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An R-loop is a nucleic acid structure consisting of a DNA : RNA hybrid and

single-stranded DNA. It is formed physiologically in normal cells and is

involved in transcription, replication, and gene rearrangement; in particular,

it has multiple roles including in mitochondrial DNA replication and class

switch recombination of immunoglobulin genes in B cells. However,

accumulating evidence indicates aberrant R-loop formation in various

malignancies, including hematopoietic neoplasms. The accumulation of

such inappropriate R-loops can cause conflicts between transcription and

DNA replication. This exacerbates genomic instability through the generation

of DNA replication stress, that, in turn, leads to cellular phenotypic changes

and disease progression. When RNAs are synthesized during transcription

they hybridize with template DNA in cis, giving rise to R-loops. In addition, it

was recently revealed that noncoding RNAs also form R-loops when bound

to genomic DNA in trans. Together with such observations, new roles for the

R-loop in disease development have been proposed. The relationship

between inflammation and the R-loop has also attracted much attention.

In this review, we will focus on the mechanisms of R-loop formation in

various hematopoietic neoplasms and introduce the important findings from

recent studies. Therapeutic concepts for targeting R-loop accumulation in

hematopoietic neoplasms will also be discussed.
KEYWORDS

DNA methylation, long noncoding RNA, lymphoid neoplasms, myeloid neoplasms,
Piwil4, R-loop, RNA splicing
1 Introduction

An R-loop is a nucleic acid structure that consists of a DNA : RNA hybrid and

single-stranded DNA (ssDNA). It is formed when RNA hybridizes to a strand of

genomic DNA (in cis or trans configuration) and the remaining DNA strand is

displaced as a single strand (1). R-loops are found in as much as 5% of the entire

genome and are thought to serve the opposing functions of maintaining genomic
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integrity and inducing DNA damage, i.e., both physiological and

pathological R-loops exist (Figure 1). Physiologically, an R-loop is

formed during mitochondrial DNA (mtDNA) replication and the

immunoglobulin class switch recombination of immunoglobulin

genes in B lymphocytes, and in other processes (1, 2). R-loops are

also involved in the repair of DNA damage, thus contributing to the

maintenance of genome integrity. For instance, it has been shown

that R-loops are formed at sites where DNA double-strand breaks

(DSBs) occur and that RAD52 recognizes and resolves R-loops,

thereby initiating homologous recombination repair (3).

However, R-loops that aberrantly accumulate in the genome

can be harmful to cells. The number of R-loops increases if

transcriptional activity is inappropriately high or, conversely,

when polymerases are prone to pausing, especially in

malignancies (4). Once R-loops accumulate in the genome, they

provoke collisions with replication forks formed during the DNA

replication process; they are particularly prone to cause excess DNA

damage in regions where transcription and replication proceed in

opposite directions. For this reason, cells are equipped with various

safeguards to resolve R-loops. RNase H1 and H2 are nucleases that

directly digest DNA : RNA hybrids. RNase H2 acts in a cell-cycle–

dependent manner whereas RNase H1 acts independently of the cell

cycle (5). The endonucleases, XPG and XPF, are involved in

transcription-coupled nucleotide excision repair (TC-NER) and

are thought to cleave nucleotides that make up R-loops (6, 7).

THO/TREX are protein complexes required for exporting

synthesized mRNA out of the nucleus; they are considered to

indirectly suppress R-loop accumulation since R-loops increase

when they do not function properly (8). Recent studies have also

revealed a role of APOBEC3B in editing single-stranded DNA

formed in the R-loop structure (9, 10). The findings from these

investigations suggest that APOBEC3B-mediated DNA editing is

implicated in the induction of genetic mutations, particularly in

tumor cells. For information on the many other factors that regulate

R-loops, see the review by Petermann et al. (11).
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Recent significant advancements in R-loop research can be

largely attributed to the development of technical infrastructure

that facilitates more precise and comprehensive detection of R-

loops. Immunofluorescence staining and dot blotting using the S9.6

antibody, which recognizes DNA : RNA hybrids, have been primary

methods for R-loop detection. Additionally, a technique for the

comprehensive analysis of R-loops in nuclei through

immunoprecipitation using the antibody has been developed (12).

However, it is noteworthy that the S9.6 antibody’s specificity has

been a point of consideration, as it may also recognize ribosomal

RNA in the cytoplasm and nucleolus, in addition to R-loops (13,

14). To address this concern, an RNase H1 mutant with binding

affinity to R-loops but lacking enzymatic activity has recently been

employed for visualizing the sites of R-loop formation and for

comprehensive R-loop sequencing (15–17). Furthermore, a method

for the comprehensive detection of single-strand DNA, a

component of R-loops, has also been developed (18). With the

evolution of these technologies, the pathological significance of R-

loop accumulation is gradually becoming clearer.

This review will first briefly introduce the normal cellular

processes that require R-loop formation, using mtDNA

replication, immunoglobulin class switch recombination, and

telomere regulation as examples. Next, the roles of R-loops

aberrantly formed in hematopoietic neoplasms and their

pathological significance will be discussed.
2 Physiological functions of R-loops

2.1 R-loops in mitochondrial
DNA replication

Mitochondrial DNA is composed of double circular strands,

termed heavy (H)- and light (L)-strands, each of which has an

independent replication start site (19). The replication of mtDNA
FIGURE 1

Graphical summary depicting the role of R-loop formation in hematopoietic neoplasms presented in this manuscript. An R-loop is a structure
composed of a DNA : RNA hybrid and single strand DNA. R-loop is formed physiologically in various phases (green rectangle), while excessive
accumulation of R-loop is observed in malignancies, including hematopoietic neoplasms. This leads to DNA replication stress and DNA damage,
leading to genomic instability (orange rectangle). Some hematopoietic neoplasms are considered to acquire additional mechanisms to resolve R-
loops, thereby overcoming the cellular damage associated with R-loop accumulation and gaining proliferative potential.
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begins when POLRMT, a mitochondrial RNA polymerase, initiates

transcription from the L-strand promoter (Figure 2). Transcription

terminates within a conserved sequence block (CSB) after

approximately 120 bases, and the transcribed RNA hybridizes

with template DNA to form an R-loop structure. RNase H1, a

DNA : RNA hybrid–specific endonuclease, then digests the DNA :

RNA hybrid to create a 3’ end of RNA that serves as a primer for

DNA synthesis. Such a primer is used by DNA polymerase g to

initiate the synthesis of a nascent H-strand beginning at the H-

strand replication initiation site (shown as OH in Figure 2) on the

parental L-strand (20). Replication of the nascent H-strand

proceeds as topoisomerase and Twinkle, a mtDNA helicase,

unwind the double strand and release the parent H-strand as a

single strand. When the L-strand replication initiation site (shown

as OL in Figure 2) on the parental H-strand is exposed as a single

strand, a primer RNA is also synthesized from this site, where the

synthesis of the nascent L-strand is initiated. Although the details of

such processes remain debatable (19–25), the formation of an R-

loop is considered essential for mtDNA replication, since cells

lacking RNase H1 are unable to replicate mtDNA (20).

Additionally, in light of research indicating that mutations in

RNase H1 lead to mitochondrial disorders (26), it has been

proposed that dysregulation of R-loops in mitochondria is linked
Frontiers in Hematology 03
to the onset of diseases, particularly demonstrated in certain central

nervous system diseases (27). However, at present, the association

between hematopoietic neoplasms and dysregulation of

mitochondrial R-loops remains unclear.
2.2 R-loops in immunoglobulin class
switch recombination

B lymphocytes expressing membrane-bound IgM and IgD on

the cell surface become activated and proliferate upon binding to

their specific antigens. Mature B lymphocytes further differentiate

into antibody-secreting cells upon being activated by specific

antigens or other stimuli. This process results in the increased

production of secretory IgG, IgA or IgE immunoglobulins while

keeping the specificity of IgM for the antigen. This is called class

switch recombination. The heavy chain of an antibody consists of

variable, diversity, and joining segments involved in antigen

specificity, and a constant (C) region that determines the class of

the antibody. Upon class switch recombination, the Cm region in

the IgM gene (the constant region for IgM) is replaced with a CH

region encoding other classes of antibodies; recombination of the

CH region involves the noncoding I exon and switch (S) regions
FIGURE 2

An R-loop is formed during mtDNA replication. Transcription by POLRMT is initiated at the LSP and an R-loop is formed. RNase H1 subsequently
digests the RNA, and replication by POL g is initiated from OH. CSB, conserved sequence block; LSP, light strand promoter; OH, H-strand replication
initiation site (OriH); OL, L-strand replication initiation site (OriL); POL g, DNA polymerase g; POLRMT, mitochondrial RNA polymerase;
TOPO, topoisomerase.
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located upstream of each C region (28, 29). The binding of

transcription factors to the I region initiates the synthesis of

RNA, termed a germline transcript (GLT), which is

complementary to the target S region that becomes recombined

with the Sm region (Figure 3). A GLT partially forms a DNA : RNA

hybrid and displaces ssDNA in the S region. Activation-induced

cytidine deaminase (AID) then acts on the ssDNA, replacing dC in

the DNA with dU; the dU is then recognized and removed by

uracil-N-glycosylase, forming a nick at that position, ultimately

resulting in DSBs. This occurs simultaneously at two locations in

the Sm and S regions to be recombined, with the intervening region

being removed as an excision circle. Finally, the cleaved DNA

surfaces are joined together by nonhomologous end joining to

complete recombination.

It has been reported that RNase H2 and Senataxin play a role in

class switch recombination in B cells (30). Furthermore,

APOBEC3B, an enzyme possessing cytidine deaminase activity

similar to AID, has been documented to participate in DNA

editing within R-loops, extending beyond the regions associated

with class switch recombination (9, 10). This observation suggests

that APOBEC3B could potentially serve as a therapeutic target.

When these abnormalities do not function properly, genomic

instability may be heightened in the immunoglobulin heavy-chain

locus or other genomic regions. As our knowledge in this field

advances, it is possible that a connection between the abnormal
Frontiers in Hematology 04
regulation of R-loops and the development of malignancies and

immunological diseases is revealed.
2.3 R-loops in telomere regulation

Ribonucleic acid has also been shown to bind to DNA as a

trans-acting factor, forming R-loops in the telomere region of

chromosomes. At the end of a telomere region, the shelterin

protein complex binds to the telomere and forms a T-loop – a

loop structure specific to this region (31). In comparison, telomeric

repeat-containing RNA (TERRA), a long noncoding RNA

(lncRNA), is transcribed from a sub-telomeric to telomeric region

in some chromosomes. TERRA binds complementarily to telomere

DNA as a trans-acting factor to form an R-loop that is involved in

the maintenance of telomeric chromatin structure (32–35)

(Figure 4). In the centromere region, RNAs derived from a-
satellite repeats have been shown to bind to centromeres as cis-

acting factors and form R-loops (36, 37). Ribonucleic acids in the

centromere region are considered to be required for centromere

proteins (CENP)-A and CENP-C to interact with the centromere

and, perhaps indirectly, contribute to the proper binding of

kinetochores to microtubules and chromosome segregation (38,

39). Recent studies have shed light on the participation of factors

associated with the repair of DNA damage, such as BRCA1 and
FIGURE 3

Formation of R-loops is associated with immunoglobulin class switch recombination. An R-loop is formed in the S region at two locations, and a
DSB is induced by the action of AID and UNG. Finally, cleaved DNA binds and class switch reconstitution takes place. AID, activation-induced
cytidine deaminase; DSB, DNA double-strand break; NHEJ, nonhomologous end joining; UNG, uracil-N-glycosylase.
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RAD51, along with RNA regulatory factors like THO complex, in

the mechanism of telomere regulation by TERRA (40–42). This

intricate interplay has recently been paid significant attention.
3 Aberrant R-loop formation in
hematopoietic neoplasms

Although R-loops have been shown to form during several

specific physiological processes, R-loop accumulation is also often

observed in malignancies and neurodegenerative diseases and has

been implicated in the pathogenesis of such diseases (11, 43). In

recent years, the accumulation of R-loops has been successively

reported to be involved in the pathogenesis of various

hematopoietic neoplasms, as described below (44).
3.1 Excessive R-loop formation due to
mutations in myeloid neoplasm–related
RNA splicing factors

3.1.1 R-loop accumulation caused by mutations
in U2 small nuclear ribonucleoprotein–related
RNA splicing factors

Somatic mutations in genes encoding RNA splicing factors are

detected at a high frequency in more than 50% of myelodysplastic

syndromes (MDS) (45, 46). In hematopoietic neoplasms, mutations

in more than 30 genes that are thought to be involved in RNA

splicing have been observed. Of these, representative gene

mutations associated with MDS are found in SF3B1, SRSF2,

and U2AF1.

Intronic sequences in transcribed protein-coding RNA

generally contain a branch point (BP) several dozen bases

upstream from the 3’ splice site (SS). Splicing factor 3b subunit 1

(SF3B1) recognizes and binds to the BP together with U2 small

nuclear RNA (snRNA) (47). The BP serves as a binding site for 5’ SS

that is cleaved during the first step of the splicing reaction to form

an intron lariat. SF3B1 also indirectly interacts with U2 snRNA

auxiliary factor 2 (U2AF2), which binds to the 3’ SS via SURP and
Frontiers in Hematology 05
G-patch domain containing 1 (SUGP1) (48, 49). In MDS, p.K700E

is the most frequent mutation in SF3B1; the binding of SF3B1 to

SUGP1 is impaired by this mutation, leading to disruption of the

interaction between SF3B1 and U2AF2. As a result, BPs that should

be recognized are ignored, and, instead, cryptic 3’ SS located

upstream of the canonical 3’ SS are used (50, 51). This indicates

that mutations in SF3B1 have a significant impact on the selection

of 3’ SS in RNA splicing. SF3B1 mutations are found not only in

myeloid neoplasms represented by MDS, but also in chronic

lymphocytic leukemia (52, 53) and solid cancers, such as uveal

melanoma (54, 55), with frequencies ranging from 5–17% and 14–

29%, respectively.

Serine and arginine rich splicing factor 2 (SRSF2) is an RNA

splicing factor that belongs to the serine and arginine rich protein

family and recognizes the exonic splicing enhancer (ESE) (56). ESE

is a splicing regulatory cis-element that positively regulates RNA

splicing (57, 58). As far as currently known, SRSF2 recognizes and

binds GGNG and CCNG motifs present in ESE with equal affinity.

Mutations in SRSF2 are found in about 15% of patients with MDS.

Amutational hot spot is found at p.P95 in the hinge region, between

an RNA recognition motif and arginine/serine-rich domain, and

typical mutations are p.P95R and p.P95H. Mutant SRSF2 has a

higher affinity for the CCNG compared to GGNG motif, resulting

in altered preferential usage of cassette exons (59–61).

U2 small nuclear RNA auxiliary factor 1 (U2AF1), together with

U2AF2, constitute the U2AF complex, which recognizes the 3’ SS of

U2-type introns and recruits U2 small nuclear ribonucleoprotein

(snRNP) (62–64). Mutations of U2AF1, p.S34F/Y and p.Q157P/Q

are often detected in MDS; p.S34 mutants have been shown to

promote splicing of exons possessing a U at position -3 in the 3’ SS,

while tending to include a C at the position. In comparison, p.Q157

mutants preferentially splice exons possessing an A at a +1 position

of the 3’ SS, while keeping those with a G (65, 66). Figure 5A

illustrates the RNA splicing factors involved in 3’ SS recognition.

Despite different patterns of splicing changes, depending on the

mutated splicing factor involved, such mutations commonly cause

MDS. However, the mechanisms by which they uniformly cause

myeloid neoplasms have not been elucidated until recently. In this

context, it was reported in 2018 that MDS with mutations in SRSF2
FIGURE 4

R-loop formation and telomere regulation by TERRA. TERRA is transcribed from subtelomeric to telomeric regions and in trans forms an R-loop in
telomeric regions. This process is involved in HR in telomeric regions. HR, homologous recombination; TERRA, telomeric repeat-containing RNA.
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and U2AF1 commonly exhibits R-loop accumulation (67). Another

group subsequently reported a similar phenomenon in SF3B1-

mutated MDS (68). R-loops do not necessarily increase at the

position where splicing changes occur; rather, it is likely that the

pausing of RNA polymerase II (Pol II) correlates with R-loop

accumulation (4). In the case of SRSF2, the ability of the protein

to facilitate dissociation of positive transcription elongation factor b

(P-TEFb), a protein complex consisting of cyclin-dependent kinase

9 and cyclin T, from 7SK snRNP has been implicated in R-loop

formation. P-TEFb phosphorylates the C-terminal domain of Pol II,

which is required for efficient transcriptional elongation by Pol II

(Figure 5), but cannot phosphorylate Pol II when bound to 7SK

snRNP. In P-TEFb activation, SRSF1 and SRSF2 dissociate P-TEFb

from the 7SK complex (69). Pol II pauses once transcription is

initiated. Pol II is then phosphorylated by P-TEFb to be released

from its pause so that it can proceed with transcriptional elongation.

Mutations in SRSF2 impair this process, making it difficult for

transcriptional elongation to proceed properly, leading to a conflict

between transcription and replication that facilitates R-loop

formation (67). However, since R-loop accumulation is also
Frontiers in Hematology 06
observed in myeloid neoplasms with mutations in other RNA

splicing factors, it is possible that R-loop formation is suppressed

by mechanisms other than through P-TEFb regulation; however,

the detailed mechanisms remain unclear. Cells expressing SF3B1 or

U2AF1 mutants show reduced nonsense-mediated decay (NMD)

activity as well as impaired DNA replication and increased DNA

damage. All such phenotypes are alleviated by the enforced

expression of RNase H1 (70), suggesting an interplay exists

between NMD regulation and R-loop formation. Mutations in

SRSF2 have also been implicated in NMD (71).

Regarding treatment intervention, studies have suggested the

potential effectiveness of ATR inhibitors in MDS characterized by

the accumulation of R-loops due to mutations in RNA splicing

factors (72, 73). This effectiveness is likely associated with the

activation of the pathways involved in DNA damage response,

triggered by increased DNA damage linked to R-loop accumulation.

Additionally, the collision of the R-loop with the replication

machinery may activate the ATR pathway (74). However, to date,

the efficacy of ATR inhibitors in clinical settings has not yet been

validated. Further studies are clearly needed to elucidate the
B

A

FIGURE 5

Roles of SRSF2 in regulating 3′ SS recognition and P-TEFb–mediated transcriptional elongation (A). SRSF2, SF3B1, U2AF1, and other factors
cooperatively recognize the 3’ SS of pre-mRNA. (B) The P-TEFb complex phosphorylates the CTD of Pol II to promote transcription elongation. SRSF
proteins dissociate P-TEFb from 7SK snRNPs to promote transcription elongation. An R-loop is more likely to form when transcriptional elongation is
paused. BP, branch point; CDK9, cyclin-dependent kinase 9; CTD, c-terminal domain of RNA polymerase II; ESE, exonic splicing enhancer; HEXIM,
hexamethylene-bis-acetamide-inducible protein in vascular smooth muscle cells; LARP7, La RibonucleoProtein domain family member 7; MEPCE,
methylphosphate capping enzyme; Pol II, RNA polymerase II; P-TEFb, positive transcription elongation factor b; Py-tract, polypyrimidine tract; SF3B1,
splicing factor 3b subunit 1; snRNP, small nucleolar ribonucleoprotein; SRSFs, serine and arginine rich splicing factor proteins including SRSF1 and
SRSF2; 3’ SS, 3’ splice site; SUGP1, SURP and G-patch domain containing 1; U2AF1, U2 small nuclear RNA auxiliary factor 1.
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pathophysiological roles of R-loop accumulation in myeloid

neoplasms with mutations in RNA splicing factors and to identify

therapeutic target molecules and pathways relevant to

this phenomenon.

3.1.2 R-loop accumulation in myeloid neoplasms
with RNA helicase mutations

In recent years, myeloid neoplasms caused by DDX41

mutations have attracted considerable attention. DDX41 was

recently found to be one of the genes responsible for hereditary

myeloid neoplasms (75–77), including MDS and acute myeloid

leukemia (AML). The diseases are characterized by late onset, less

proliferating phenotype, and the acquisition of a somatic DDX41

variant in individuals with a pathogenic germline variant before

overt disease manifestation. Furthermore, a recent large-scale

mutational analysis revealed that CUX1 mutations coexist almost

exclusively in myeloid neoplasms with DDX41 mutations,

demonstrating the specificity of hematopoietic neoplasms due to

this mutation (78).

Recent reviews outline our current understanding of the roles of

DDX41 mutations in myeloid neoplasms (79–82), which is also

briefly elucidated in the subsequent texts. DDX41 probably has

multiple biological functions; for more than a decade, it has been

suggested that DDX41 is a nucleic acid sensor in the cytoplasm (83,

84). In comparison, DDX41 has recently been shown to serve as an

RNA splicing factor, particularly in hematopoietic stem cells

(HSCs) and myeloid progenitor cells (75, 85). However, whereas
Frontiers in Hematology 07
RNA splicing factors frequently mutated in MDS, such as SRSF2

and SF3B1, are known to be involved in 3’ SS recognition, DDX41

has been shown to interact with 5’SS (85). It has also been shown

that DDX41 is incorporated into the spliceosome at a late stage of

the c-complex, when 5’ and 3’ SS recognition has been completed

and the spliceosome is activated. In addition, as noted above,

disease phenotype and coexisting mutations in DDX41-mutated

myeloid neoplasms differ from those of SRSF2 and SF3B1

mutations. Therefore, at this stage, DDX41 mutations should be

discussed separately from such mutations.

Recent reports have implicated DDX41 mutations in R-loop

accumulation (85–87). A study using zebrafish as a model showed

that R-loops increased and hematopoietic stem and progenitor cell

(HSPC) production was impaired in cells with a homozygous

deletion of Ddx41 (87). In addition, activation of the cGAS-

STING pathway was observed in HSPCs lacking Ddx41, possibly

due to increased R-loop formation. However, how DDX41

suppresses R-loop accumulation and how increased R-loops

trigger inflammatory responses have not been thoroughly tested.

Another recent study suggested that DDX41 directly resolves R-

loops (Figure 6A) (86). Proteins in the vicinity of the R-loop were

comprehensively explored and it was found that multiple RNA

helicases were present in close proximity to R-loops. Of these RNA

helicases, only DDX41 and Aquarius were found to increase DNA

damage when expression was suppressed. The conclusion was that

DDX41 specifically regulates R-loops in the promoter region and

functions as an R-loop–resolving enzyme that suppresses DNA
B

C

A

FIGURE 6

Biological roles of DDX41 and the relationship of DDX41 to R-loops. (A, B) DDX41 functions as an enzyme that can directly resolve an R-loop (A) or
coordinates RNA splicing and transcription elongation, thus preventing R-loop accumulation (B). (C) R-loops accumulate upon DDX41 deficiency.
DDX41, DEAD-box RNA helicase 41; Pol II, RNA polymerase II.
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replication stress. Indeed, a study examining the RNA helicase

activity of DDX41 in vitro also showed that DDX41 exhibits DNA :

RNA hybrid-unwinding activity (83). However, it is still unclear

how DDX41 specifically recognizes the R-loops in promoter

regions. In addition, considering that DDX41-repressed cells

show apparent DNA damage signals after mitosis (85), the

accumulation of R-loops during the S-phase might not directly

lead to increased DNA damages; This implies that DDX41 may not

function solely as an RNA helicase directly resolving R-loops, but

may instead indirectly contribute to R-loop resolution through

other mechanisms. The report further suggests that DDX41

coordinates RNA splicing and transcriptional elongation, thus

preventing R-loop formation (Figure 6B). Therefore, the

mechanism of how loss of DDX41 increases R-loop formation

still needs to be carefully investigated (Figure 6C).

For other RNA helicases, mutations in DHX15, encoding

DEAH-box type RNA helicase 15, are detected at a frequency of

about 6% in AML with t(8:21) (88). The mutations are concentrated

in p.R222G, which is located between motifs Ia and Ib within the

RecA-like domain of DHX15. This suggests that it affects RNA

binding, although how this mutation alters DHX15 function has not

been studied to date. DHX15 is thought to play a role in the removal

of intron lariat, the final step of RNA splicing (89). Recently,

however, it was found that DHX15 interacts with the G-patch

domain of SUGP1, causing cells with DHX15 mutations to exhibit

RNA splicing changes partially similar to SF3B1 mutations (90).

Another group also described how DHX15 is involved in BP

recognition (91). These studies suggest that DHX15 mutations

may be involved in an increase in R-loops through a mechanism

similar to that observed in MDS, as described above (67, 68).

In addition, lower levels of DHX9 expression have been shown

to be associated with the progression of MDS to high-risk MDS and

AML (92). The study further described how the suppression of

DHX9 expression induced DNA damage via R-loop formation.

Another group also reported the involvement of DHX9 in R-loop

regulation (93). Mutations and premature termination due to

aberrant RNA splicing in DHX34 are also found in myeloid

neoplasms (94, 95), but the causative link between the mutations

and R-loop formation is so far unknown.
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3.2 AML cell growth by PIWIL4
overexpression through inhibition of R-
loop accumulation

It is known that as much as 45% of the human genome is

occupied by repetitive sequences derived from transposing

elements, called transposons (96, 97). Transposons modify the

genome, leading to genetic diversity, and are therefore involved in

the evolution of organisms. The DNA transposons cleave

themselves from genomic DNA, while retrotransposons

synthesize DNA from transcribed RNA, respectively, and invade

other genomic regions. Since inappropriate overactivation of

transposons can disrupt genes or confer new unwanted functions

onto translated proteins, organisms possess systems to prevent the

aberrant activation of transposons. These include P-element-

induced wimpy testis (PIWI)–interacting RNA (piRNA), which

interacts complementarily with transposon RNA. In humans,

piRNAs form a complex with PIWI-like (PIWIL) proteins,

translated from eight PIWIL genes, that cleave transposon RNA

and inhibit the transcription of transposons (98, 99). Although

piRNAs are expressed specifically in germ cells, PIWIL proteins are

known to be upregulated in various malignancies (99, 100). PIWIL4

was recently found to be overexpressed in AML, possibly in a MYC-

dependent manner (101).

Intriguingly, PIWIL4, a PIWIL protein, appears to have a

function distinct from piRNA regulation. This observation stems

from the fact that only 6% of PIWIL4 protein overexpressed in

AML binds to piRNAs, whereas 48% interacts with protein-

encoding RNAs, especially those involved in cancer-related

pathways (101). In addition, the inhibition of PIWIL4 expression

reduces the stem cell activity of AML cells and, along with increased

DNA replication stress, results in increased DNA damage, leading

to activation of ataxia telangiectasia and the Rad3-related (ATR)

pathway. Since PIWIL4 belongs to the RNase H superfamily, and

the binding sites of PIWIL4 contain guanine-rich sequences, the

relationship between PIWIL4 and R-loops was also examined. It

was found that PIWIL4 has R-loop digestion activity and that this

action is required for the maintenance of the proliferative activity of

AML cells (Figure 7) (101).
FIGURE 7

AML progression via R-loop regulation by PIWIL4. PIWIL4 has enzymatic activity that digests R-loops, and its overexpression in AML promotes
transcription by eliminating R-loops, thus contributing to disease progression. AML, acute myeloid leukemia; PIWIL4, P-element–induced wimpy
testis-like protein 4; Pol II, RNA polymerase II.
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Acute myeloid leukemia cells have higher transcriptional activity

due to oncogene activation, and, as a result, are prone to accumulating

R-loops that potentially increase replication stress and genomic

instability. Such cells are required to attenuate these disturbances in

proliferation. Therefore, highly proliferative AML cells are likely to be

equipped with, and be dependent on, higher R-loop resolving activity.

From a therapeutic perspective, the high dependence of AML cells

on PIWIL4, unlike normal cells, suggests expectations of a combination

of ATR inhibition and PIWIL4 suppression for the induction of

specific damage to AML cells. Many unclear points are yet to be

addressed: This includes themechanism by which PIWIL4 is selectively

induced in AML, how RNA is targeted by PIWIL4, and which RNases,

including RNase H1, H2 and PIWIL4, are selectively used in AML cells

to resolve R-loops. However, the concept that tumor cells acquire a

system that maintains survival by suppressing excessive R-loops

deserves further study.
3.3 R-loop regulation by lncRNA:
involvement in AML pathophysiology

In recent years, lncRNAs, functional noncoding RNAs longer

than 200 bases, have been shown to be involved in the
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pathophysiology of various diseases. HOTTIP is a 3764-base

lncRNA located at the 5’ end of the HOXA cluster; its name

derives from “HOXA transcript at distal tip” (102, 103). Eleven

HOXA genes, clustering at the mammalian HOXA locus, are

expressed in a concentration gradient manner and act as master

regulators that determine the anterior–posterior axis and

segmentation of tissues during development. HOTTIP is

transcribed under the same regulation of expression as HOXA

genes and coordinates the activation of 5’ HOXA genes by

recruiting WD-repeat containing protein 5/mixed lineage leukemia

protein-1 (Figure 8A) (102). The HOTTIP/HOXA9 pathway is

transcriptionally upregulated in many malignancies (103).

In hematopoietic neoplasms, HOTTIP is specifically

upregulated in AML with a NPM1 mutation or MLL

rearrangement. It plays a role in the self-renewal of AML cells

through HOTTIP-dependent topologically associating domain

(TAD) formation (104). After screening for factors that interact

with HOTTIP, the same research group found it interacted with a

CCCTC-binding factor (CTCF)-binding domain to form an R-loop

structure (Figure 8B). This showed that HOTTIP binds both CTCF/

cohesin factors and proteins that regulate R-loops (Figure 8B),

although its binding was observed at only some CTCF boundaries

(105). The study group further showed that R-loop formation by
B

A

FIGURE 8

TAD formation involving HOTTIP. (A) HOTTIP is located at the end of the HOXA region and undergoes expression regulation in common with HOXA
genes. HOTTIP recruits WDR5/MLL1 complexes to the 5’ HOXA locus to maintain the locus in an active state. (B) The transcribed HOTTIP also co-
localizes with CTCF/cohesin factor and participates in TAD formation while adopting an R-loop structure. CTCF, CCCTC-binding factor; HOTTIP,
HOXA transcript at the distal tip; MLL1, mixed lineage leukemia protein-1; TAD, topologically associating domain; WDR5, WD-repeat containing
protein 5.
frontiersin.org

https://doi.org/10.3389/frhem.2023.1297657
https://www.frontiersin.org/journals/hematology
https://www.frontiersin.org


Hirayama et al. 10.3389/frhem.2023.1297657
HOTTIP in the CTCF within Wnt/b-catenin genes regulates their

expression by controlling TAD formation in the region.

Another lncRNA, lnc530, indirectly suppresses R-loop

accumulation in mouse embryonic stem cells by forming a

complex with R-loop regulators such as DDX5, a DEAD-box type

RNA helicase, and TDP-43, an RNA-binding protein related to

amyotrophic lateral sclerosis (106). This suggests that R-loop

regulation by lncRNA is not limited to HOTTIP. However,

HOTTIP appears to be unique in that it directly constitutes an R-

loop as a TAD component. Further detailed studies are needed on

the recognition mechanism of the R-loop formation site (i.e., TAD

boundaries) by HOTTIP and its interaction with CTCF-related

factors. More recently, there has been a growing recognition of the

involvement of transposon elements and enhancer RNAs, a class of

lncRNA transcribed from enhancer regions, in chromatin

regulation based on such TAD structures. This concept has

garnered increased attention (107, 108).
3.4 Involvement of DNA methylation–
associated factors in R-loop regulation

The ten–eleven translocation (TET) enzymes are involved in

DNA demethylation. Three members exist: TET1, TET2, and TET3,

which convert a methylated cytosine, termed 5-methylcytosine, to

5-hydroxymethylcytosine (5hmC), thus competing with DNA

methylation. Such enzymes serve as one of the key mechanisms

regulating gene transcription, and, in fact, regulation of DNA

methylation by TET proteins has been shown to be involved in

cell differentiation and lineage determination (109). In maintaining

DNA integrity, abundant 5hmC at sites where DNA DSBs occur

(110) suggests that TET proteins contribute to the stabilization of

genomic DNA by regulating DNA methylation. However, TET
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proteins have roles in keeping cell identity by inducing ssDNA

breaks at cell type–specific enhancers (111).

Loss-of-function mutations in TET2 are observed with high

frequency in myeloid neoplasms (112), especially in MDS, and show

a frequency from 20 to 35% (113, 114); TET2 mutations are also

frequent in certain lymphoid neoplasms such as nodal T-follicular

helper cell lymphoma (nTFHL) angioimmunoblastic-type (nTFHL-

AI), nTFHL not otherwise specified, and diffuse large B cell

lymphoma (DLBCL) (115–117). Somatic mutations in genes

encoding DNA methylation regulators (such as DNMT3A and

TET2), which are acquired in HSCs in an age-dependent manner,

confer a selective advantage on HSCs and cause clonal proliferation

(118). Myelodysplastic syndromes and nTFHL-AI are considered to

arise from such clonal hematopoietic cells and develop when these

cells acquire secondary or tertiary mutations that favor further

clonal expansion.

Recently, DLBCL-like lymphoma has been shown to develop in

mice lacking both Tet2 and Tet3, along with strongly induced DNA

damage in lymphoma cells (119). In B cells lacking TET proteins,

increased R-loops and G-quadruplex structures were observed

around the gene promoter and 5’ untranslated region (Figure 9),

suggesting that a transcriptional pausing occurs in such regions. In

addition, 5hmC was found to be decreased especially around

such regions.

B cells form R-loops in immunoglobulin gene loci and undergo

class switch recombination (see subsection 2.2). Intriguingly, Tet2/

3-deficient B cells are prone to translocation between

immunoglobulin gene loci and R-loop/G-quadruplex–forming

regions in the genome (119) (Figure 9). However, further deletion

of Dnmt1 in this condition suppressed aberrant R-loop formation.

These findings suggest that regulation of the DNAmethylation state

by TET proteins may prevent excessive DNA damage caused by R-

loop cleavage and lymphomagenesis. Another study showed that
FIGURE 9

Accumulation of R-loops and increased translocation upon deletion of TET2/3. Deletion of TET2/3 causes an increase in R-loops in the 5’ UTR and
promoter regions. Translocations between these and immunoglobulin gene regions increase upon loss of TET2/3. 5mC: 5-methylcytosine, TET,
ten–eleven translocation enzyme; 5’ UTR, 5’ untranslated region.
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methyl-CpG–binding protein 2, which binds to methylated DNA,

inhibits R-loop accumulation (120). Yet another study showed that

the presence of an R-loop inhibits the binding of DNA

methyltransferase to DNA (121); regulation of R-loops by TET

proteins may also be mediated through this system. However, the

detailed mechanism by which DNA methylation inhibits R-loop

fo rma t i on r ema in s l a r g e l y unknown and r equ i r e s

further investigation.
3.5 R-loop accumulation via activation of
the NF-kB signaling pathway by human
T-cell leukemia virus type 1

Acu t e T - c e l l l ymph oma / l e u k em i a (ATL ) i s a

lymphoproliferative disease caused by infection of CD4-positive T

lymphocytes with human T-cell leukemia virus type 1 (HTLV-1)

retrovirus. A latent period of 30–50 years exists from infection to

disease onset, and 5–10% of carriers develop the disease during their

lifetime. Once ATL arises, the disease is intractable, with a 4-year

survival rate of approximately 17% for the acute type (122). Since

many ATL cells overexpress C-C chemokine receptor-4 (123),

mogamulizumab, a monoclonal antibody drug targeting this

receptor, was approved for the treatment of ATL in 2012 (124).

Also, lenalidomide was approved in 2017 (125). HTLV-1 strongly
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activates the nuclear factor kappa light-chain–enhancer of activated

B cells (NF-kB) pathway (126). In contrast, lenalidomide binds to

cereblon and induces ubiquitination and subsequent proteasomal

degradation of Ikaros and Aiolos, thereby inhibiting activation of

the NF-kB pathway (127–129). Further application of such

molecular-targeted therapies is expected to improve the outcomes

of this disease.

Initial activation of NF-kB by HTLV-1 is considered to be

mediated by Tax protein encoded by a Tax gene in the pX region of

the HTLV-1 genome (130). However, given that cells infected with

HTLV-1 and expressing Tax do not proliferate due to senescence

(131) and that Tax expression is often transient, Tax-independent

constitutive activation of NF-kB is thought to occur in ATL cells.

Recently, it was found that NF-kB activation in Tax-expressing

cells leads to R-loop accumulation, that, in turn, induces DNA DSBs

and senescence (131). During transcription, RNA polymerases

activate the TC-NER pathway when transcription is paused at

DNA damage sites, including R-loops (132, 133). He et al. showed

that R-loops that accumulated via activation of NF-kB by Tax are

processed into an ssDNA gap and further to a DSB by TC-NER

factors, including XPF, XPG, and CSB, leading to the induction of

senescence (Figure 10) (131). They further found that inactivation of

the TC-NER pathway occurs in ATL cell lines and patient-derived

ATL cells. This means that cells with accumulated genomic damage,

including R-loops, are inhibited from proliferating by the TC-NER
FIGURE 10

Increased R-loop formation mediated by Tax-induced inflammation and changes during ATL transition. Tax protein encoded by HTLV-I increases R-
loops, which are eliminated by TC-NER. Upon progression to ATL, the TC-NER pathway is inactivated, allowing transcriptional elongation to proceed
in the presence of R-loops. ATL, acute T-cell lymphoma/leukemia; CSB, conserved sequence block; dsDNA, double-stranded DNA; HTLV-1, human
T-cell leukemia virus type I; IKK, Ikappa B kinase; NEMO, NF-kB essential modulator; ssDNA, single-stranded DNA; TC-NER, transcription-coupled
nucleotide excision repair; XPF and XPG, TC-NER endonucleases.
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pathway, but, once the TC-NER pathway is suppressed, cells begin to

proliferate despite the accumulated R-loops. However, the

mechanism by which activation of the NF-kB pathway leads to

increased R-loops is still elusive. Helicobacter pylori infection has

been shown to activate NF-kB in gastric mucosal epithelial cells via

the alpha kinase 1/TRAF interacting forkhead-associated protein A

signaling pathway, which in turn increases R-loops (134). However,

even in this case, the relationship between R-loop formation and NF-

kB activation is unclear.
4 Conclusion

This review summarizes recent papers on the formation and

regulation of R-loops and the involvement of R-loop accumulation

in hematopoietic neoplasms. Although the reasons for R-loop

accumulation vary among cell types and diseases, DNA

replication stress and subsequent DNA damage are undoubtedly

involved in the pathophysiology of the hematopoietic neoplasms

described in this paper. A recently published database, R-loopBase,

comprehensively covers factors involved in R-loop regulation (135).

While the specific associations of the factors in the database with

hematopoietic neoplasms are not clear at this time, it remains a

possibility that some factors listed in this database could be

implicated in the pathogenesis of hematopoietic neoplasms. Also,

new relationships with the disease phenotype of R-loop may emerge

as research progresses.

It has also been shown that dysregulated activation of the innate

immune signaling pathways occurs within MDS cells, which is

associated with disease phenotypes of MDS (136, 137). However, the

detailed mechanism by which this phenomenon occurs remains

elusive. In this context, it has recently been reported that R-loops,

which were originally thought to be processed only in the nucleus, are

transported from the nucleus to the cytoplasm, leading to activation of

the innate immune response (138, 139). This is of interest when

considering the relationship between R-loop accumulation and

disease phenotypes. McLemore et al. found that in MDS, R-loops

formed through transcription by RNA polymerase III can be exported

from the nucleus to cytoplasm. This, in turn, triggers an innate

immune response mediated by a cGAS–STING–NOD-, LRR- and

pyrin domain-containing protein 3 inflammasome pathway (138).

They further suggest that this innate immune response causes

degradation of GATA-binding factor 1 by caspase-1, resulting in a

differentiation skewing of cells toward a granulocyte lineage. Crossley

et al. also showed that a portion of each R-loops is cleaved by XPG and

XPF endonucleases and is transported to the cytoplasm (139); the R-

loops existing the cytoplasm are directly detected by cGAS and toll-like

receptor 3, thus triggering an innate immune response. In addition,

recent findings demonstrate that transcripts transcribed from

transposon regions can activate an intracellular nucleic acid sensor,

melanoma differentiation-associated protein 5, thus inducing innate
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immune responses (140). Coupled with the observed dysregulation of

transposons in hematopoietic neoplasms, this mechanism may

contribute to the excessive induction of innate immune responses

observed in MDS and other hematopoietic neoplasms.

Moreover, excess R-loops in mtDNA have been implicated in

the pathogenesis of diseases. Breast cancer type 2 susceptibility

protein (BRCA2) is involved in the regulation of R-loop formation

in the nucleus (141, 142). The suppression of BRCA2 expression has

been shown to cause not only nuclear damage but also

mitochondrial oxidative stress and replication abnormalities that

lead to increased mitochondrial R-loops (143). Currently,

mutations in the gene encoding RNase H1 have been implicated

in mitochondrial encephalomyopathy (27). While the exact

connection between the development of hematopoietic neoplasms

and dysregulation of mitochondrial R-loop regulation is not yet

fully understood, the observation of mitochondrial fragmentation

in MDS (144), suggests a potential link. It is possible that

accumulation of mitochondrial R-loops in hematopoietic

neoplasms may also contr ibute to the formation of

disease phenotypes.

In malignancies with increased R-loops, defects in DNA

replication and consequent increased DNA damage are observed;

the ATR signaling pathway, in particular, seems to be activated in

response to these defects. Thus, further accumulation of R-loops,

perhaps with agents directed against DNA damage response

pathways, may be an attractive therapeutic target to control

disease (74, 145). Additionally, although not yet confirmed in

hematopoietic neoplasms, it has been demonstrated that PARP1

is implicated in the establishment of protein interaction networks

involving R-loops, and inhibiting PARP1 results in an increase in R-

loop levels (146). This implies that inhibiting PARP1 in diseases

where R-loops accumulate may induce synthetic lethality,

suggesting that targeting PARP1 in diseases characterized by R-

loop accumulation could be a potential therapeutic approach in

the future.
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