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Concanavalin A staining: a
potential biomarker to predict
cytarabine sensitivity in acute
myeloid leukemia
Tao Zhang1, Glenn Marsman2, Diego A. Pereira-Martins2,
Manfred Wuhrer1, Gerwin A. Huls2 and Valerie R. Wiersma2*

1Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands,
2Department of Hematology, University Medical Center Groningen, University of Groningen,
Groningen, Netherlands
Acute myeloid leukemia (AML) is a cancer of the myeloid lineage of blood cells,

with an overall 5-year survival rate of 25%, mainly due to therapy-resistant

relapses in > 50% of patients. The standard treatment for AML comprises

cytarabine (AraC) with anthracyclines. Biomarkers to determine AraC sensitivity

are currently lacking, thus hampering the rational choice of optimal treatment

protocols, which would be especially warranted in the case of primary refractory

disease. In the current study, we hypothesized that AraC-resistant AML cells

harbor a different “sugar decoration”, i.e., glycosylation profile, compared with

sensitive cells, which could be used as biomarker for AraC sensitivity. Therefore,

we analyzed the expression of glycosylation-related genes in publicly available

AML datasets, whereby the high expression of mannosylation-related genes (6

out of 13) was significantly associated with a worse survival in patients treated

with AraC-based intensive chemotherapy protocols. In line with these data, the

AraC-resistant AML cells expressed higher levels of high mannose N-glycans, as

detected by mass spectrometry-based glycomics. Concanavalin A (ConA), a

lectin that specifically recognizes a-mannoses in N-glycans, bound more

strongly to AraC-resistant cells, and the extent of the ConA binding was

correlated with AraC sensitivity in a panel of AML cell lines. Furthermore, the

ConA staining could discriminate AraC sensitivity in vitro between two patient-

derived AML samples taken at diagnosis. Therefore, the ConA staining may be a

potential novel biomarker to predict AraC sensitivity in AML.
KEYWORDS

acute myeloid leukemia (AML), cytarabine (AraC), chemoresistance, mannosylation,
Conconavalin A (ConA), biomarker
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Introduction

Acute myeloid leukemia (AML) is a hematologic malignancy

characterized by clonal expansion of immature blast cells in the

blood and bone marrow. It is one of the most common forms of

leukemia with 756 new diagnoses in the Netherlands in 2022 (1).

The standard treatment regimen of AML comprises the nucleoside

analog cytarabine (AraC) combined with an anthracycline, such as

daunorubicin or idarubicin. Even though the survival of AML

patients has increased over the past decades, the overall prognosis

remains poor (2). The main cause of mortality in AML is therapy

resistance causing relapse and refractory disease.

Besides standard AraC-based therapy, there are other

treatments options for AML patients, among which azacytidine,

etoposide, and venetoclax, which are used as second-line treatments

or when a high-dose chemotherapeutic regimen cannot be tolerated

by the patient. It would be of clinical use to assess AraC sensitivity

prior to treatment, which would enable the possibility to choose

alternative treatment options in the case of preexisting AraC

resistance. However, there is no predictive biomarker to

determine AraC sensitivity to date. AraC sensitivity has among

others been linked to certain gene and intracellular protein

expression signatures (3–5). However, to be implemented into

routine diagnostics a surface marker that can be assessed by flow

cytometry has the preference, as it can be performed using

already established equipment without the necessity of additional

sample preparation.

In the current study we hypothesized that a novel biomarker for

AraC-resistant AML cells can be found in their “sugar coat” or so-

called glycosylation profile. Glycosylation is a non-template driven

posttranslational modification that takes place in the Golgi and

endoplasmic reticulum by glycosyltransferases and glycosidases that

respectively add and remove sugars from glycans that are attached

to proteins or lipids (6). At least 50% of all human proteins are

glycosylated and almost all the key molecules involved in immune

responses are glycoproteins (7). As AML cells arise from immune

precursors, their extent of glycosylation is likely high and diverse.

Indeed, we previously identified the glycosylation profile of

21 widely used AML cell lines, revealing distinct glycan profiles

between AML subtypes (8). The clinical use of differential

glycosylation profiles has already been implemented for decades,

among which the discrimination between the various blood groups

using the Lewis antigen system is a prominent example (6).

Furthermore, several glycosylation-related biomarkers are being

used for cancer diagnostics and prognostics, among which are

cancer antigen 19-9 (CA19-9) for pancreatic cancer, alpha-

fetoprotein LC3 for liver cancer, the carcinoembryonic antigen for

colon cancer, and CA-125 for ovarian cancer (9). Therefore, we

focused on glycosylation patterns in this study, with the aim to

discover a biomarker for AraC sensitivity in AML.
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Materials and methods

Patients and gene expression profiling

Publicly available clinical and transcriptomic data of three adult

AML cohorts whose patients were treated with intensive

chemotherapy were included in this study: TCGA-AML (n = 121;

Illumina HiSeq 2000) (10), Beat AML (n = 219; Illumina HiSeq

2500) (11), and HOVON-GSE6891 (n = 405; Affymetrix Human

Genome U133 Plus 2.0 Array) (12, 13). The normalized gene

expression and clinical data for the TCGA cohort were retrieved

from the FireBrowse data portal (www.firebrowse.org), whereas for

the Beat AML cohort we used the Beat AML Vizome data portal

(www.vizome.org) and the cBioPortal for Cancer Genomics

(www.cbioportal.org). The normalized gene expression data were

retrieved from the Gene Expression Omnibus database

(www.ncbi.nlm.nih.gov/geo/) for the HOVON cohort.
N-glycosylation analysis using porous
graphitized carbon nano-liquid
chromatography-MS/MS

Chemicals and reagents for the MS analysis
Ammonium bicarbonate, trifluoroacetic acid, cation exchange

resin beads (AG50W-X8), potassium hydroxide, and sodium

borohydride were obtained from Sigma-Aldrich (Steinheim,

Germany). The 8 M guanidine hydrochloride (GuHCl) was

obtained from Thermo Fisher Scientific (Waltham, MA, USA).

HPLC SupraGradient acetonitrile and dithiothreitol (DTT) were

obtained from Biosolve (Valkenswaard, the Netherlands), and other

reagents and solvents such as methanol, 2-propanol, and glacial acetic

acid were obtained from Merck (Darmstadt, Germany). The

MultiScreen® HTS 96 multiwell plates (with a pore size of 0.45 mm)

with a high protein-binding hydrophobic Immobilon-P

Polyvinylidene difluoride (PVDF) membrane were purchased from

Millipore (Amsterdam, The Netherlands), and the conical 96-well

Nunc plates from Thermo Fisher Scientific. The peptide N-glycosidase

F (PNGase F, lyophilized, and glycerol free) was purchased from

Roche Diagnostics (Mannheim, Germany). Ultrapure water generated

from a Q-Gard 2 system (Millipore, Amsterdam, The Netherlands)

was used for all preparations and washes.

PGC nano-LC-MS/MS N-glycosylation analysis
N-glycan alditols were prepared from 5 × 105 cells, as previously

described by Zhang et al. (14). Maltoheptaose (DP7, 5 ng) was

added as internal standard to support the absolute quantification of

N-glycans. In brief, 25 µL of the cell lysate was applied to a

hydrophobic Immobilon-P PVDF membrane in a 96-well plate

format. The proteins were denatured by applying 75 µL of the
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denaturation mix [72.5 µL of 8 M GuHCl and 2.5 µL of 200 mM

dithiothreitol (DTT)] in each well. After shaking (for 15 min) and

incubation in a moisture box (for 30 min at 60°C) the unbound

material was removed by centrifugation. The N-glycans were

released by adding PNGase F (2 U in 15 µL of H2O) and

incubating overnight at 37°C. The released N-glycans were

collected from the PVDF plate by centrifugation, and the

glycosylamine versions of the released N-glycans were hydrolyzed

by adding 20 µL of 100 mM ammonium acetate (pH 5). The

samples were incubated (at room temperature for 1 h) and dried

in a SpeedVac concentrator 5301 (Eppendorf, Hamburg, Germany)

at 35˚C. The collected N-glycans were subsequently reduced and

desalted followed by PGC-cleanup using a 96-well plate-based

protocol (14). The glycan alditols were dissolved in 10 mL of H2O

prior to PGC nano-LC-ESI-MS/MS analysis. To this end, a home-

packed PGC trap column (5 mm Hypercarb™, 320 mm × 30 mm)

and a PGC nano-column (3 mm Hypercarb, 100 mm × 100 mm)

were connected to an amaZon ETD speed ion trap for glycan

detection (Bruker Daltonics, Bremen, Germany). The separation

was achieved with a linear gradient (9%–50%) mobile phase B over

90 min at a 0.5 mL/min flow rate. The column was held at a constant

temperature of 35°C. Ionization was achieved using the

CaptiveSpray nanoBooster source (Bruker), with isopropanol-

enriched dopant nitrogen gas and a capillary voltage of 1,000 V

applied in negative ion mode. MS-spectra were acquired within an

m/z range of 500–1,850, and the smart parameter setting was set to

m/z 1,200. MS/MS spectra were generated using collision-induced

dissociation for the top three most abundant precursors per MS

spectrum covering an m/z range from 100 to 2,500. The glycan

structures were assigned using GlycoWorkbench (15) and

GlycoMod (16) software based on the known MS/MS

fragmentation patterns in the negative ion mode (17), elution

order, and general glycobiological knowledge.

Relative quantification of the individual glycans was performed

by normalizing the total peak area of all glycans within one sample

to 100%. To estimate the glycan amount per cell, the glycan

intensity was normalized to the intensity of the internal standard

DP7. The structures are depicted according to the Consortium for

Functional Glycomics (CFG).
Cell lines and patient-derived AML samples

The AML (HL-60, MOLM-13, U-937, THP-1, OCI-AML-2,

OCI-AML-3, and NB-4) and stromal (MS5) cell lines were

originally obtained from the American Type Culture Collection

(ATCC) and cultured in, respectively, Roswell Park Memorial

Institute (RPMI) medium (Lonza 12–115F; Basel, Switzerland)

and alpha minimum essential medium (a-MEM) (Lonza)

supplemented with 10% fetal bovine serum (FBS; F7524; Sigma

Aldrich, St. Louis, MO, USA), in a humidified 5% CO2 atmosphere

at 37°C. AraC-resistant AML cell lines were generated

previously (18).

Patient-derived AML samples taken at time of diagnosis

(Supplementary Table 3 for clinical characteristics) were thawed

from our cryobank [stored after informed consent and following
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approval by the Medical ethics committee of the University Medical

Center Groningen (MCG) in accordance with the Declaration of

Helsinki protocol; code NL43844.042.13, 6 January 2014] and

cultured, as previously described, in Gartner’s medium on top of

a MS5 support layer (19). After 2–3 days of acclimatization, only the

AML samples with a cell viability above 80% were used for

further experiments.
Fluorescent concanavalin A staining

To determine the extent of mannosylation, AML cells (5 × 104

in 100 µL of RPMI plus 10% FBS) were incubated with 25 µg/mL of

ConA-488 or ConA-647 (C11252/C21421; Thermo Fisher

Scientific) for 1 h at 4°C. After washing with phosphate-buffered

saline (PBS), the ConA-488/ConA-647 fluorescent intensity was

determined using flow cytometry and accessory software

(CytoFLEX; Beckman Coulter, Brea, CA, USA/BD, Accuri

Franklin Lakes, NJ, USA). The same protocol was used for the

lens culinaris agglutinin (LCA) staining using 125 µg/mL of LCA-

fluorescein isothiocyanate (FITC; L32475; Thermo Fisher

Scientific). For the patient-derived samples the cells were counter

stained for CD45 (catalog number 21810456; ImmunoTools

GmbH, Friesoythe, Germany) to enable gating on myeloblasts

(see Supplementary Figure 2A).

For the fluorescent images, a similar protocol as for flow

cytometry was used. After washing, cells were spotted on a

microscope slide using a cytocentrifuge (CytoSpin 3; Shandon,

UK) and analyzed using the EVOS™ Cell Imaging System

(EVOS-FL; Thermo Scientific).
Cytarabine sensitivity assays

To determine cytarabine (AraC) sensitivity, the AML cells were

plated in a 48-wells plate (5 × 104 in 200 µL of RPMI plus 10% FBS)

and treated with 500nM AraC (hospital pharmacy, UMCG;

Cytarabine Accord solution (100 mg/mL); RVG 112666) and

incubated for 72 h at 37°C. Subsequently, cell viability was

assessed using the MTS assay (CellTiter 96® AQueous One

Solution Cell Proliferation, G3580; Promega, Madison, WI, USA).

In brief, MTS was added [7.5% v/v (volume to volume)] to each well

and incubated at 37°C. After sufficient color development a read-

out was performed at OD490 nm (MultiSkan Sky of Thermo Fisher

Scientific). The cell viability was calculated by subtracting OD490 nm

of the dead control of each value (7.5% dead mix, consisting of 10%

Triton X in 70% ethanol) and calculating the viability as a

percentage of the untreated control (treated/untreated x 100%). It

is noteworthy that the ConA binding toward the AML cell lines was

determined at the time of plating for the MTS assays to ensure the

correct correlation analysis. For the tunicamycin experiments

(T7765; Sigma Aldrich, Steinheim, Germany), the cells were pre-

incubated with 50ng/mL of tunicamycin for 72 h prior to treatment

with AraC. For the patient-derived samples, the cells were harvested

after 72 h of incubation (same protocol as cell lines) and stained

with anti-CD45-allophycocyanin (APC) and annexin-V-FITC
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(catalog number 31490013; ImmunoTools) in binding buffer (10 x

annexin V-binding buffer; BD Biosciences, San Jose, CA, USA).

To determine whether AML cells with high levels of ConA

binding survived AraC treatment, cells were prestained with ConA-

647 using a low non-toxic dose following the protocol as used for

fluorescent imaging. Subsequently the cells were plated, as described

above, and after 72 h of incubation, fluorescent intensity of the

surviving cells was measured using flow cytometry.
Statistical analysis

Gene expression profiling
The cohorts were dichotomized into groups with high and low

levels of gene expression (n = 271 genes; Supplementary Table 1)

after calculating the optimal cut-point value using the receiver

operating characteristic curve for censored overall survival data.

Then, univariate and multivariate Cox proportional hazard

regression was computed. According to data availability, we

adjusted prognosis prediction for confounders as follows: age

(continuous variable), sex (male vs. female), white blood cell

counts (continuous), transplantation status (allo- or auto-HSCT

vs. none), and European LeukemiaNet risk categorization

(ELN2010 for TCGA and HOVON; ELN2017 for Beat AML). A

proportional hazards (PHs) assumption for each continuous

variable of interest was tested. A linearity assumption for all

continuous variables was examined in logistic and PH models

using restricted cubic spline estimates of the relationship between

the continuous variable and log-relative hazard/risk. Additionally,

we considered only genes that generated an area under the curve >

0.5, with sensitivity and specificity > 0.5. These analyses were

performed for each gene of the transcriptome in each cohort.

Then, genes consistently associated with prognosis were further

investigated after merging the results of the three cohorts. The

descriptive analyses were performed for patient baseline features. A

Fisher’s exact test or a chi-squared test, as appropriate, was used to

compare categorical variables. A Mann–Whitney or Kruskal–Wallis

test was used to compare the continuous variables. The details of the

statistical analysis and clinical end points were described elsewhere

(20). All statistical analyses were performed using the statistical

package for the social sciences 19.0 and R 3.3.2 (The CRAN project,

www.r-project.org) software, generating two-sided p-values with a

significance level of 0.05.

Correlation analysis and gene set enrichment
analysis using the CCLE dataset for the AML
cell lines

A correlation analysis between ConA binding (assessed via flow

cytometry) and the transcriptome data from the AML cell lines

[Cancer Cell Line Encyclopedia (CCLE) consortium (21)] was

performed. A ranked list of positively and negatively correlated

genes was prepared and used for Gene Set Enrichment Analysis

(GSEA) using Broad Institute software (22). The Gene Ontology

(GO), Kyoto Encyclopedia of Genes and Genomes (KEGG),
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terms were used. The enrichment scores, determined by

Kolmogorov–Smirnov statistics with 1,000 permutations, were

assessed for significance. A Spearman correlation served as the

ranking metric for the genes, requiring a minimum gene set size of

10. The strong correlations were identified based on Spearman rho

coefficients > 0.7 or < −0.7, with a significance threshold p-value

of < 0.05

MS analysis and ConA staining
All the data were tested for a normal distribution using the

Shapiro–Wilk test (which all datasets passed with a p-value > 0.05).

Subsequently, the significance between parental and AraC-resistant

cells was tested using a paired t-test. The correlation was tested

using simple linear regression analysis (GraphPad Prism, version

9.1.0, 2021; GraphPad Software Inc., CA, USA). All the data in the

bar graphs are depicted as the average plus the standard deviation.
Results

High expression levels of genes that
regulate mannosylation are associated with
worse survival in AML patients

To identify which glycosylation signatures of AML cells could

possibly be associated with AraC sensitivity, glycosylation-related

genes (n = 271; Supplementary Table 1) were analyzed for their

prognostic role regarding the overall survival of AML patients that

were intensively treated with AraC. Here, high expression of 21

glycosylation-related genes was significantly associated with poor

overall survival in AML patients, independently of confounders

(Supplementary Table 2). After excluding genes without a direct

role in the addition or removal of specific carbohydrates (n = 7), 13

genes were left, among which six genes were directly involved in

mannosylation, i.e., MPI, POMT2, RPN1, ALG2, ALG1L2, and

ALG12 (Figure 1A), predominantly of N-glycans (five out of six;

Figure 1B). Notably, MAN1A2, MAN2A1, and EDEM3, three

mannosidases that remove mannoses from N-glycans, were

borderline significant after the correction for confounders (with a

p-value of, respectively, 0.05, 0.08, and 0.09) among the genes that

were associated with better overall survival (data not shown).

Together, these data suggest that high levels of mannosylation are

associated with worse clinical outcome in AML patients that are

treated with AraC-based protocols.
AraC-resistant AML cell lines express
higher levels of a-mannose-terminating
N-glycans

We hypothesized that the worse survival of patients that express

higher levels of glycosyltransferases that couple mannoses is caused

by a reduced sensitivity to AraC. To confirm this association, we
frontiersin.org

http://www.r-project.org
https://doi.org/10.3389/frhem.2023.1302328
https://www.frontiersin.org/journals/hematology
https://www.frontiersin.org


Zhang et al. 10.3389/frhem.2023.1302328
used PGC nano-LC-MS/MS to determine the levels of

mannosylated N-glycans in parental compared to AraC-reistant

cell line pairs of THP-1 and MOLM-13 cells.

In both THP-1par and THP-1Arac-Res cell lines, 22 N-glycans

could be identified, whereby oligomannose accounted for 6 of the 22
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assigned N-glycans that contain a-mannose (Figure 2A).

Furthermore, two out of three hybrid N-glycans with composition

of N3H6 and N3H6S1 were detected. In addition, there were three

paucimannose and 10 complex N-glycans detected in the PGC LC-

MS/MS analysis. Also quantitatively, the most prevalent structures
B

A

FIGURE 1

Genes that increase levels of N-glycan mannosylation are associated with a worse survival in acute myeloid leukemia (AML). (A) Kaplan–Meier curves
showing the overall survival of AML patients (representative of the The Cancer Genome Atlas (TCGA)-AML dataset) of the depicted mannosylation
genes. The log-rank test was used to compare the curves. (B) Simplified overview of the N-glycan mannosylation genes that are significantly
associated with survival (in red). Mannose-6 phosphate isomerase (MPI) determines whether sugars are driven into glycolysis or N-glycosylation.
ALG1L2 and asparagine-linked glycosylation (ALG) attach mannoses to the forming N-glycan at the cytosol site of the endoplasmic reticulum (ER).
ALG12 attaches mannoses to the forming N-glycan after it has been flipped to the lumen site of the ER. Dolichyl-diphosphooligosaccharide—protein
glycosyltransferase subunit 1 (RPN1) is part of the N-oligosaccharyl transferase (OST) complex that links high mannose oligosaccharides to
asparagine residues (N) of nascent polypeptide chains. Importantly, only relevant processes are depicted (dashed lines depict shortcuts).
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were oligomannose glycans, varying from 69% to 75%, whereby the

relative abundance was slightly but significantly higher in the

resistant cells (Figure 2B), as overall glycosylation seemed to be

increased in the resistant cells. To estimate the absolute abundance,

the intensity of N-glycans carrying a-mannose was normalized to

the intensity of the spiked internal standard DP7, revealing a two

times higher expression level of a-mannose-containing N-glycans

in THP-1Arac-Res (~ 3 × 107 per cell) compared to THP-1par cells (~

1.5 × 107 per cell) (Figure 2C).

A similar glycan profile was observed for the MOLM-13 cell line

pair (Supplementary Figures 1A, B), which showed a 1.9 times higher

expression level of a-mannose-containing glycans in MOLM-13Arac-

Res (~ 3.8 × 107 per cell) compared to in MOLM-13par cells (~ 1.9 ×

107 per cell) (Figure 2C). Together, these results demonstrate a

significant increase in the expression of a-mannose-containing N-
Frontiers in Hematology 06
glycans in AraC-resistant cell lines compared to parental cell lines,

which is in line with the hypothesis that AML cells that do not

respond to therapy are more strongly mannosylated.
Concanavalin A binds more strongly to
AraC-resistant AML cell lines

To use the increased expression of mannoses to predict AraC

sensitivity, fluorescently labeled concanavalin A (ConA) was

selected, a lectin that predominantly recognizes high mannose N-

glycans (23, 24). As expected, ConA-binding was increased toward

AraC-resistant cells, both on the cell membrane and in intracellular

compartments (Figures 3A, B). It is noteworthy that ConA binding

was increased in AraC-resistant cells on the cell membrane, as well
B C

A

FIGURE 2

Cytarabine-resistant acute myeloid leukemia (AML) cells express more oligomannoses. (A) Spectra of N-glycans of parental vs. cytarabine (AraC)-
resistant THP-1 cells, as determined by PGC nano-LC-MS/MS. The samples were spiked with DP7 to allow quantification of the a-mannose-
containing glycans. The blue square is N-acetylglucosamine; the yellow square is N-acetylgalactosamine; the blue circle is glucose; the yellow circle
is galactose, and the purple diamond is N-acetylneuraminic acid. (B) The relative abundance of a-mannose-containing glycans in parental vs. AraC-
resistant cells (n = 3 independent measurements). (C) The amount of a-mannose-containing glycans per cell, as estimated based on the
Maltoheptaose (DP7) control (n = 3 independent measurements). If applicable, the data are depicted as the average plus the standard deviation.
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as intracellular compartments (Figure 3C). In addition, lens

culinaris agglutinin (LCA), a lectin that also recognizes a-
mannoses, also bound more strongly to THP-1AraC-Res cells

(Supplementary Figure 1B). To determine if increased N-glycan

mannosylation directly impacts the chemosensitivity, both MOLM-

13par and MOLM-13Arac-Res cells were treated with the N-glycan

inhibitor tunicamycin prior to AraC treatment. This increased the

sensitivity for both cell lines toward AraC, with re-sensitizing

MOLM-13Arac-Res to AraC, with the same level of cell death as

induced by AraC in parental cells (Figure 3D). Taken together,

AraC-resistant AML cells express more mannosylated N-glycans

that can be determined by the a-mannose-binding lectin ConA.
Concanavalin A binding predicts AraC
sensitivity in AML cell lines

To determine whether ConA staining also predicts AraC

sensitivity in non-resistant AML, a panel of cell lines (n = 7) was

stained with ConA and treated with AraC. Both the extent of ConA

staining (Figure 4A) as well as the AraC sensitivity (Figure 4B)

differed between the cell lines. As expected, the extent of ConA
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binding significantly correlated with AraC sensitivity, whereby cells

with higher levels of ConA binding were less sensitive toward AraC

treatment (Figure 4C). Furthermore, the cell lines clustered together

in “low”, “intermediate”, and “high” binders (Figure 4C). It is

noteworthy that highly mannosylated cells within one and the

same cell line were also less sensitive toward AraC than the cells

with fewer mannoses. This was demonstrated by a dose-dependent

increase in the fluorescent signal of AraC treated AML cells that

were prestained with ConA, reflecting that only the strong binders

survived the treatment (Supplementary Figure 1C). A correlation

analysis between ConA binding and gene expression of the cell lines

in the CCLE dataset revealed that ConA binding positively

correlated with the expression of genes associated with adverse-

risk AMLs, i.e., CD109 and EGR1 (Figure 4D) (25, 26).

Furthermore, GSEA analysis demonstrated a correlation between

ConA binding and cholesterol-related pathways, TP53 mutations,

and SREBF/SREBP biology (Figure 4D), which are processes usually

enriched in AML patients with a poor response to intensive

chemotherapy, as demonstrated by us and others (27–29). Thus,

ConA staining can predict AraC sensitivity in AML cell lines and is

associated with gene expression patterns associated with adverse-

risk and chemoresistant AML.
B C

D

A

FIGURE 3

Cytarabine-resistant acute myeloid leukemia (AML) cells are more strongly bound by the mannose-binding lectin concanavalin A (ConA). (A)
Histogram of the flow cytometric assay of parental vs. AraC-resistant MOLM-13 cells after ConA staining. (B) Quantified ConA binding based on flow
cytometric data (THP-1, n = 7 replicates; and MOLM-13, n = 6 replicates). (C) ConA staining as visualized by fluorescent microscopy in both non-fix/
perm cells (staining the plasma membrane) and fix/perm cells (staining also intracellular targets). (D) cytarabine (AraC) (2000 nM) sensitivity after pre-
incubation with tunicamycin (Tun) (50 ng/mL for 72 h), measured by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-
sulfophenyl)-2H-tetrazolium (MTS) assay (n = 3 replicates). If applicable, the data are depicted as the average plus the standard deviation.
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Concanavalin A staining predicts AraC
sensitivity in patient-derived AML samples

To make a first step toward clinical translation, two patient-

derived AML samples, which were obtained upon diagnosis, were

defrosted from our cryodatabase. The ConA staining revealed that

AML-1 expressed more a-mannose-containing N-glycans than

AML-2 (Figure 4E), which would mean, based on our previous

findings, that AML-1 would be less sensitive toward AraC treatment

than sample AML-2. Indeed, AML-1 hardly responded to AraC

treatment, whereas AML-2 was sensitive (Figure 4F). Furthermore,

within the viable cells, AML-2 had a 2.8-fold higher percentage in

annexin-V-positive cells than AML-1 (33 vs. 12%) upon treatment

with 1,000 nM AraC (Supplementary Figure 2B).

Together, we propose that ConA may be used as biomarker to

predict AraC sensitivity in AML, whereby AML cells that strongly
Frontiers in Hematology 08
bind ConA, and thus express high levels of a-mannose-containing

N-glycans, are less sensitive or resistant toward AraC

treatment (Figure 4G).
Discussion

In this study we identified that high expression levels of a-
mannose-containing N-glycans are associated with AraC resistance

in AML, which can be visualized using the a-mannose-binding lectin

ConA. The ConA preferably binds to terminal mannoses, Man3–Man9,

but it also interacts with biantennary N-glycans with most extensions

(except for a proximal a-fucose), although with a much lower affinity

(24). Interestingly, high levels of mannosylation seems to be a hallmark

of cancer (30), and have been associated with enhanced tumor

progression and chemoresistance in among others breast cancer,
B C

D E F

G

A

FIGURE 4

Concanavalin A (ConA) staining predicts cytarabine sensitivity in acute myeloid leukemia (AML). (A) Quantified ConA binding based on flow
cytometric data in a panel of seven AML cell lines (n = 5 replicates). (B) Cell viability of the AML cell line panel, upon treatment with 500 nM
cytarabine (AraC), as determined by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay (n
= 5 replicates). (C) Linear regression analysis to determine the correlation between ConA staining and AraC sensitivity in AML, demonstrating the
clustering of “low”, “intermediate” and “high” binders. (D) Correlation analysis between ConA binding and gene expression profiles in the AML cell
panel. (E) ConA binding in two AML patient samples collected at time of diagnosis, as determined by flow cytometry. (F) Loss of AML blasts in the
“viable gate” (Supplementary Figure 2A) upon treatment with AraC. (G) Graphical presentation of the ConA staining to predict AraC sensitivity in AML.
If applicable, the data are depicted as the average plus the standard deviation.
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colon cancer, and non-small cell lung cancer (31–33). The increased

mannose levels on N-glycans may be driven by the increased

expression of mannosyltransferases, such as the asparagine-linked

glycosylation (ALG) family, of which ALG2, ALG1L2, and ALG12

are associated with a worse survival in our analysis. Furthermore, the

overexpression of ALG3 and ALG10 have been linked to therapy

resistance in breast (34) and colon (35) cancer. In lung cancer, high

levels of mannosylation were caused by the reduced expression of the

mannosidase MAN1A1 in chemoresistant cells (33). Also, when

comparing healthy and malignant tissues, the mRNA levels of

MAN1A1 and MAN1A2 are commonly downregulated in cancer

lesions with oligomannosylation (30). It is noteworthy that the

increased level of expression of MAN1B1 and MAN2B1 were

associated with better overall survival in our current study, although

this result just lost its significance after correction for confounders

(with p-values of 0.05 and 0.08, respectively). Both of the genes were

also within the top 20 genes that predicted AraC sensitivity in AML

when being mutated, among which MAN1B1 was the top hit (3).

Although not formally proven yet, it is tempting to speculate that these

mutations lead to a loss of function of the genes, resulting in lower

mannosidase activity, and hence increased expression of high mannose

glycans. Additionally, the expression of POMT2 was also associated

with a worse survival in the current study, a gene that is responsible for

mannosylation of O-glycans. Therefore, although we focused on N-

glycans in the current study, the investigation of O-glycan

mannosylation is also of interest.

Mannose is an important sugar for glycosylation, but also fuels

metabolic processes, especially the glycolysis pathway. Specifically, the

precursor sugar Man-6-P is either converted to the N-glycosylation

mannose-donor GDP-Man via phosphomannomutase 2 (PMM2) and

GDP-mannose pyrophosphorylase (GMPP) or steered into the

glycolysis pathway by mannose-6 phosphate isomerase (MPI), which

converts it into Fru-6-P and vice versa (Figure 1B) (36). Notably, the

level of expression of MPI was significantly associated with a worse

survival in our analysis, which is in line with a recent study that

demonstrated that the inhibition of MPI sensitizes AML cells to AraC

(37). Therefore, an increase in the level of mannose expression on

AraC-resistant AML cells may be caused by a higher activity of the

mannose pathway, and hence may reflect the more active metabolic

state of these cells. Indeed, a highmetabolic state, both via the glycolysis

or oxidative phosphorylation pathway, has been linked to AraC

resistance in AML (38, 39). Furthermore, ConA binding toward the

AML cell lines associated with cholesterol-related pathways, TP53

mutations, and SREBF/SREBP biology, which are processes usually

enriched in AML patients with a poor response to chemotherapy (27–

29). ConA binding was also positively correlated with the expression of

genes associated with adverse-risk AMLs, i.e., CD109 and EGR1 (25,

26). Both analyses strengthen the relationship between high levels of

mannosylation and therapy resistance or worse clinical outcome. The

treatment with the N-glycosylation inhibitor tunicamycin (re)

sensitized AML cells for AraC. Therefore, our study supports the use

of inhibitors of the mannose pathway, such as 2-deoxy-D-glucose or

MLS0315771, to treat AraC-resistant (and potentially certain adverse-

risk) AML.

Higher levels of mannosylation of proteins may also impact on

their functioning. In this respect, proteins that are commonly
Frontiers in Hematology 09
associated with AraC resistance are the equilibrative nucleoside

transporters (ENT1 and ENT2) and p-glycoprotein/multidrug

resistance mutation 1 (MDR1), which are important for the uptake

and efflux of AraC, respectively. Indeed, MDR1 is a highly glycosylated

receptor, and its glycosylation is important for proper cell surface

expression (40). Furthermore, MDR1 glycosylation has been associated

with chemoresistance in both AML (41) and breast cancer (42),

whereby silencing of the dolichyl-diphosphooligosaccharide–protein

glycosyltransferase subunit 2 (RPN2), a protein that links high

mannose oligosaccharides, reduces MDR1 glycosylation and the

concomitant expression on the cell membrane, thus increasing

sensitivity of breast cancer cells to docetaxel (42). The expression of

the closely related RPN1 gene was also significantly associated with a

worse survival in our analysis. Similarly, the correct N-linked

glycosylation of ENT1 is required to retain its function (43).

Although ConA could predict AraC sensitivity in two patient-

derived AML samples, we are aware that the ConA staining should be

validated on a larger set of patient samples. This analysis should also

determine the optimal cut-off point for considering a patient as “AraC

sensitive” or “AraC resistant”. Especially, since the ConA staining is not

an “on vs. off” staining, and always stains cells to a certain extent, which

may be a limitation of the assay. Therefore, we are currently staining

incoming patient AML samples, in collaboration with our routine

diagnostic laboratory, to correlate ConA staining levels to clinical

treatment responses.

In conclusion, AraC resistance is associated with increased

levels of mannosylation that can be determined using ConA.

Therefore, we propose ConA staining as a potential novel tool to

predict AraC sensitivity in AML that can be incorporated into

established protocols using already existing equipment.
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