within the lung

(126). Isthmin-1 is expressed by lung progenitors cells that are of

hematopoietic and endothelial origin in the mouse (166). This

soluble protein is related to NODAL subfamily of TGF-b, thus
regulating embryonic development (167, 168). Additionally,

Isthmin-1 plays a signaling role in promoting the development

and functionality of hematopoietic tissues in the embryonic

zebrafish (169). Hence, Ishtmin-1 has the potential to influence

the formation of the hematopoietic microenvironment in other

species and possibly outside the BM.
5.4 Adrenomedullin

Adrenomedullin (ADM) is a peptide hormone that plays a

crucial role in regulating various physiological processes in the

human body. It was first discovered in the adrenal medulla, which is

why it is named “adrenomedullin” (170). This peptide has shown to

improve in vitro expansion of cord blood HSCs in addition to

classic cytokines such as SCF, TPO, EPO, FL3, GM-CSF, and GCSF
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(171, 172). Moreover, it has been demonstrated that ADM, of

endothelial origin, is capable of maintaining HSCs in

combination with SCF, TPO, and FLT3 ligand in vitro (173).

Additionally, some primary BM stromal cell lines with the

molecular signature Lin−CD45−CD271+PDGFRalow/− also express

ADM and are able to support human cord blood CD34+ cells (174).

While there is no conclusive evidence connecting ADM to the

extramedullary support of hematopoietic progenitors, it is plausible

that this peptide plays a role in EMH, given its widespread presence

in organs such as the kidneys (175), heart (176), lungs (177), and

blood vessels (173, 178).
5.5 Glial-derived neurotrophic factor

Another potential regulator of hematopoietic progenitors is the

glial cell-derived neurotrophic factor (GDNF). GDNF, a member of

the neurotrophic factor family, is a protein pivotal for the

development, upkeep, and viability of numerous nerve cell types,

particularly within the peripheral and central nervous systems (179).

Recently, is has been shown that GNDF regulate hematopoiesis via

RET signaling. Grey et al. demonstrated that the glial family receptor,

RET, present on the surface of HSCs, contributes to prolonged

cellular growth, increased stress resilience, and enhanced cell

survival during in vitro expansion (180). When HSCs are exposed

to RET ligand, GNDF, and its coreceptor complex, they exhibit

enhanced progenitor function during primary transplantation and

improved long-termHSC function during secondary transplantation.

Human umbilical cord MSCs, when isolated, have the capacity to

generate and release GDNF, contributing to tissue repair. Initially

focused on nerve repair, this capability now extends to potentially

include hematopoietic cells (181). Interestingly, murine BM HSCs

also express RET and respond to it signaling partners, including

GDNF (182). RET is not only expressed by BM cells but also for gut-

associated lymphoid tissue, its signaling is necessary for Peyer’s patch

formation (183). Generally, GDNF production and function is widely

described within communication between neurons and their targets

both in central as well as peripheral nervous system (184). It is

noteworthy that GDNF can also be synthesized by MSCs and

influence other types of cells such as salivary stem cells (185) or

endothelial cells (186). It is conceivable that GDNF may exert an

influence on hematopoietic precursors outside the bone marrow,

analogous to its role in intestinal organogenesis.
6 Conclusions

In summary, the significance of extramedullary hematopoiesis

(EMH) extends from embryonic development to adulthood,

showcasing the dynamic changes in hematopoietic locations.

Throughout development, the regulation of hematopoiesis by

crucial cell types and molecules shapes the transition from EMH

to bone marrow hematopoiesis. Some of these developmental EMH

sites may maintain conditions conducive to hosting primitive and

definitive hematopoietic progenitors. Recent research revealed that

hematopoiesis originating from embryonic hemogenic ECs
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continues into adulthood, as evidenced even in 12-month-old

mice (187). Notably, this research demonstrated that the majority

of MPPs, T cells, and B-2 cells within the first month after birth

were fetal EC-derived. Whether a similar phenomenon occurs in

humans remains to be elucidated. Thus, understanding the origin of

HSPCs as well as the variances in niches between normal and

aberrant sites is vital, as it influences our comprehension of

hematopoietic cell replenishment mechanisms. While BM niche is

extensively characterized, with knowledge about cellular

components and soluble factors, much remains unknown about

the factors influencing adult EMH sites.

Most stem cell niches are situated near blood vessels and

stromal cells (188–190). HSCs are no exception (191).

Considering the nature of EMH sites, it is highly likely that the

cells supporting these hematopoietic precursors are primarily

endothelial and stromal cells. There is evidence showing that the

vascular fraction of murine extramedullary adult organs like brain,

heart, lung and liver are able to maintain LSK cells in vitro (192). In

this context, the reliance on endothelial and stromal cells within

EMH sites underscores the pivotal role of these cellular components

in sustaining hematopoietic potential beyond the bone marrow.
7 Future perspectives

Nevertheless, there exist numerous inquiries that require further

resolution. Are these possible niches similar to one another? What

distinctions exist between the BM vascular niche and the vascular

fraction of the organs displaying typical EMH? Additional research is

needed to uncover the mechanisms that regulate the EMH niche-like

functions. Undoubtedly, it is crucial to assess and contrast the various

cell types participating in EMH with those of the perivascular and/or

endosteal cells found in the BM niche.

The more recent models for investigating native hematopoiesis,

exemplified by studies such as (193), hold promise for significant

advancements in our understanding of hematopoietic processes. These

models often incorporate advanced technologies, such as single-cell

sequencing and sophisticated imaging techniques, allowing for a finer

resolution of cellular interactions and dynamics within the

hematopoietic microenvironment.

For instance, in a study where a high-resolution characterization of

the bone marrow (BM) niche was conducted in both healthy

conditions and acute myeloid leukemia (AML), researchers

established a singlecell gene expression database encompassing

339,381 BM cells. The findings revealed significant alterations in cell

type proportions and gene expression in AML, suggesting a

comprehensive disruption of the entire niche (194). Such high-

resolution analyses have the potential to enhance our comprehension

of the pathological and homeostatic distinctions within extramedullary

niches, spanning from development to adulthood.
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et al. Proinflammatory signaling regulates hematopoietic stem cell emergence. Cell.
(2014) 159:1070–85. doi: 10.1016/j.cell.2014.10.031

89. Roberts A, Shetty A, Mellnick V, Pickhardt P, Bhalla S, Menias C.
Extramedullary haematopoiesis: radiological imaging features. Clin Radiol. (2016)
71:807–14. doi: 10.1016/j

90. Li R, Reddy VVB, Palmer CA. Extramedullary hematopoiesis: an unusual finding
in subdural hematomas. Case Rep Pathol. (2011) 2011:1–3. doi: 10.1155/2011/718585

91. Shimony N, Cagnano E, Kanner AA. Extramedullary hematopoiesis presenting as
spontaneous recurrent chronic subdural hematoma: Case report and review of the literature.
Interdiscip Neurosurgery: Advanced Techniques Case Manage. (2018) 14:47–9.

92. Eskazan AE, Ar MC, Baslar Z. Intracranial extramedullary hematopoiesis in
patients with thalassemia: a case report and review of the literature. Transfusion. (2012)
52:1715–20. doi: 10.1111/j.1537-2995

93. Singer A, Quencer R. Intracranial extramedullary hematopoiesis: a rare cause of
headaches. J Neuroimaging. (2014) 24:524–7. doi: 10.1111/jon.12029

94. Mattei TA, Higgins M, Joseph F, Mendel E. Ectopic extramedullary
hematopoiesis: Evaluation and treatment of a rare and benign paraspinal/epidural
tumor. J Neurosurgery: Spine. (2013) 18:236–42. doi: 10.3171/2012.12.SPINE12720

95. Katchi T, Kolandaivel K, Khattar P, Farooq T, Islam H, Liu D. Extramedullary
hematopoiesis presented as cytopenia and massive paraspinal masses leading to cord
compression in a patient with hereditary persistence of fetal hemoglobin. biomark Res.
(2016) 4:17–7. doi: 10.1186/ s40364-016-0071-6

96. Wang A, Carberry N, Solli E, Gillick J, Islam H, Hillard V. Spinal cord
compression secondary to extramedullary hematopoiesis: case report and review of
the literature. Case Rep Oncol. (2016) 9:290–7. doi: 10.1159/000446473

97. La VT, Diatte M, Gaston J, Dick D, Sweiss R, Pakbaz Z. Spinal cord compression
due to extramedullary hematopoiesis in a patient with e-beta-thalassemia managed
without radiation or surgery. J Community Hosp Internal Med Perspect. (2018) 8:246–9.
doi: 10.1080/20009666.2018.1490141

98. Abdulla MA, Yassin MA, Abdelrazek M, Mudawi D, Ibrahim F, Soliman DS,
et al. A persistent cough as atypical clinical presentation of intrathoracic extramedullary
hematopoiesis (EMH) in a female with thalassemia intermedia. Acta Biomedica Atenei
Parmensis. (2018) 89:41–6. doi: 10.23750/abm

99. An J, Weng Y, He J, Li Y, Huang S, Cai S, et al. Intrathoracic extramedullary
hematopoiesis presenting as tumor-simulating lesions of the mediastinum in a-
thalassemia: A case report. Oncol Lett. (2015) 10:1993–6.

100. Pinato DJ, Tan W, Gately A. An unexpected cause of pulmonary cannonball
lesion. J Thorac Oncol. (2014) 9:259–9. doi: 10.1097/JTO.0b013e3182a85298

101. Monga V, Silverman M. Pulmonary extramedullary hematopoiesis involving
the pulmonary artery. Hematol Rep. (2015) 7:9–11. doi: 10.4081/hr.2015.5714

102. Chute DJ, Fowler DR. Fatal hemothorax due to rupture of an intrathoracic
extramedullary hematopoietic nodule. Am J Forensic Med Pathol. (2004) 25:74–7.
doi: 10.1097/01.paf.0000113859.48471.49

103. Rumi E, Passamonti F, Boveri E, De Amici M, Astori C, Braschi M, et al. Dyspnea
secondary to pulmonary hematopoiesis as presenting symptom of myelofibrosis with
myeloid metaplasia. Am J Hematol. (2006) 81:124–7. doi: 10.1002/ajh.20509

104. Ozbudak IH, Shilo K, Hale S, Aguilera NS, Galvin JR, Franks TJ. Alveolar
airspace and pulmonary artery involvement by extramedullary hematopoiesis: a unique
manifestation of myelofibrosis. Arch Pathol Lab Med. (2008) 132:99–103. doi: 10.5858/
2008-132-99-aaapai
Frontiers in Hematology 11
105. Wiener MD, Halvorsen RA, Vollmer RT, Foster WL, Roberts L. Focal
intrahepatic extramedullary hematopoiesis mimicking neoplasm. Am J
Roentgenology. (1987) 149:1171–2. doi: 10.2214/ajr.149.6.1171
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intrahepatic extramedullary hematopoiesis in myelofibrosis. Abdominal Imaging.
(2000) 25:184–6. doi: 10.1007/s002619910041

109. Laxer RM, Roberts EA, Gross KR, Britton JR, Cutz E, Dimmick J, et al. Liver
disease in neonatal lupus erythematosus. J Pediatr. (1990) 116:238–42. doi: 10.1016/
S0022-3476(05)82880-X

110. Conor O’keane J, Wolf BC, Neiman RS. The pathogenesis of splenic
extramedullary hematopoiesis in metastatic carcinoma. Cancer. (1989) 63:1539–43.
doi: 10.1002/ 1097-0142(19890415)63:8⟨1539::AID-CNCR2820630814⟩3.0.CO;2-5

111. Sato S, Tamai Y, Okada S, Kannbe E, Takeda K, Tanaka E. Atraumatic splenic
rupture due to ectopic extramedullary hematopoiesis after autologous stem cell
transplantation in a patient with al amyloidosis. Internal Med. (2018) 57:399–402.
doi: 10.2169/internalmedicine.9018-17

112. Jantunen E, Hänninen A, Naukkarinen A, Vornanen M, Lahtinen R. Gray
platelet syndrome with splenomegaly and signs of extramedullary hematopoiesis: A
case report with review of the literature. Am J Hematol. (1994) 46:218–24. doi: 10.1002/
ajh.2830460311

113. Robinson C, Boyce AM, Estrada A, Kleiner DE, Mathew R, Stanton R, et al.
Bone marrow failure and extramedullary hematopoiesis in McCune-albright
syndrome. Osteoporosis Int. (2018) 29:237–41. doi: 10.1007/s00198-017-4217-7

114. Fan N, Lavu S, Hanson CA, Tefferi A. Extramedullary hematopoiesis in the
absence of myeloproliferative neoplasm: Mayo clinic case series of 309 patients. Blood
Cancer J. (2018) 8:119. doi: 10.1038/s41408-018-0156-6

115. Regan-Komito D, Swann JW, Demetriou P, Cohen ES, Horwood NJ, Sansom
SN, et al. GM-CSF drives dysregulated hematopoietic stem cell activity and pathogenic
extramedullary myelopoiesis in experimental spondyloarthritis. Nat Commun. (2020)
11:155. doi: 10.1038/ s41467-019-13853-4
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