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Vhl deletion in Dmp1-
expressing cells alters MEP
metabolism and promotes
stress erythropoiesis
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Introduction: Erythropoiesis occurs in a specialized niche in the bone

marrow and is regulated in part by oxygen-sensing signaling pathways.

VHL is an E3 ubiquitin ligase that regulates the degradation of hypoxia-

inducible factor (HIF) proteins under normoxic conditions. In hypoxia, VHL is

inactivated resulting in enhancement of HIF signaling.

Methods and results: To investigate the effects of HIF-activation in bone

cells on erythropoiesis, we performed longitudinal analyses of conditional Vhl

knockout mice (Dmp1-Cre;Vhlfl/fl; VhlcKO) mice, in which Vhl is deleted

primarily in osteocytes but is retained in hematopoietic cells. VhlcKO mice

display elevated red blood cell counts and erythropoietin levels starting at 10

weeks of age, resembling polycythemia. Using flow cytometry, we observed

increased frequency of CD71loTER119hiFSClo orthochromatophilic

erythroblasts and reticulocytes in 10- and 24-week-old VhlcKO bone

marrow. Features of extramedullary hematopoiesis were observed in the

spleen, including red pulp hyperplasia, the presence of megakaryocytes, and

increased frequency of basophilic and polychromatophilic erythroblasts and

of mature stress erythroid progenitors. To investigate the mechanisms that

drive the accelerated erythropoiesis in the bone marrow, we enumerated

myeloid progenitors and observed higher frequencies of megakaryocyte-

erythroid progenitors (MEPs) at 6 and 10 weeks of age, but MEP frequency

was similar to controls at 24 weeks. Despite this normalization in MEP

frequencies, bulk RNA-Seq of MEPs at this age showed upregulation of

Epas1 (Hif2a), consistent with a response to hypoxia, as well as genes

involved in erythrocyte development. Surprisingly, genes involved in the

response to glucose were also upregulated in VhlcKO MEPs.
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Discussion: Our studies implicate that HIF-driven alterations in skeletal

homeostasis drive changes to the bone marrow microenvironment that

influence erythroid cell development and MEP metabolism.
KEYWORDS

bone homeostasis, extramedullary hematopoiesis, HIF signaling, myelopoiesis,
polycythemia, red blood cells
Introduction

Erythroid homeostasis is highly regulated to ensure a balanced

supply of red blood cells (RBC) for efficient tissue oxygenation while

avoiding their overproduction. The detailed steps of erythropoietic

development have been studied extensively (reviewed in (1)).

Briefly, RBCs originate from progenitors that reside in the bone

marrow (BM). To produce RBCs, megakaryocyte-erythroid

progenitors (MEP) differentiate into burst forming unit-erythroid

and colony-forming unit-erythroid (CFU-E) cells. With

erythropoietin (EPO) stimulation, CFU-E develop into various

erythroid progenitors: proerythroblasts, basophilic erythroblasts,

polychromatophilic erythroblasts, and orthochromatophilic

erythroblasts. These progenitors develop in close proximity to

macrophages in a specialized BM niche called an erythroblastic

island. Terminal maturation, crucial for development of mature

RBCs, involves enucleation leading to formation of reticulocytes (2).

Reticulocytes then undergo organelle clearance and membrane

remodeling (2, 3).

Despite the robust capacity of steady state erythropoiesis to

produce new RBCs, there are situations where it is unable to

maintain erythroid homeostasis. During such instances, a short-

term, compensatory mechanism termed stress erythropoiesis

produces an influx of new RBCs to maintain homeostasis until

steady state erythropoiesis can resume (4). This response is driven

by stress erythroid progenitors (SEPs) and is best understood in

mice, where it is extramedullary, occurring in a specialized

microenvironment in the fetal liver, as well as the adult spleen

and liver (5–7). While extensive efforts have been made to

understand RBC development, many questions remain regarding

how the BM and bone microenvironment maintains and regulates

erythroid development.

Bone is a highly dynamic tissue that undergoes continuous

remodeling to maintain a healthy skeleton and support efficient

and lifelong skeletal functions. Dysregulation of coupled signaling

pathways or imbalances in bone resorption and formation can lead to

abnormal bone remodeling and the development of bone diseases.

Osteoporosis is a bone disease characterized by low bone mass and

density, causing bone fragility and an increased risk of fractures (8).

Osteolineage-specific Cre drivers that delete either prolyl hydroxylase

(PHD) or von Hippel Lindau (VHL) result in the stabilization of
02
hypoxia inducible factors (HIFs) and increased bone mass in mice

(9–12). Findings from these models gave rise to the idea of novel,

bone-targeted treatments for osteoporosis using PHD and VHL

inhibitors (13, 14). However, the bone is also the site of

hematopoiesis, and modification of HIF signaling in the bones of

mice has been shown to impact the bone marrow microenvironment.

For example, in mice where Vhl is conditionally deleted primarily in

bone cells using the Dmp1 promoter (called VhlcKO mice), the mice

develop high bone mass resulting in a severely occluded BM cavity,

reduced BM cellularity, dysregulated B cell development, and

prominent splenomegaly (11, 15).

In this study, we further investigated these VhlcKO mice, where

Vhl is deleted in subsets of mesenchymal stem cells, late osteoblasts,

and osteocytes, but is intact in hematopoietic cells (16, 17). We

observed how Vhl deletion in Dmp1+ cells affects erythroid

development. We provide evidence for structural, cellular and

molecular alterations in the VhlcKO BM niche that impact the

state of erythropoiesis.
Materials and methods

Experimental animals

Age-matched male and female mice on the C57BL/6 (B6)

background were used. Dmp1-Cre (JAX 023047) and Vhlfl/fl (JAX

012933) mice were crossed to generate conditional Vhl knockouts

(VhlcKO) in Dmp1-expressing cells (16, 18). Genotyping was

confirmed by PCR (15) or Transnetyx, Inc. (Cordova, TN) using

real-time PCR and no sex-specific differences in erythropoiesis or

other components of our studies were detected. Mice were housed

and bred under specific-pathogen free conditions. The University of

California, Merced Institutional Animal Care and Use Committee

approved all animal work.
Complete blood count and peripheral
blood smears

Tail bleeds were performed as described (15). For complete

blood count (CBC) and PB smears, peripheral blood was directly
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collected into BD Microcontainer tubes with K2E (K2EDTA; Fisher

Scientific, Pittsburgh, PA) and 1.5 mL Eppendorf tubes with EDTA,

respectively. A CBC was performed using a HEMAVET HV950

automated veterinary hematology counter (Drew Scientific, Inc.,

Miami Lakes, FL). MULTI-TROL mouse control blood (Drew

Scientific, Inc., Miami Lakes, FL) was run prior to mouse blood

samples to calibrate the HEMAVET system and assess sample

quality control. The quality control program was run daily.

PB smears were prepared within 1 hour of blood collection to

minimize artifacts. A glass slide was positioned so that the frosted

end was on the left and one drop of blood was placed in the center

nearest to the frosted end. Using a second glass slide positioned at a

45° angle, the drop of blood was gently smeared toward the end of

the slide and left to air dry for 1 minute. The air-dried blood smear

was fixed in methanol, air dried, stained with Wright-Giemsa stain

(Volu-Sol, Salt Lake City, UT), and rinsed, then staining was

repeated. Stained blood smears were left to air dry and cover slips

were mounted using Permount (Fisher Scientific) before

microscopic analysis. Slides were shipped overnight to Texas Tech

University Health Sciences Center and photomicrographs were

taken using a Nikon Eclipse Ni microscope.
Quantification of cytokines

BM fluid and PB was collected and processed, and cytokine

measurements were performed using a customized bead-based

multiplex (13-LEGENDplex assay) from Biolegend, Inc. as

described (15).
Bone marrow and spleen collection
and processing

Mice were euthanized by CO2 asphyxiation followed by cervical

dislocation. BM from long bones and splenocytes from spleens were

isolated as described (15). Isolated cells were treated with ACK lysis

buffer to remove erythrocytes for myeloid progenitors, lineage, and

erythroblast analysis. Cell counts were obtained using a

hemocytometer and Trypan Blue staining to exclude dead cells.
Flow cytometry

Cell staining included a pre-incubation step with unconjugated

anti-CD16/32 (clone 93) to block Fc receptors, except for myeloid

progenitor panel (15). The antibody cocktails used are listed in

Supplementary Table 1. For viability staining, DAPI (Sigma-

Aldrich, 1 mg/ml) or PI (Sigma-Aldrich, 1 mg/ml) was used.

Single color stains were used for setting compensations and gates

were determined with fluorescent-minus one controls, isotype-

matched antibody controls, or historical controls. Data were

acquired with BD LSR II (Becton-Dickinson) or ZE5 (BioRad,

Hercules, CA) flow cytometers. The data was analyzed using

FlowJo Software version 10.7.1.
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Histology

Dissected spleens, livers, and sterna were fixed in 10% neutral

buffered formalin (Thermo-Fisher Scientific) for 24 hours. After

fixation, all samples were shipped overnight to Texas Tech

University Health Sciences Center. Liver and spleen samples were

trimmed while sternum samples were decalcified in Cal-Rite

solution (Thermo-Fisher Scientific), then placed into histology

cassettes. Tissues were processed routinely for histopathology and

slides were stained with Hematoxylin and Eosin. Slides were

examined and photomicrographs were taken using a Nikon

Eclipse Ni microscope.
Bulk RNA-sequencing

MEPs (live, negative for F4/80, CD3, CD4, CD5, CD8, CD19,

NK1.1, Ter119 and Gr1; CD45+ cKIT+ Sca1- CD34- CD16/32-)

from pooled BM of control (two replicates with n=5 and n=4, mixed

sexes) and VhlcKO (two replicates with n=6, n=5, mixed sexes) mice

were isolated by flow cytometric sorting on the FACS Aria3 (Becton-

Dickinson) and stored in RLT lysis buffer (Qiagen, Redwood City,

CA) supplemented with b-mercaptoethanol at -80C until RNA

isolation. RNA from sorted MEPs was isolated using

RNEasyMinElute columns following the manufacturer’s

instructions. The isolated RNA from each sample was flash frozen

and sent to UC Irvine Genomics Research and Technology Hub on

dry ice to obtain a library of transcripts. Library construction was

performed with the SMARTer® Stranded Total RNA-Seq Kit v3 and

sequenced on the i5 NovaSeq 6000. Sequencing data quality was

checked using fastQC (19). Subsequently UMIs, adapters and linkers

were trimmed from Read 2 using Trimmomatic (20). Reads were

then mapped to mouse genome (mm10) using STAR (21) and read

counts per gene were determined using “featureCounts” from

Rsubread package (22). Differentially expressed genes (DEGs) were

identified using limma after voom normalization (23). Genes with a P

value <0.05 were considered as significantly differentially expressed.

Volcano plot and heatmap were generated using the gplots package

(24) conducted in R version 4.3.0 (2023–04–21) (25). Functional gene

ontology was analyzed from DEGs in the ToppGene Suite for gene

list enrichment analysis with a false discovery rate set to p < 0.05 (26).

Sequence files were submitted to the Gene Expression Omnibus

(GEO) at the National Center for Biotechnology Information (NCBI)

under accession number GSE237723.
Quantitative and standard reverse-
transcriptase PCR

For quantitative RT-PCR (RT-qPCR), whole BM cells were

isolated from long bones as described above. Cells were pelleted and

resuspended in RNeasy RLT Lysis Buffer (Qiagen) with 1% 2-

mercaptoethanol. Total RNA was purified using the Qiagen RNeasy

Micro Kit (Qiagen) according to manufacturer’s protocol. RNA

concentration and purity was analyzed using the Nanodrop One

Spectrophotometer (Thermo Fisher Scientific). For RT-qPCR, the
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same amount of RNA from each sample was mixed with qScript

XLT One-Step, RT-qPCR ToughMix (Quantabio) together with

specific TaqMan expression primers. Real-time qPCR was run on

the Applied Biosystems thermocycler using QuantStudio3 software

(ThermoFisher) at the following specifications: 1 cycle at 50°C for

10 minutes for cDNA synthesis, 1 cycle at 95°C for 1 minute for

initial denaturation and then 40 cycles of amplification at 95°C for 5

seconds then 60°C for 45 seconds. The following TaqMan gene

expression assays (Thermo Fisher Scientific) were used:

housekeeping Actb-VIC (Mm02619580_g1), target genes Slc2a1

FAM (Mm00441480_m1) EpoR-FAM (Mm00833882_m1).
Blood glucose measurements

For PB and BM fluid glucose measurements, mice were

transferred into a sterile cage with only water for a 12-hour fast.

After the 12-hour-fast, PB glucose levels were measured from 1

drop of blood using a glucometer (OneTouch Ultra2 LifeScan).
Statistical analysis

AG*Power statistical power analysis (a=0.05 and power of 0.95)

(27) based on myeloid progenitor data and total BM cellularity

determined that a minimum of 8 mice per group was needed for our
Frontiers in Hematology 04
studies. The total sample size for each experiment was performed in

three independent experiments. For qPCR of sorted myeloid

progenitors, mice were pooled (n=2 controls and VhlcKOs) and

run in duplicate and for whole BM qPCR, 4 individual mice samples

were used. Age-matched control and VhlcKO mice of both sexes

were used. Comparisons between groups were performed using a

two-tailed Student’s t-test to assess differences between mean and

median values with Graph-Pad Prism and were considered

significant if p<0.05.
Results

Elevated RBC parameters and
polycythemia in VhlcKO mice

As early as 6 weeks of age, we observed increased hemoglobin

and hematocrit in VhlcKO mice, and increased RBC counts starting

at 10 weeks of age (Figure 1A), implying a polycythemic phenotype.

VhlcKO mice also developed redness in their snouts and paws

starting at 10 weeks of age (Supplementary Figure 1A), consistent

with erythrocytosis. These changes were sustained to 24 weeks of

age. No changes in white blood differentials were observed, except

for a decrease in WBC and lymphocyte counts at 6 weeks of age

(data not shown). To examine the possibility of a hematological

disorder, we performed peripheral blood (PB) smears to assess RBC
B C

D E

A

FIGURE 1

VhlcKO mice display enhanced erythropoiesis. (A) Hemoglobin, hematocrit, and red blood cell counts, as a function of age; (B) Wright-Giemsa-
stained peripheral blood smears of 10-week-old control and VhlcKO mice, Scale bar: 10 µm; (C) Platelet count; (D) EPO concentration and (E) TPO
concentration in peripheral blood and bone marrow fluid. *p < 0.05 **p < 0.01 ***p < 0.001 ****p < 0.0001, two-tailed Student’s t-test.
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morphology. In both control and VhlcKOmice at 3, 6, and 10 weeks

of age, the majority of RBCs were spherical, anucleate biconcave

discs with central pallor which is typical of healthy murine RBCs

(28) (Figure 1B, Supplementary Figure 1B). By 10 weeks of age,

RBCs from VhlcKO mice exhibited increased mean corpuscular

volume (MCV) and red blood cell distribution width (RDW),

indicating increased RBC size (Supplementary Figure 1C). We

attempted to perform PB smears on 24-week-old VhlcKO mice,

but the blood was too viscous to accurately assess RBC morphology.

Additionally, at 24 weeks, VhlcKO mice exhibited a significantly

decreased platelet count (Figure 1C), but no significant changes in

platelet volume (Supplementary Figure 1D). These findings

demonstrate that Vhl deletion in Dmp1-expressing cells may not

only be altering erythropoiesis, but also thrombopoiesis. Because

erythropoietin (EPO) and thrombopoietin (TPO) can act in synergy

to promote erythropoiesis (29), we measured EPO and TPO

concentrations in the VhlcKO mice and found that EPO

concentrations in the PB serum and BM fluid were comparable to

controls between 3-to-6-weeks of age (Figure 1D). However, EPO

levels in VhlcKO mice were increased by 10 weeks of age and

sustained through 24 weeks (Figure 1D). Interestingly, TPO

concentration was elevated only in the PB serum (Figure 1E).
Vhl deletion in Dmp1-expressing cells
dysregulates steady state erythropoiesis in
the bone marrow and activates
extramedullary hematopoiesis in the spleen

To identify any defects in erythropoiesis, we analyzed

erythroblast development in the BM of VhlcKO mice using flow

cytometry (30). We utilized CD71 and TER119 as cell surface

markers and FSC as an additional parameter to classify all

TER119+ cells into four subsets (31, 32): proerythroblasts (ProE;

CD71hiTER119medFSChi), basophilic erythroblasts (BasoE;

CD71hiTER119hiFSChi), polychromatophilic erythroblasts (PolyE;

CD71medTER119hiFSClo), and orthochromatophilic erythroblasts

and reticulocytes (OrthoE and Retic; CD71loTER119hiFSClo)

(Figures 2A, B, top row). The frequencies and absolute numbers

of erythroblast BM populations were unchanged or comparable

between 3-week-old control and VhlcKO mice (Figure 2C,

Supplementary Figure 2A). At 10 weeks and 24 weeks of age, the

frequencies of bone marrow BasoE and PolyE were reduced, but the

% of OrthoE and Retic were dramatically increased at 10 and 24

weeks (Figure 2C).

Cessation of splenic erythropoiesis typically occurs by 6 weeks

of age in mice (33). Previously, we found that VhlcKO mice display

splenomegaly (15), characterized by increased spleen length, weight,

and cellularity compared to controls. Splenomegaly is frequently

associated with extramedullary hematopoiesis; consequently, we

quantified the erythroblast stages in the spleen (Figure 2B,

bottom row and 2D). At 3 weeks of age, splenic BasoE were

decreased in VhlcKO, but starting at 6 weeks of age, VhlcKO spleens
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displayed increased BasoE frequencies (Figure 2D, left panel).

PolyE frequencies were also increased in the spleen starting at 6

weeks of age (Figure 2D, middle panel). The absolute numbers of

BasoE and PolyE also were increased starting at 6 weeks

(Supplementary Figure 2B). Splenic OrthoE and Retic levels were

similar to controls at all ages examined (Figure 2D, right panel,

Supplementary Figures 2A, B). Taken together, our findings suggest

that changes in the BM of VhlcKO mice leads to erythropoietic

activity in the spleen.
Analysis of myeloid progenitors and
lineages in the VhlcKO mice

VhlcKO long bones (15) and sterna displayed abnormally high

bone mass and occlusion of the BM cavity starting at 6 weeks of age

(Supplementary Figure 3A), which became severe by 24 weeks of

age (Figure 3A). We previously reported increased frequencies of

BM monocytes and granulocytes, suggesting skewing of

hematopoietic differentiation toward the myeloid lineages in

VhlcKO mice (15). To elucidate any changes to the myeloid

progenitor compartments in the BM of VhlcKO mice, we

performed a longitudinal quantification of common myeloid

progenitors (CMP: CD45+Lin-cKIT+Sca1-CD16/32+CD34+),

granulocyte/monocyte progenitors (GMP: CD45+Lin-cKIT+Sca1-

CD16/32-CD34+) and megakaryocyte/erythroid progenitors

(MEP: Lin-CD45+cKIT+Sca1-CD16/32-CD34-) using flow

cytometry (Figure 3B). There were no differences at 3 weeks of

age (Figure 3C). However, starting at 6 weeks, VhlcKO mice

exhibited an increase in CMP frequency in the bone marrow,

which persisted at 10 and 24 weeks (Figure 3C). MEP frequencies

were markedly increased at 6 weeks, slightly but significantly

increased at 10 weeks, and similar to controls by 24 weeks

(Figure 3C). GMP frequencies were similar to controls until 24

weeks where GMP frequency was increased (Figure 3C).

Given that the total BM cellularity decreases in VhlcKO mice

(15), it is also important to determine the absolute numbers of each

population to see how these compare with the frequency patterns.

Absolute numbers of CMPs, MEPs and GMPs were comparable at 3

weeks of age (Supplementary Figure 3B). At 6 weeks, VhlcKO CMPs

and MEPs were similar to controls, but GMPs were reduced in

number; GMPs then normalized to control levels by 10 weeks of

age. By 24 weeks of age, absolute numbers of CMPs, MEPs and

GMPs significantly decreased in the VhlcKO BM (Supplementary

Figure 3B). Although the increased frequencies of CMPs, MEPs and

GMPs could be due to myeloid bias, it may simply reflect the

reduction of other BM cell populations (e.g., B cells (15)).

Furthermore, the overall decrease in absolute cell numbers is

likely due to the over proliferation of bone, leading to a smaller

BM cavity.

We also quantified neutrophils (CD45+Ly6G+CD11b+),

classical monocytes (CD45+Ly6G-CD11b+F4/80-CD115+Ly6Chi)

divided into CD43+ or CD43- populations, non-classical
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monocytes (CD45+Ly6G-CD11b+F4/80-CD115+Ly6C-CD43+), and

dendritic cells (CD45+Ly6G-CD11b+F4/80-CD115+Ly6C-

CD43+MHC-II+CD11c+)(Supplementary Figure 4) (34). We

observed no differences in the frequencies of neutrophils or

monocytes at all ages examined (Supplementary Figures 4A, E).

Dendritic cell frequency dropped at 10 weeks only (Supplementary

Figure 4C). Consistent with the development of an occluded bone

marrow cavity, the absolute cell number of neutrophils, dendritic

cells, and conventional monocytes significantly decreased in the

bone marrow by 24 weeks of age (Supplementary Figures 4B, D, F).
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Evidence for EPO-dependent stress
erythropoiesis in VhlcKO spleens

Starting at 6 weeks of age, we found significant red pulp

hyperplasia and presence of megakaryocytes in the spleens and

livers of VhlcKO mice, which became severe at 24 weeks of age

(Figure 3D, Supplementary Figures 5A, C). We quantified long-

term hematopoietic stem cells (LT-HSCs: LSK, CD150+ CD48-),

short term hematopoietic stem cells (ST-HSCs: LSK, CD150-,

CD48-), and multipotent progenitors (MPP2: LSK, CD150+,
B

C

D

A

FIGURE 2

Altered steady state erythropoiesis in the bone marrow of 10- and 24-week-old VhlcKO mice. (A) Scheme of erythroid cell development; (B) Flow
cytometry gating of erythroblast populations in the bone marrow of 24-week-old control and VhlcKO mice. ProE, proerythroblasts; BasoE,
basophilic erythroblasts; PolyE, polychromatophilic erythroblasts; OrthoE and Retic, orthochromatophilic erythroblasts and reticulocytes;
(C) Percentage of erythroblast populations in the bone marrow, and (D) spleen. *p < 0.05, ****p < 0.0001, two-tailed Student’s t-test.
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CD48+; MPP3: LSK, CD150-, CD48+; and MPP4: LSK, CD150-,

Flk2+, CD48+) (Supplementary Figure 6A). We found an increased

absolute number and frequency of all hematopoietic stem and

progenitor cells, CMP,s MEPs and GMPs in the spleen of 10- and

24-week-old VhlcKO mice (Supplementary Figures 5B, 6B–E).

Conditions of stress (i.e. anemia) or underlying diseases (e.g.,

infection) can induce stress erythropoiesis in the spleen as a

mechanism to temporarily rescue steady state erythropoiesis (4).

This response is driven by SEPs, which are distinct from the

progenitors involved in steady state erythropoiesis (35). Knowing

that SEPs are derived from ST-HSCs that home to the spleen (4), we

enumerated mature SEPs (CD71lowTER119+cKIT+) in the spleens

of VhlcKO mice using flow cytometry (4) (Figure 3E). We found a

lower absolute number of SEPs in 3-week-old VhlcKO mice.

However, starting at 6 weeks of age, we observed an increase in

both the absolute number and frequency of SEPs in VhlcKO mice

(Figures 3F, G). Taken together with the observation of increased

PB serum EPO concentration (Figure 1D), this data suggests that

that EPO-dependent stress erythropoiesis is occurring and that

EPO is driving the transition of SEPs to erythroblasts in the spleen

(4, 36).
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Elevated levels of Glut1 in VhlcKO MEPs

To investigate the molecular mechanisms underlying the altered

erythropoiesis in VhlcKO mice, we sorted MEPs by flow cytometry

(Supplementary Figure 7A) from 24-week old mice for bulk RNA

sequencing analysis. At this age, the % of MEPs were similar to

controls (Figure 3C), so we were curious to examine if there was any

evidence of skewing to a particular cell fate at the genomic level. We

identified 1094 differentially expressed genes (upregulated: 861

genes; downregulated: 233 genes) in MEPs of VhlcKO mice

compared to controls (Figure 4A, Supplementary Table 2). A list

of selected genes of interest are shown in the heatmap (Figure 4B).

Epas1 (Hif2a) was upregulated in VhlcKO MEPs, consistent with a

response to hypoxia, and Vhl expression was detected, confirming

no off-target deletion (Figure 4B). We observed an upregulation of

genes involved in erythrocyte development (Epb41l3, Epb41l1)

(Figure 4B), consistent with the enhanced erythropoiesis observed

in VhlcKO mice.

Gene ontology (GO) analysis was performed to determine the

functional categories of the differentially expressed genes, based on

cellular component, biological process, and molecular function
B

C

D E

F G

A

FIGURE 3

Myeloid progenitors and stress erythroid progenitors in the bone marrow of VhlcKO mice. (A) Photomicrographs of hematoxylin and eosin-stained
control and VhlcKO sternum, where bone is light pink colored and bone marrow is dark purple colored; scale bar: 100 µm; (B) Flow cytometry
gating strategy for myeloid progenitors; (C) Percentage of myeloid progenitors CMPs, MEPs, and GMPs out of Live, CD45+ from bone marrow, by
mouse age; (D) Photomicrographs of control spleen (left) and VhlcKO spleen (right) at 24 weeks of age, Scale bar: 100 µm. Both groups display
distinct regions of the red pulp (stained pink by eosin stain) and the white pulp (stained purple by hematoxylin); (E) Flow cytometry gating of the
mature SEPs in the spleens of control and VhlcKO mice; (F) Percentage and (G) Number of stress erythroid progenitors. * p < 0.05, ** p < 0.01,
**** p < 0.0001, two-tailed Student’s t-test.
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(Figure 4C). GO analysis of all downregulated genes revealed

enrichment of categories involved in cell division (e.g.,

microtubule cytoskeleton, spindle, cell cycle process, mitotic cell

cycle, mitotic cell cycle process, and regulation of cell cycle process)

and hydrolase and pyrophosphatase activity, with Cdc6 and E2f4

included in multiple categories (Figures 4B, C). GO analysis of

upregulated genes showed significant enrichment of genes involved

in components of the cell membrane and molecular actin/

cytoskeleton binding (e.g., apical part of cell, plasma membrane

region, cell-cell junction, cell leading edge, anchoring junction, actin

binding, actin filament binding, lipid binding, cytoskeletal protein
Frontiers in Hematology 08
binding, and cell adhesion molecule binding), with Myo7b,

Shroom2, Cobl, Vil1, Epb41l3, and Epb41l1 included in multiple

categories. GO analysis of upregulated genes also showed

enrichment of genes involved in development of cellular

structures, (e.g., cell adhesion, cell-cell adhesion, tube

development, circulatory system development, and anatomical

structure formation involved in morphogenesis), such as Epas1,

Efnb2, Nr4a1 and Klf4 (Figures 4B, C).

Slc2a1 (aka Glut1) and Pck1, key genes involved in response to

glucose and metabolic regulation, were also listed within these

upregulated biological process categories. Increased Glut1
B

C

D E

F

A

FIGURE 4

Gene expression analysis of VhlcKO MEPs. (A) Volcano plot, fold change (x axis) vs statistical significance (y axis) of upregulated genes (red) and
downregulated genes (blue) p<0.05, black represents genes that were not found to be significantly differentiated between VhlcKO and control
samples; (B) Heatmap of 3838 significant genes of interest from control and VhlcKO MEPs based on raw counts of sequenced samples; (C) Gene
Ontology (GO) classification showing significant enrichment of three main gene pathway categories (cellular component, biological process, and
molecular function) from bulk RNA sequencing of sorted MEPs from control and VhlcKO mice at 24 weeks old with the adjusted p-value <0.05. The
x-axis indicates the number of genes in each category; (D) Normalized relative expression of Slc2a1(Glut1) from 10-week-old (circles) and 24-week-
old (triangles) MEPs (left) or whole bone marrow (right) of control or VhlcKO mice.; (E) Blood glucose levels. Mice were fasted for 12 hours prior to
glucose measurement. (F) Epor normalized gene expression of 10-week-old (circles) and 24-week-old (triangles) sorted MEPs (left) or whole BM
(right) of control or VhlcKO mice. (F) * p < 0.05, **** p < 0.0001, two-tailed Student’s t-test.
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expression in MEPs was confirmed by qPCR (Figure 4D),

suggesting increased glycolysis in the MEPs. Glut1 expression in

whole bone marrow cells were similar to controls (Figure 4D) but

fasting peripheral blood glucose levels were significantly lower in

VhlcKO mice (Figure 4E). As Epo-receptor (EpoR) signaling

mediates cell metabolism through an increase in glycolysis (37),

we measured EpoR levels on MEPs. Sequencing results from sorted

MEPs revealed a slight (0.45 fold) downregulation of EpoR in

VhlcKO mice (Figure 4B, Supplementary Table 2), and qPCR

results showed no difference between control and VhlcKO MEPs

(Figure 4F), indicating that EpoR signaling is intact in VhlcKO

MEPs. Interestingly, whole BM cells revealed a decrease in EpoR

expression (Figure 4F). These findings suggest that Vhl deletion in

Dmp1 - e xp r e s s i n g c e l l s c h ang e s t h e bon e ma r r ow

microenvironment, resulting in increased glucose uptake in MEPs

that directly reduces blood glucose levels and concomitantly

enhances erythroid development in the BM.
Discussion

Here, we report that deletion of the Vhl gene in Dmp1-

expressing cells results in changes in the BM microenvironment

that alter the state of erythropoiesis as early as 6 weeks of age. We

observed increased myeloid progenitor frequency, which suggests

myeloid skewing. We also observed upregulation of genes involved

in response to glucose and actin filament arrangement in sorted

MEPs, elevated EPO levels in both the PB serum and BM, and

extramedullary hematopoiesis in the spleens and livers of VhlcKO

mice, all of which are consistent with augmented erythroblast

development. In VhlcKO mice, Vhl deletion occurs in non-

hematopoietic cells; therefore, any effects on hematopoietic cells

observed must be cell extrinsic. RNA-seq data confirmed that Vhl is

expressed in the MEPs of VhlcKO mice, ruling out off-target

expression of Dmp1-Cre in MEPs. In addition, since VhlcKO

→wild-type whole BM chimeras display normal erythropoiesis

(data not shown), hematopoietic progenitors developing in

VhlcKO mice are not intrinsically skewed to differentiate into any

particular lineage. To our knowledge, our report is the first to show

the presence of mature SEPs in vivo due to Vhl deletion in bone,

indicating that stress erythropoiesis is occurring. In addition, our

hematological analyses revealed a polycythemic phenotype.

Altogether, these findings implicate HIF-driven alterations in

skeletal homeostasis drive changes in EPO levels and

erythropoiesis, extending our insight of a functional relationship

between these two tightly regulated processes (skeletal homeostasis

and steady-state erythropoiesis).

Our findings are consistent with previous studies using osterix

(Osx)-specific Cre drivers to conditionally delete Vhl in osteoblasts

(9, 10). Rankin et al. observed splenomegaly, an expansion of

erythropoiesis, increased expression of Epo in the bone cells, and

decreased Epo expression in the kidney (9). Dirckx et al. focused on

the bone cell metabolism in Osx-Cre; Vhlfl/fl mice and observed

increased glucose uptake and glycolysis in Vhl-deleted osteoblasts,

but they did not report any data on hematopoiesis (10). Our results

extend and merge these two studies. Our genomic analyses reveal
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novel details on the genetic responses of MEPs to deletion of Vhl in

non-hematopoietic cells in the bone, adding new details on the

molecular responses of erythrocyte progenitors to the bone marrow

and skeletal microenvironment.

Our results demonstrate that deletion of Vhl in Dmp1+ cells

enhances EPO production in the bone marrow and increases

glycolysis in MEPs. Since EPO concentrations are elevated in

VhlcKO blood and BM fluid, we expected that EpoR levels would

also be elevated, as EpoR signaling mediates cell metabolism

through an increase in glycolysis (37). However, we found EpoR

mRNA expression to be significantly decreased in the whole BM

qPCR. EpoR expression in the BM could be decreased due to high

levels of EPO binding to EpoR, resulting in downregulation of the

EpoR receptor as a negative feedback mechanism. EpoR expression

on VhlcKO MEPs were similar to controls by qPCR, so we are

unable to definitively conclude the relationship between EpoR

signaling and increased Glut1 expression at this time. In

agreement with other groups (10), we observed a marked

hypoglycemic phenotype in our VhlcKO mice starting at 6 weeks

of age. It is plausible that the increased number of RBC and their

consequent uptake of glucose may be heightening systemic glucose

clearance (38). With this hypoglycemic phenotype occurring

independent to changes in body weight (data not shown), sex-

dependent and hormonal changes need to be further explored (39).

Our study also provides additional information on the RBC

parameters in VhlcKO mice, such as increased MCV and RDW,

indicating the RBC of VhlcKO mice vary in size (anisocytosis) (28).

Typically, anisocytosis and erythrocytosis are associated with

vascular abnormalities resulting in complications like thrombosis

and hypertension, and can inevitably can lead to premature lethality

(40–42). Intriguingly, our group found that VhlcKO mice displayed

extensively vasodilated blood vessels in the BM (15), suggesting that

local and possibly systemic adaptive mechanisms are induced in

these mice to compensate for the erythrocytosis.

Extramedullary hematopoiesis in the spleens of VhlcKO mice is

supported by our observations of increased percentages of splenic

CMPs and MEPs, the presence of late-stage erythroblasts in the

spleen, and the presence of megakaryocytes and red pulp

hyperplasia. Taken together, these observations indicate that

sequestration, accumulation, and proliferation of circulating

myeloid progenitors in splenic cords is occurring. Following this

thought, we presume this may also be due to the homing of ST-

HSCs to the spleen, where the stress erythroid fate promotes the

extramedullary nature of stress erythropoiesis (43). Unlike steady

state erythropoiesis, which produces RBC at a constant rate, stress

erythropoiesis generates a bolus of new RBC derived from SEPs.

Early in vivo work indicated that these splenic progenitors were

distinct from steady state erythroid progenitors (7). Our data now

provide in vivo evidence that terminal differentiation of SEPs may

contribute to the red pulp hyperplasia and increased number of

circulating RBCs we observe in VhlcKO mice. Alternatively, our

data could reflect increased RBC turnover or sequestration due

to erythrocytosis.

The findings in this study expand our understanding of the role

of Vhl in skeletal homeostasis, in particular the effect on glucose

metabolism in MEPs. Our working model is shown in Figure 5.
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Steady state erythropoiesis is illustrated in the top panel and our

model of erythropoiesis in VhlcKO mice is illustrated in the bottom

panel. Our data support that deletion of Vhl in Dmp1-expressing

cells induces HIF-driven alterations that not only causes BM

microenvironmental irregularities, but also directly regulates the

state of erythropoiesis through an increase in EPO in the BM and

expansion of the erythroid niche to the spleen and liver. We suspect

these changes in erythropoiesis are mediated mainly through

systemic EPO secretion but with local EPO secretion in the BM

also contributing. Enhanced EpoR signaling may result in the
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upregulation of Glut1 on MEPs, which in turn contributes to low

systemic glucose levels in the blood. Future studies investigating

both the hepatic and splenic stress erythroid niche could provide

insight as to how EPO and its co-regulators (i.e., FGF23) regulate

the state of erythropoiesis to compensate for BM irregularities (44).

Our findings may have important implications for improving

bone anabolic therapies for osteoporosis and may potentially lead to

designing new therapeutics for individuals with anemia, such as

those with frank diabetes mellitus and anemia of renal disease.

Furthermore, these findings emphasize that when designing new
FIGURE 5

Working Model of how Vhl deletion in Dmp1-expressing cells contributes to alterations in the state of erythropoiesis. Schematic model describing
the effects of BM microenvironmental changes in VhlcKO mice on erythropoiesis. See Discussion for details.
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treatments for osteoporosis by modulating HIF activity,

investigators should be aware of unintended off-target effects in

other tissues (45). Considering these factors may help in designing

therapies targeting the HIF signaling pathway without

dysregulating the skeletal and hematopoietic system (15, 46, 47)

and causing off target metabolic, hormonal, and renal effects

(48, 49).
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