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bone marrow
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Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, CA, United States
Leukemic B-cells are lodged in the bone marrow [BM], a complex organ

composed of many cell types and extracellular matrix. Determining how the

reciprocal interactions between these components are regulated is critical to our

understanding of the factors that allow leukemia cells to survive, multiply and

withstand treatment. All cells in the bonemarrow are surrounded by a glycocalyx,

a glycan-rich layer of high complexity, which regulates such cell-cell and cell-

matrix interactions. However, the structure and function of the glycan

components of the biomolecules that constitute this layer have not been

explored in much detail. Gaps are difficult to fill due to technical limitations as

well as the fact that the composition of the BM in health, disease and aging is not

static. This also applies to B-lineage malignancies that develop or persist in BM

such as B-cell precursor acute lymphoblastic leukemia and Multiple Myeloma,

and the effects of their treatment. In contrast, the proteomes and transcriptomes

of different human bone marrow cells have been studied more extensively. A

combination of technologies now increasingly allows correlations to be made

between the expression of glycosyltransferases and glycan structures in cell

lines, which could be extrapolated to RNAseq data from primary cells.

Glycopeptide analysis will also be invaluable in providing details of specific

glycan occupancy on glycoproteins, even if only as a snapshot in time.

Functional studies on CD19, CD138/SDC1 and BCMA/TNFRSF17 have already

demonstrated the importance of their glycosylation. Additional studies using

such approaches are likely to findmany more other instances in which malignant

B-cell homeostasis is regulated by glycosylation, and lead to the identification of

new targets to treat B-cell malignancies.

KEYWORDS

B-cell precursor acute lymphoblastic leukemia, multiple myeloma, bone marrow,
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1 Introduction

This review focuses only on human glycans and bone marrow B-cells. Mouse studies,

which have provided substantial insight into the functional contribution of glycans to

normal murine B-cells, were recently reviewed (1). Since there are no published studies that

focus on the glycan component of human bone marrow, main sources of information are
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isolated primary cells or cells in tissue culture. Unfortunately, there

are no glycomic studies on normal human bone marrow B-cell

development, with older studies frequently using human leukemia

cell lines such as NALM6 as a stand-in for normal early B-cells (2).

Now that it has become more feasible to modify human

hematopoietic cells genetically with Cas9/CRISPR technology,

questions about the function of capping glycans can also be partly

addressed, both in vitro as well as after transplant of

glycosyltransferase-modified human B-lineage leukemia cells into

immunocompromised mice (3). However, such in vivo

experimentation introduces the variable of cross-species

differences in glycosylation (4) and it is unclear if results from

rodent cells can always be directly extrapolated to human cells (5,

6). Such limitations also apply to tissue culture. Nguyen et al. (7)

showed that human leukemia cells take up N-glycolylneuraminic

acid, a non-human glycan, as a component of the commonly used

fetal bovine serum. Such incorporation clearly has functional

consequences for immune cells (8–10). Additionally, the

complexity of cell-cell and extracellular matrix [ECM]-cell

interactions is only captured to a limited extent in cultured cells,

and the culture of hematopoietic cell types at the non-natural

oxygen conditions of tissue culture as compared to bone marrow

also can induce changes (11). Thus, an optimal data set for human

cells would include information from tissue culture or animal

experimentation combined with primary cell analysis.
2 Glycan modifications add
tremendous diversity to biomolecules

Glycan modifications add a staggering degree of diversity to

biomolecules. Proteins, lipids and [more recently shown for] RNA

(12) can all be modified by glycosylation, but the contributions of

glycosylation to normal and abnormal B-cell development in the BM

remain largely unknown. Glycosylation is regulated by

glycosyltransferases, enzymes that are dedicated to one or more

biosynthetic pathways of the glycosylation machinery. Its importance

is illustrated by the fact that around 2% of all human protein-encoding

genes are reserved for this activity: Growth et al. identified 403 human

glyco-enzymes involved in biosynthesis of glycans (13).

Details of glycan biosynthesis can be found in reviews on

glycosylation (14–17), their analysis (18–21) and in the Essentials

of Glycobiology (22). The different forms of glycosylation that result

in the formation of glycoconjugates are broadly classified based on

the molecules to which they are attached, to include proteins

[glycoproteins and glycophosphatidylinositol-linked proteins] and

lipids [glycolipids]. Protein-linked glycans are also classified based

on their attachment to asparagine [N-linked] or serine/threonine

[O-linked, including Glycosaminoglycans, GAGs] residues, or on

the type of initial sugar attachment such as mannose, fucose or N-

acetylglucosamine (4). The contribution of monosaccharide N-

acetyl glucosamine modification of serine/threonine residues on

mostly intracellular proteins [termed O-GlcNAcylation (23)] in
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leukemias has been reviewed (24, 25). While biosynthetic steps

involved in the different forms of glycosylation are frequently

shared, many individual key steps are known to be unique to just

one specific pathway (26).

The initial forms of glycan attachment to proteins, such as N-

glycosylation, developed early on in the evolution of eukaryotes and

remain highly conserved across all eukaryotic species studied to

date (22). Individuality and diversification of glycosylation between

species was largely introduced by the so-called glycan capping steps

such as sialylation and fucosylation (4, 26). These terminal

variations have produced highly antigenic epitopes and species-

specific functions. In addition, post-glycosylation modifications

such as acetylation of sialic acid attached to glycoproteins or

glycolipids add further diversity and specificity (27, 28).
3 The human bone marrow is a
nursery for normal and abnormal
precursor B-cells

The “B” in B-cells designates the bone marrow [BM], the site at

which immature B-cells are generated from hematopoietic stem

cells. Early B-cell development proceeds from the common

lymphoid progenitor, via pro-B1, pro-B2, pre-B1, pre-B2 and

immature B cell stages (29). Immature B cells subsequently exit

the bone marrow to undergo further differentiation and maturation

(30, 31). This developmental process is regulated by changes in the

expression of transcription factors (32) and by interactions within

the niche of the hematopoietic precursors with bone marrow

stromal cells and ECM (33).

The contribution of protein glycosylation to normal human B-

cell development remains largely unexplored, although it seems

certain that the glycan components of biomolecules are involved.

For example, modification of the transcription factor c-Myc by O-

GlcNAc in mice stimulates division of pre-B cells (34) suggesting a

similar regulation of c-Myc in human B-cell development (35).

Table 1 lists some of the important cell surface proteins involved in

B-cell development/homeostasis and the contribution of

glycosylation to their function, if any. For example, IL7 signaling

is essential for early human B-cell development (76). In vitro, IL7

binds 300-fold more tightly to N-glycosylated IL7Ra than to the

non-glycosylated protein (37). CRLF2, shown to be important for

normal human B-cell development (77), needs N-linked

glycosylation for cells surface expression and signal transduction

after stimulation with TSLP (40).

Not surprisingly, the bone marrow is also the initiating site of

precursor B-cell acute lymphoblastic leukemia [BCP-ALL], of

which treatment has changed substantially over time (78). BCP-

ALL has peaks of incidence in childhood and in older adults. It is

the most common childhood malignancy but in recent years has

become largely treatable, with survival in children of around 85-

92% (79, 80). Older adults still have a much less favorable prognosis

(81, 82).
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All age groups of BCP-ALL can be divided into different

subgroups and risk categories based on transcriptomes and

genetic abnormalities (83). These leukemias represent different

immature B-lineage precursor cells with a block in normal

development and they differ in gene expression profiles to

include glycosyltransferases and other glycan-relevant genes

such as lectins, which are glycan-binding proteins. For example,

the lectin Galectin-1 [Lgals1] is most highly expressed in one

specific subgroup of BCP-ALL characterized by KMT2A

rearrangements (84, 85), is implicated in other BCP-ALLs (43,

84, 86) and is overexpressed in the ECM of Multiple Myeloma

[MM] (87).
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4 The human bone marrow is also a
retirement home for normal and
abnormal plasma B-cells

Bone marrow is also a long-term repository for normal mature

hematopoietic cells such as plasma cells, which confer

immunological memory (88). Normal BM plasma cells are

quiescent solitary cells that depend on, among others, SDF1a/
CXCR4 and APRIL/BCMA (Table 1) signaling for retention in

BM and survival (89–91). Based on single-cell RNA sequencing,

different clusters of normal plasma cells co-exist in BM (92).
TABLE 1 Major glycoproteins important for normal and malignant human BM B-cell homeostasis and development.

1expression receptor/
ligand

2glycosylation sites references effect of glycosylation as target

early B-lineage IL-7Ra receptor N151 (36) [3DLBCL
cell lines]

IL-7Ra -IL7 binding (37)

IL-7 ligand predicted (38, 39)

early B-lineage CRLF2 receptor N55 (36) needed for cell surface expression and
TSLP-stimulated signal transduction
(40)TSLP ligand predicted (38, 39) (41)

pre-B pre-BCR CD179b
subunit/L5/
IGLL1

T117, S193 (42) Binding of Lgals1 to the pre-BCR
results in pro-survival signalling (43–
45)

Galectin-1 ligand N119
S30 [O-GlcNAc]

(36, 39)

B-lineage CD20/MS4A1 N9 (36) not reported rituximab (46)

B-lineage CD19 N86, N125, N138 (36, 47) Hyper and hypoglycosylation inhibits
CAR T-cell effector function (48)

CAR T cells
(49),

B-lineage CD22 N61, N65, N67, N99, N101, N112, N135,
N231, N445, N546, N574, N575, N621, N633,
N634

(50) [Daudi B-
cell line]
(36)

inhibits B-cell receptor signalling (51)
N-glycans needed for epratuzumab
engagement (52)

epratuzumab
(53)

B-lineage,
plasma cells

CXCR4 receptor S18 [CS] (54) [cell lines] no effect on CXCL12 binding
(54)

(55, 56)

SDF1a/CXCL12
ligand

none reported binds GAGs in vitro (57, 58)

B-lineage CD44 N57, N100, N110, N282, N350,
S180, Y412, N597, N599

(36, 59)
(60) [gastric
cancer cell lines]

receptor for HA; sialylation of N-
glycans inhibits HA binding

binds rVAR2
lectin (61)

plasma cells CD138/SDC1 S37, S45, S47, S206 [CS/HS]
N-linked sialylated

(62, 63)
(64)[glioblastoma
multiform
tissues]

HS essential for binding APRIL
(65)
3-O-sulfation mediates APRIL binding
[mouse] (66)

binds rVAR2
lectin (67)

plasma cells, B-
lineage

BCMA/
TNFRSF17
receptor

N42 (36) sialylation of N42 promotes
internalization (68)

many
(69, 70)

APRIL/TNFSF13
ligand

N174 (71) [human
milk]

not reported

plasma cells
pre-B cells

CD38 N100, N209, N219, N229 (72) [4liver]
(36)

structure stability (73) daratumumab
and others
(74)
1Markers often expressed in multiple stages of B-cell development (75).
2Based on experimental data as indicated in GlyGen (38, 39).
3Diffuse large B-cell lymphoma.
4It is generally unknown to which extent glycosites are occupied or occupied with similar glycans across human tissues and/or whether this is modulated by age or disease.
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MM cells are the malignant counterparts of such plasma cells.

However, the initiating mutations in MMmay not have occurred in

plasma cells located in the BM, but in those in germinal centers,

where plasma cells develop (93, 94). MM is a lymphoid malignancy

that is more prevalent in older adults and has an overall survival rate

in the USA of 58% (79). MM is also subdivided into genetic

subgroups with associated risk categories (95) and different

treatments (96). Plasma cells and MM cells no longer express a

B-cell receptor but can secrete copious amounts of antibodies

[between ~10 and 10,000 Ab molecules per cell per second] (97).

Since all immunoglobulins are glycosylated (98), this poses unique

metabolic (99) and glycome-related challenges to these cells.

Glycosylation has also been linked to specific aspects of MM

pathology: osteolytic bone disease in patients correlated with

reduced levels of galactose and sialic acid on the Fc part of the

immunoglobulin and increased formation of immunoglobulin

aggregates (100).
5 The ever-changing involvement of
glycans to B-cell homeostasis in bone
marrow

Whereas glycosylation is a wide-spanning modification, the

environment of B-cells in the bone marrow is equally complex:

BM is an organ consisting of bone as well as a large number of

different hematopoietic cell types, stromal cells and extracellular

matrix. These together regulate homeostasis and development of B-

cells. Therefore, a comprehensive study of B-cell glycosylation

would not only involve analysis of the B-cells themselves, but also

incorporate glycan-based interactions and instructions from the

cells and ECM that constitute the B-cell microenvironment.

Moreover, the hematopoietic compartment is a picture of

constant change: development from hematopoietic stem cells into

mature lineages such as the myeloid and lymphoid branches is not a

stochastic process, but instead is represented by a continuum (101).

For the B-lineage, this includes proliferation and resting phases

which distinguish themselves by different metabolic states (102).

Seeing that glycosylation is also regulated by metabolic flux (103,

104), one can anticipate that the different states will have different

glycosylation as well. In addition, hematopoiesis is dynamically

regulated by age (105–107) and inflammation (108, 109), as well as

the presence of hematological malignancies (89, 110–112). Thus,

glycan analysis of BM B-cells unavoidably represents a captured still

image of what is essentially a motion picture.

Not surprisingly, analytical studies of human bone marrow in

health and disease are less abundant than those of mice, because

bone marrow aspiration and trephine biopsies are the only primary

materials available for analysis. Generally, there are two approaches

for analysis of BM glycans. One involves isolation and

characterization of individual component cell types and ECM,

which can provide significant detail. Although not glycan-focused,

single-cell proteomic or transcriptomic analysis of bone marrow

(Table 1) can generate subclassification of stromal and

hematopoietic cell clusters in unprecedented detail. This provides
Frontiers in Hematology 04
some information on the potential or probable glycans expressed by

these cells.

Imaging techniques, in contrast, allow visualization at less

granularity but can capture potential glycan-based interactions of

B-cells, if appropriate tools such as antibodies or lectins are

available. Indeed, advances in microscopy techniques using

immunostaining have greatly refined our view of the 3-

dimensional structure of human bone marrow (111, 113),

although this has not yet focused on the glycan component.
6 Tools for identification of glycans:
general considerations

A first step towards analyzing contributions of glycans to

normal and abnormal B-cell functioning in bone marrow would

be an inventory of what is actually there, and where the glycans are

located. Direct analysis of N-linked glycans has perhaps been the

most widely used. An analysis of this type was performed on MM

peripheral blood and bone marrow plasma using MALDI-TOF-MS

for N-glycans. This technology employs enzymatic digestion to

separate the N-glycans from the protein backbone, followed by

mass spectrometry, which can yield the overall composition of the

glycan and, through further analysis, glycosidic linkages. The study

reported changes in all main glycosylation features in the MM

samples compared to normal plasma (114).

Lectins and antibodies with specificity towards glycan and/or

glycoconjugate structures have been widely employed to identify

glycosylation traits in situ (115, 116). Indirect mass spectrometry

imaging [MSI] approaches such as imaging CyTOF allow

multiplexing of up to 40 different protein markers within a single

experiment (117). Using a panel of scFv antibodies against heparin

sulphate, Piszczatowski et al. (118) tracked differentiation from

human CD34+ HSPCs into the erythroid and megakaryocyte

lineages. Recently, lectins have also been used for cell

identification in time-of-flight mass cytometry [CyTOF] to

characterize human T-cell subsets (119). However, the vast

majority of lectins employed for analytical purposes are of plant

origin and unfortunately show a diverse range of affinities for

specific glycan structures (120). The complex interaction

preferences of the most widely applied lectins have just recently

been critically re-evaluated (121), confirming that most lectins

exhibit affinities to more than one specific glyco-epitope. While

this does not preclude their use to visualize and study glycosylation,

an observed change in lectin binding can be caused by more factors

than just the simple presence/absence of one specific glyco-epitope.

On the other hand, viral lectins and engineered sialyl-O-

acetylesterases have been applied with exquisite specificity to

allow discrimination of O-acetylation on the 9-, 7- or 4- position

of sialic acid as biologically important post-glycosylation

modifications (122, 123).

Direct MSI overcomes issues of multiplexing and probe

specificity as it does not make use of lectins or antibodies (124).

Using this technology, more than 100 biomolecules can be routinely

imaged with a resolution down to 1-10 µm within a single
frontiersin.org

https://doi.org/10.3389/frhem.2023.1279863
https://www.frontiersin.org/journals/hematology
https://www.frontiersin.org


Heisterkamp 10.3389/frhem.2023.1279863
experiment (125). Microdissection glycomics/glycoproteomics

combines the benefits of microscopy and histopathology with the

power of -omics technologies. In principle, cellular structures of

interest can be isolated using microdissection and further processed

for -omics analyses (126–128). Microdissection of areas of interest

in formalin-fixed, paraffin-embedded tissue sections in

combination with nano-scale liquid chromatography coupled to

Mass Spectrometry [nanoLC] of N- and O-glycans was shown to be

robustly possible down to around 1000 cells (129, 130), opening up

novel opportunities to obtain detailed glycan structures and

quantitative distribution information in a microenvironment

context. To date no study has focused on normal or abnormal B-

cells in human BM using any of the above-mentioned methods.
7 The transcriptome -a largely
untapped source of information on
potential glycotraits

Glycosylation is a non-template driven process that is also

regulated by factors beyond direct transcriptional control such as

metabolomic flux, glycosyltransferase localization, intracellular

transport, and complex enzymatic specificities. This poses specific

and unique analytical challenges. However, some inferences can be

drawn from transcriptome studies, which in depth and number

vastly exceed the direct and indirect glycan analysis mentioned

above. In particular, there are numerous transcriptomic studies on

both stromal and non-stromal bone marrow cells which could be

analyzed for glycosyltransferase transcripts and used to generate

hypotheses concerning possible glycotraits expressed on these cells.

As noted, a significant limitation of this approach is that

transcriptomics data are only partially indicative for the composition

of the glycome: expression levels of glycosyltransferases do not

necessarily reflect their enzymatic activity and the presence of final

products (18). One example of an early study is that of Bret et al. (131)

who analyzed Affymetrix-based signatures of 100 heparan sulphate and

chondroitin sulphate-relevant genes in normal and abnormal plasma

cells. Jöud et al. (132) also used glycosyltransferase gene expression data

to predict carbohydrate blood group loci.

An inherent limitation of analysis of bulk RNA expression data

is that signals from cell types which constitute only a minor

percentage of the total number may be lost. For example, BM

stromal stem/progenitor cells constitute only around 0.001–0.01%

of the total amount of BM cells (133). Since glycosyltransferase

RNAs are not always highly expressed (134), bulk RNA sequencing

is likely to therefore miss their expression in cell types with a low

representation. This can be mitigated to some extent by purification

of specific cell types using antibody markers. More recently, single-

cell RNA sequencing [scRNAseq] techniques, often with prior

purification or selection of certain cell types, have been applied to

generate unprecedented resolution of human bone marrow in

normal and diseased states. Table 2 lists some of these studies

[for BCP-ALL, also see (75)]. However, with the increased

resolution on a cellular level, there is again potentially a loss of

ability to detect glycosyltransferase transcripts due to their low
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detect all transcripts present in a cell (146). Such data, in

combination with other data described below, could be used to

generate a prediction of glycotraits expressed on cells that constitute

only a minute fraction of the total bone marrow compartment

including Minimal Residual Disease (MRD), the [frequently low

percentage of] leukemia cells that can persist after chemotherapy.
8 Combinomics provide missing links
between transcriptomes and
glycotraits

One way to substantiate links between transcriptomes/

proteomes and glycotraits is by multi-omics analysis of the same

cells. In the only study of this type reported so far, analysis of

proteins, RNA and glycans was performed on the same primary

BCP-ALL and control samples (18). The study found increased

sialylated N-glycans in the leukemia samples. A CRISPR survival

screen on a leukemia cell line showed that MGAT1, the enzyme that

initiates complex N-linked carbohydrate synthesis, is needed for

survival of these cells in a tissue culture setting. Interestingly,

compared to normal precursor B-cells, the leukemia cells showed

a higher complexity of O-glycans, which could be a reflection of

normal B-cell development (147–149). However, expression of

mRNA and protein for GALNT7, an enzyme involved in O-

glycan synthesis was also higher in the leukemia samples. This

enzyme is one of the O−GalNAc glycosylation-initiating enzymes

with a substrate preference for follow-up glycosylation of previously

glycosylated regions (150–153). Glycopeptide studies with other cell

types such as prostate cancer linked higher GALNT7 levels to the

presence of the Tn antigen (152), but there is no evidence for Tn

expression in BCP-ALL cells.

A landmark paper by Huang et al. (154) provided a critical

framework in which RNAseq expression data for glycosyltransferases

and the actual glycans expressed in HEK293, an immortalized human

embryonic kidney cell line, were linked. The authors identified 38 N-

glycan composition structures [complex 13.7%, hybrid 1.7%,

oligomannose 84.7%] and 14 O-glycan compositions. Importantly,

they validated these correlations by knocking out genes related to N-

glycan processing and analysis of the remaining structures. Their

GlycoMaple tool is available for analysis of other RNAseq data as well

(155). Nielsen et al. (152) used a similar approach to correlate specific

O-glycosyltransferases to O-glycan structures. Such studies and those

reported by Zhu et al. (156) are likely to ultimately result in a degree

of predictability, as reviewed (134) and could be applied to anticipate

glycotraits of human BM B-cells based on transcriptome

data (Table 2).

Other studies also combined different omics to investigate

glycan traits in other cell types and organisms. A systems-based

glycobiology approach integrating RNAseq and ChIP-Seq data was

used to link transcription factor expression to that of glycogenes in

breast cancer (157). Studying Alzheimer’s disease, Tang et al. (158)

analyzed publicly available data sets for glycosyltransferase

expression, with a confirmation through Q-PCR and subsequently
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N-glycan analysis of changes predicted by the transcriptome

changes. Single-cell RNAseq has been combined with lectin-based

glycan cell identification (159) for analysis of human induced

pluripotent stem cells (160), which could be applied to human

BM B-cells. Thus, a combination of many empirical and

computational approaches is expected to lead to an increased

ability to predict major glycotraits.
9 Glycosaminoglycans

GAGs are a unique type of carbohydrate consisting of very long,

pole-like linear carbohydrate chains that are built of repeated

disaccharide units of varying repeat length. GAGs can be attached

to proteins [proteoglycans] or secreted, like hyaluronic acid (HA).

GAG chains are hydrophilic, with a strong negative charge. They

also can be modified by the attachment of sulfur groups (sulfation).

Heparin sulfate (HS) and chondroitin sulfate (CS) are two main

distinct types of GAGs attached to cell surface proteins. GAGs
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regulate a variety of cellular interactions in the bone marrow

because they are expressed by both the bone marrow stroma and

by normal hematopoietic cells (161–163). To date, only 77-78

mammalian/human proteoglycan core proteins have been

identified (61, 164).

Because core proteins of proteoglycans expressed in human

bone marrow can reasonably be expected to have attached GAGs,

their mRNA and protein expression can be used to extrapolate the

presence of some GAGs. However, this data is limited in that

it does not provide information about GAG modification.

Main subclasses of proteoglycans include heparin-sulfate

and chondroitin sulfate proteoglycans [HSPG and CSPG,

respectively] and numerous proteins that interact with them

have been identified (165, 166). In a study of the normal human

bone marrow proteome, which included hematopoietic cells and

mesenchymal stromal/stem cells (MSC), 12,000 proteins were

identified. Interestingly, of the age-related changes in older

MSC, abundance of proteins tightly linked to glycosaminoglycan

metabolism were significantly changed (167).
TABLE 2 scRNAseq on primary normal and malignant human B-cells in bone marrow.

Normal human bone marrow

cells selection numbers analyzed goal/analyzed cell
types

clusters/cell types reference

1 human BM 1BM MNC; Adipocytes excluded. FACS for
CD45low CD235a- and CD272+

25,067 cells stromal cells 42 clusters incl. some
hematopoietic cells

(135)

2 human BM none 100,000 cells; 8 donors mainly hematopoietic 35 clusters (136)

3 human BM analyzed existing data sets 673,750 cells; 145 donors hematopoietic 54 cell types (137)

4 human BM thirteen-colour flow cytometry using 5
customized panels (T, B, NK; monocytes,
2DC)

20 donors hematopoietic (138)

5 human BM CD34-enriched 6 donors 97 cell surface
markers+ scRNAseq
3Abseq

(139)

6 human BM BM MNC 4 donors; 18,751 cells hematopoietic (140)

7 human BM BM MNC; negative selection for CD138+,
flow sorting with CD19, CD38 and CD138

5 donors; 17,347 antibody-
secreting cells

normal BM antibody
secreting/plasma cells

15 clusters (92)n

Leukaemia -Multiple Myeloma and BCP-ALL

8 MM
diagnosis

BM MNC 18 patients;164,521 cells MM MM (141)

9 MM
relapsed/
refractory

BM MMC 8 patients; 6955 cells MM MM (55)

10 MM BM MNC 53 MM samples from 41 patients
and 8 normal BM samples

MM MM and normal PC (57)

11 MM
diagnosis

BM MNC, CD38-enriched, sorted CD38
+CD138+

29 MM and 11 normal BM;
20,568 cells

MM (142)

11 BCP-ALL review different (143)

12 BCP-ALL BM MNC 8 different cALL patients, three
normal BM samples; 39,375 cells

BCP-ALL cells (144)
fron
1MNC, mononuclear cells; standardly obtained after red blood cell lysis and Ficoll density centrifugation 2Dendritic cells, 3Abseq is a high-throughput method to characterize cells using
antibodies (145).
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10 Glycosaminoglycans in MM: CD138
presentation of APRIL to BCMA

Significant differences have been found in GAGs and proteoglycans

in MM. For example, on a transcriptional level, increased expression of

B4Galt7, involved in the synthesis of CS, was found in comparison with

normal BM plasma cells (57, 131). Studying 56 trabecular bone tissue

samples, Ho et al. found that ECM proteoglycans were higher in

control and monoclonal gammopathy of undetermined significance

samples, compared to smoldering and active MM (168). HSPG also

have a specific significance to normal BM plasma cells andMM cells as

reviewed in (161). In particular, HSPGs can bind and present

chemokines and survival factors to hematopoietic cells in the BM.

HSPGs were shown to bind SDF1a/CXCL12 (169). This is the key

chemokine/receptor axis that attracts and anchors different

hematopoietic cell types including normal progenitors, plasma cells

as well as malignant hematopoietic cells [BCP-ALL, MM] in the bone

marrow and mediates MM drug resistance (169).

APRIL [TNFSF13] is the key cytokine for maintaining viability

of bone marrow plasma cells (170) and MM cells (171). APRIL is

secreted by myeloid cells in bone marrow (172). It is sequestered by

the proteoglycan CD138 [also known as Syndecan-1, SDC1] (173,

174) which is expressed on and is the defining hallmark of plasma

cells. In this way, APRIL can be presented to its cell surface receptor

BCMA [TNFRSF17], which can be located on the same cell or on

other MM cells. Human CD138 exhibits a mixed glycosylation

profile (62) (Table 1). Interestingly, using heparitinase and

chondroitinase, Matthes et al. showed that the sequestration of

APRIL by SDC1 is dependent only on the HS (65). Moreover, Baert

et al. recently determined, using murine MM cells, that 3-O-

sulfation of the HS on SDC1, as detected by a specific anti-HS

antibody, mediates APRIL binding and was associated with

increased drug resistance. Human diagnosis MM samples also

contained cells reacting with this specific antibody (66). APRIL

itself contains one N-linked glycosylation site, Asn174 that, in

human milk (71), contains different complex sialylated and core

fucosylated structures (38, 39) of unknown function.

BCMA is currently one of most well-studied targets for

treatment of MM: clinically approved treatments that target

BCMA include CAR-T cells, bispecific T-cell engagers and toxin

conjugates (69, 175). Interestingly, glycosylation of BCMA (Table 1)

is important for its function, although this does not appear to be

studied in the context of therapies that target it, or resistance to or

relapse on treatment. BCMA contains one N linked glycosylation

site, N42, and sialylation of the glycan structure attached to this site

promotes internalization of BCMA (68). The importance of sialic

acids to cell surface expression of BCMA was recently confirmed in

a Cas9/CRISPR screen, which also surprisingly showed SDC1 as

important for BCMA cell surface expression (176).
11 Glycosaminoglycans in BCP-ALL

GAGs and proteoglycans also are important to BCP-ALL, with

the process of transformation to malignancy as well as
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chemotherapy modulating their representation. For example,

based on transcriptomic data, it is likely that KMT2A-rearranged

BCP-ALL cells undergo a shift from CS towards HS proteoglycans

compared to normal BCP cells (18). Some proteoglycans and glycan

structures have potential diagnostic and therapeutic applications.

For example, CD44, the receptor for HA (177) in bone marrow, is

widely expressed on BCP-ALL cells (178). It is a marker for MRD

leukemia cells in both BCP-ALL (179, 180) and MM (181).

Interestingly, CD44 is also functionally important: low molecular

weight HA killed BCP-ALL cells and cell lines by a mechanism

involving CD44 (182). CD44 is a complex glycoprotein (Table 1)

with many isoforms generated through alternative splicing. Up to 9

potential N-linked glycosylation sites are present, and sialylation

interferes with HA binding (183). A specific glycoform of CD44 that

forms a ligand for L-selectin and is detected by the HECA-452

antibody (184) is expressed on human hematopoietic cells (185). In

MM, relapsed samples had a high degree of HECA-452-

positivity (186).

In addition, CD44 is a proteoglycan. A lectin called rVAR2 from

P. falciparum detects an oncofetal CS structure on many cancer cell

types. Candidate proteins expressed on malignant bone marrow B-

cells that could bind this lectin include CD44 as well as CSPG4 and

SDC1 (164, 187). Indeed, this special structure was detected on

NALM-6, a BCP-ALL cell line, and MOLP-2, a MM cell line (164).

Other proteoglycans could also present targets for immunotherapy:

the proteoglycan CSPG4 is highly and specifically expressed in one

of the subtypes of BCP-ALL (188).
12 Glycotraits as targets and
modulators of immunotherapy in B-
cell malignancies in the BM

Thus, glycosylation is strongly connected to normal and abnormal

B-cell survival and development in bone marrow, among others

through the regulation of adhesion and of cytokine/chemokine

presentations. There are also therapeutic implications:

immunotherapy targets are, for the most part, glycoproteins

expressed on the cell surface (189). They could also be glycolipids

(190) (191–193). Overall, immunotherapies based on antibodies and

their derived products such as chimeric antigen receptors (CARs) have

made a tremendous impact on treatment of human B-cell malignancies

(82, 194–196) but are mainly targeted against CD19, CD22 or CD20

protein epitopes (78). However, there are also therapeutic antibodies

specifically directed against glycan epitopes on other targets. It would

be outside of the focus of this review to discuss this in-depth, and

glycan-focused applications including targets of immunotherapy (164,

197–199) and drug delivery (200), have been recently reviewed, albeit

not specifically for BCP-ALL orMM. Antibodies that detect acetylation

of sialic acid on the 9-O position in glycoproteins and gangliosides

could be the basis for immunological treatment in BCP-ALL (27, 28,

191, 201). Therapeutic applications related to proteoglycans and GAGs

were already noted.

A relatively unexplored question is to which extent

glycosylation of immunotherapy target proteins on the B-cell
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malignancies regulates the way the immune system could react with

that target other than direct target recognition. For example, if and

how glycosylation regulates the tertiary and quaternary structure of

immunotherapy targets is mostly unknown. That glycosylation can

regulate different aspects of immune responses is illustrated by the

mAb camrelizumab, which interferes with binding of PD-L1 to its

receptor PD-1 on T-cells. This approach represents an important

breakthrough in treatment of solid tumors (202) although PD-1

blockade did not have a beneficial effect in MM (203). The crystal

structure of PD-1 alone or in complex with blocking mAbs was also

determined [for example (204–206)]. Since glycosylation was

regarded as problematic for efficient crystal formation and

structure analysis, crystallography of PD-1 and of almost all other

cell surface immunotherapy targets has been traditionally

performed on proteins expressed in bacteria, which lack

eukaryotic glycosylation, or on proteins in which asparagine

(Asn) residues, the sites of N-linked glycosylation, have been

mutated. In the case of PD-1, this clearly has limited structure-

function insights, seeing that glycosylation was found to regulate

PD-1 interaction with PD-L1 as well as with some of the different

therapeutic mAbs (207–209).

CD38 is an established treatment target for MM (Table 1). Its

glycosylation was reported to be important for the assembly of

homodimers and tetramers on the plasma membrane (73, 210)

suggesting that glycosylation regulates features of the quaternary

structure of this protein. Daly et al. (211) in fact reported that de-

sialylation of CD38 increases NK-mediated antibody-dependent

cytotoxicity of MM cell lines by daratumumab. A more direct line of

evidence for the effect of glycosylation on immunotherapy was

presented by Heard et al. (48). The authors performed a Cas9/

CRISPR screen to identify factors that contribute to CART19

resistance. They reported that knockout of the Golgi protease

SPPL3 led to branched N-glycan changes and increased

glycosylation of CD19 in NALM6 BCP-ALL cells. Interestingly,

these cells were also partly resistant to CART-19 mediated killing.

Overexpression of SPPL3 reduced glycosylation of CD19 and its cell

surface expression, also leading to CART19 treatment resistance.
13 Concluding remarks

The glycocalyx of B-cells and bone marrow stromal cells, as well

as glycosylation of the ECM is ubiquitous, likely in constant flux,

and diverse in composition. Although analysis of only the glycan

component of this layer gives a global overview and inventory of

what is present and what has changed, the ultimate goal would be to

understand specific effects of specific glycans on the biology of these

cells. To accomplish this, it will be necessary to analyze the

composition of glycans in the context of glycopeptides or other

glycoconjugates. Remarkably, this has become possible at the

molecular level using electrospray deposition combined with

scanning tunneling microscopy (212). However, sorting out

which glycosylated sites on a protein are important from a
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functional point of view will be challenging, because those

individual sites may also have variable site occupancy (152).

Although it is unlikely that all glycotraits carry equal biological

significance (213), constant features/trends do seem to exist: using a

combination of analytical techniques, key glycan structures that

regulate important biological functions are beginning to emerge.

Glycoproteins such as CD44 and CD138 show how specific glycan

components can play an essential functional role. Similar studies on

other proteins will ultimately lead to a better understanding of how

these highly diverse structures contribute to regulation of normal

and abnormal B-cell homeostasis in the bone marrow.
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