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Immune thrombocytopenia (ITP) manifests as depleted platelet reserves,

primarily due to the immune-mediated destruction of platelets. The

pathogenesis of ITP is complex and involves dysregulation of the immune

system. This review aimed to summarize the current knowledge of the

cytokine profile in ITP and its potential implications for diagnosis, treatment,

and prognosis. Several studies have reported that ITP patients have an altered

cytokine profile from that of healthy individuals. Specifically, there is evidence of

an imbalance of pro-inflammatory (interleukin (IL)-6, tumor necrosis factor

(TNF)-a, interferon (IFN)-g) and anti-inflammatory cytokines (IL-10, TGF-b).
The cytokine profile in ITP appears to be heterogeneous, with different

patterns observed in different subsets of patients. For example, some studies

have reported a Th1-type cytokine profile, characterized by elevated levels of

IFN-g and TNF-a, while others have reported a Th2-type cytokine profile,

characterized by elevated levels of IL-4 and IL-10. There is also evidence of a

shift from a Th1 to a Th2 cytokine profile in some patients over time. The cytokine

profile in ITP may have important implications for diagnosis, treatment, and

prognosis. Targeting specific cytokines or cytokine pathways may also represent

a promising therapeutic approach for ITP. Further studies are needed to better

understand the heterogeneity of the cytokine profile in ITP and its potential

implications for clinical management.
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1 Introduction

Immune thrombocytopenia (ITP) is a type of autoimmune disorder that involves the

destruction of platelets and their precursor cells, megakaryocytes (1, 2). This not only

results in low-circulating platelets but also impairs the production of new platelets (3, 4).

Previously, this disorder was referred to as idiopathic thrombocytopenic purpura due to the

unknown origin of the disease. However, this term is no longer used since it has been
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determined that the underlying cause involves immune

dysfunction. The incidence rate of ITP is 16–27 new cases per

million annually, with a greater propensity observed in the female

population (5, 6). Patients presenting with a platelet count below

100,000 platelets per microliter are typically diagnosed with

primary ITP (7). Secondary ITP, which accounts for 20% of ITP

cases, is induced by various factors such as autoimmune disorders,

infections, or drug treatments (8). Based on duration, ITP can be

classified as newly diagnosed (up to 3 months), persistent (up to 12

months), or chronic (longer than 12 months). In adults, 80% of ITP

cases are chronic in nature, characterized by recurring episodes, and

often exhibit resistance to therapeutic interventions (9).

Although platelet destruction mediated by autoantibodies has

traditionally been considered the primary pathophysiological

mechanism, the underlying mechanisms that trigger the

development of autoimmunity against platelets remains unclear

(10). Antiplatelet antibodies lead platelet destruction by targeting

platelet surface antigens. These antibodies are mainly directed

against glycoproteins on the platelet surface, such as glycoprotein

IIb/IIIa (GP IIb/IIIa) and glycoprotein Ib/IX (GP Ib/IX). The

presence of these antibodies in ITP leads to several mechanisms

that contribute to platelet destruction, including opsonization, Fc

receptor-mediated clearance, antibody-mediated cellular

cytotoxicity (ADCC), and complement system activation (11). A

study by Iraqi et al. reported that antiplatelet autoantibodies inhibit

proplatelet formation by megakaryocytes and impair platelet

production in vitro (12).

Initially, Harrington and Hollingsworth proposed that ITP was

caused by plasma factor circulating in the blood, which was later

identified as immunoglobulin type G (IgG) specific to platelets (13).

Furthermore, in roughly two-thirds of ITP cases, a deficiency of

endogenous TPO (eTPO) is observed (14). The deficit of eTPO is

due to functional impairment rather than compensatory increase, as

seen in megakaryocytic thrombocytopenia.

In addition to autoantibodies, T lymphocytes and cytokine

imbalances have also been implicated in the pathogenesis of ITP

(15). Elevated numbers of T-cell receptor (TCR) g/d-positive T

lymphocytes have been reported in chronic ITP patients (16), and

elevated levels of soluble interleukin (IL)-2 receptors (sIL-2R) have

been observed in serum (17). Several studies have documented the

existence of stimulated T cells that are reactive to platelets in

patients with ITP. These patients show a disturbance in the

cytokine balance, which favors the production of IL-2 and

interferon (IFN)-g (6, 18). Furthermore, helper T lymphocytes

polarize into Th1 and Th2 immune responses and are involved in

the aberrant immune responses seen in ITP (19, 20). Figure 1

summarizes multiple factors involved in the pathogenesis of ITP.

In recent years, there has been an increasing focus on

investigating the cytokine profile in ITP and its potential impact

on disease pathogenesis and management. This review seeks to

address unresolved issues regarding the involvement of cytokines in

the progression of ITP. The aim is to contribute to the decision-

making process of clinicians regarding the appropriate form

of treatment.
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2 Normal immune system physiology

B and T lymphocytes play a critical role in the adaptive immune

response. Through recognition of specific antigens, B lymphocytes

undergo differentiation into plasma cells and memory B cells,

generating a humoral response (21). Plasma cells produce IgG

antibodies that neutralize bacterial toxins and viruses. Regulatory

B lymphocytes, known as Bregs, secrete anti-inflammatory

cytokines (IL-10) to curb T-cell and monocyte activation and

other autoimmune responses (22).

T lymphocytes undergo thymic maturation and generate

cel lular responses by recognizing antigens on major

histocompatibility complex (MHC) molecules on the surface of

antigen-presenting cells (APCs). Furthermore, T-cell precursors

differentiate into effector T cells and memory T cells, which can

be CTL CD8+, Th1 CD4+, or Th2 CD4+ (23). The effector response

of Th1 and Th2 involves the secretion of various growth factors and

interleukins, with Th1 mainly associated with inflammation and

Th2 with the allergic response (24). Regulatory T cells (Tregs)

maintain immune homeostasis by suppressing autoreactivity in the

peripheral blood. Tregs exert their suppressive effects on cellular

and humoral immune responses by directly inhibiting the function

of CTLs and Th cells. This is achieved through direct interaction

with B cells or by the secretion of specific cytokines (IL-10, TGF-b)
(25). Tregs express CD4 and CD25, and they can inhibit CD4

+CD25- and CD8+ lymphocytes, thereby contributing to immune

tolerance (25). While effector T cells can also express CD25, Foxp3

is a specific marker for Tregs.

The humoral and cellular immune responses are interconnected

as T-helper (Th) cells stimulate both T and B cells. While Th cells

can activate T and B cells, T-cell-independent responses are also

prevalent in B cells. To prevent the recognition of self-antigens, the

immune system employs various mechanisms (24, 25). One such

mechanism occurs in the thymus and bone marrow, where

immature lymphocytes encounter self-antigens displayed by APCs

(26). T cells bearing TCRs with low or intermediate affinity for

MHCmolecules undergo positive selection and mature. In contrast,

those with high affinity undergo negative selection and apoptosis.

The peripheral mechanism entails Treg cells that inactivate

circulating autoreactive lymphocytes (27). Furthermore, B cells

can remove T cells with TCRs for the same antigens, thus

preventing the generation of autoantibodies. Additionally, Treg

and Breg (regulatory B cells) lymphocytes employ bidirectional

control mechanisms between humoral and cellular responses (28).
3 Dysregulation of the immune
system observed in immune
thrombocytopenia

In ITP, autoantibodies are undetectable in approximately 25%

of patients (29). In addition to the presence of autoantibodies that

target platelets, immune system alterations involving T cells have
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been observed in individuals with ITP. Specifically, platelet

destruction is mediated by cytotoxic T lymphocytes and Th1

cells, while the functionality of Th1 and regulatory T cells is

altered. These changes are linked to the expansion of autoreactive

B cell clones (20). Autoreactive B cells produce IgG autoantibodies

directed against the glycoproteins (GPs) of platelet membranes,

which facilitate the binding of phagocytes that destroy platelets.

These GPs are also present in megakaryocytes (30). Genetic

susceptibility may also be involved in ITP development. For

instance, multiple polymorphisms like MHC HLAB8DR3 and the

IL-1 receptor antagonist have been associated with the onset of ITP

(31, 32).

Recent research has demonstrated that platelets exhibit the

expression of toll-like receptors (TLRs) and are capable of

presenting antigens via MHC-II (33). These TLRs serve as pattern

recognition receptors and have the ability to recognize various

pathogen-associated molecular patterns (PAMPs). TLR recognition

of molecules from injured tissues may contribute to the

pathogenesis of ITP. Several mechanisms have been proposed to

explain the spontaneous resolution of ITP in some patients after

treatment with antibacterial agents. One such mechanism involves

the inactivation of TLR-mediated destruction, which is implicated

in the pathogenesis of ITP (34).
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Abnormalities in B lymphocytes have also been observed in

patients with ITP. Increases in splenic B lymphocytes have been

noted, while decreases in Bregs have been observed in untreated

patients with ITP (35). Bregs play an important role in modulating

the immune response; hence, alterations in their function may

contribute to the disruption of Tregs observed in ITP (35). Figure 2

summarizes the multiple cellular mechanisms of ITP pathogenesis.
4 Changes in T lymphocytes response

ITP results in changes in T-cell populations, such as an increase

in Th1 cells relative to Th2 cells, increased Th17 cells, and a

decrease in Treg cells. In patients with active ITP, there is an

imbalance in the Th1/Th2 response, with an increase in pro-

inflammatory CD16+ monocytes that release TNF, promoting

Th1 development and IL-17 release, and suppressing Tregs (36).

Th1 cells produce cytokines that initiate the cellular response,

including IL-2, IFN-g, and TNF-b. Furthermore, higher levels of

IL-23 and TLR4 have been reported in monocytes (37).

Cytotoxic T lymphocytes (CTLs) are crucial in the immune

response against tumors, bacteria, and viruses, inducing apoptosis

in targeted cells (38, 39). Dendritic cells stimulated by tumor cell-
FIGURE 1

Platelet lifecycle explained in ITP. (1) Platelets (yellow) are produced in bone marrow. When platelets age, they lose terminal sialic acid (curved
arrow). Ultimately, they are cleared in the liver. Platelet clearing also leads to the formation of new TPO (yellow triangles). (2) Macrophages (green)
can also phagocytose platelets whereas cytotoxic cells (blue) also lyze platelets. (3) In blood, the autoimmune response is carried out by cytotoxic T
cells. Apart from this, platelet-reactive B cells (red) are also present in blood, which enhances platelet clearance. Endothelial cells are shown on the
sides of central column in the figure. (4) Cytotoxic T cells and plasma cells in bone marrow inhibit platelet production.
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derived exosomes enhance CD8+ CTL responses, leading to

improved anti-tumor immunity. CD4+ T cells indirectly aid CTL

activation by modifying antigen-presenting cells, playing a

significant role in the initiation and persistence of CD8+ T-cell

responses. CD4+ helper T cells play a direct role in stimulating CD8

+ CTL responses. These CTLs also contribute to the process of

platelet lysis, which is a key factor in the development of ITP (40).

Tregs are critical in maintaining peripheral immune tolerance

(41). However, patients with ITP may have decreased Tregs or

defects in their suppressive functions (42). Research findings

demonstrate the generation of platelet glycoprotein-specific Tregs

from non-regulatory T cells in patients with ITP. These cells possess

the ability to induce antigen-specific immune suppression (43).
5 The role of the Th1/Th2 imbalance
in immune thrombocytopenia

The balance between Th1 and Th2 cells is crucial for normal

human immunity, with Th1 cells being responsible for
Frontiers in Hematology 04
inflammatory responses and cellular immunity while Th2 cells

stimulate B cell proliferation (44). Aberrant activation of Th1

lymphocytes may contribute to the development of ITP. Although

the underlying cause of Th1 dominance in ITP is not fully

understood, uncontrolled Th1 lymphocyte activation is believed

to be a crucial mechanism (45). The imbalance between Th1/Th2 in

ITP yields conflicting evidence in various studies, with some studies

reporting more involvement of Th1 and its related cytokines

whereas other lean toward Th2. The Th1 response is

characterized by the secretion of cytokines such as IL-2, INF-g,
and TNF-a, while the Th2 response produces cytokines such as IL-

4, IL-5, IL-6, IL-10, and IL-13. Although the primary distinction

between human Th1 and Th2 subsets is based on IFN-g and IL-4

production, recent research on gene polymorphisms suggests their

contribution to the pathogenesis of ITP (20, 46). Studies have

demonstrated that the Th1/Th2 ratio is substantially higher in

ITP patients than in healthy individuals, indicating a potential

role for Th1/Th2 polarization in the pathogenesis of ITP (37).

However, some studies suggest that Th2 polarization may be more

relevant since the Th1/Th2 ratio is directly associated with platelet
FIGURE 2

Several cellular pathogenic mechanisms and cytokines involved in ITP. Abnormal regulation of B cells and plasma cells (displayed at the bottom) plays a
significant role, as they produce autoantibodies that bind to platelets and megakaryocytes (MKs). This interaction leads to impaired function and degradation
of platelets and MKs. The cellular immune response in ITP is also affected, resulting in a decrease in regulatory T cells (Tregs) and regulatory B cells (Bregs)
(green box). This reduction further promotes the survival of autoreactive plasma cells, which, in turn, enhances autoantibody production. Additionally, there is
an imbalance observed in the subsets of CD4+ T cells, specifically the helper T cells (Th cells). Furthermore, cytotoxic CD8+ T cells become activated in ITP,
causing the apoptosis (cell death) of platelets and MKs. This activation also leads to dysregulation of the bone marrow (BM) niche homeostasis, disrupting the
process of megakaryopoiesis (formation of MKs) and thrombopoiesis (production of platelets). Interleukins such as IL-4, IL-7, TGF- b are downregulated
whereas interleukins such as IL-6, IL-11, and IL-22 are upregulated.
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counts (47). Treatment with dexamethasone, a steroid hormone,

can rebalance the Th1/Th2 axis by increasing the levels of anti-

inflammatory cytokines such as IL-4, IL-10, and TGF-b (48).

Additionally, IL-18, a cytokine that promotes Th1 responses, is

elevated in ITP patients, along with IFN-g, a cytokine produced by

T lymphocytes and natural killer cells that are stimulated by IL-18.

The balance between IL-18 and its inhibitor, IL-18BP, is involved in

the progression of ITP, with high levels of IL-18 and low levels of

IL-18BP positively correlated with Th1 bias (49). The imbalance of

Th1/Th2 observed in ITP varies based on the stage of the disease. In

the acute phase, there is an upregulation of Th1 immune responses.

Th1 cells secrete pro-inflammatory cytokines such as IFN-g and
Frontiers in Hematology 05
TNF-a. These cytokines contribute to the activation of

macrophages and cytotoxic T cells, promoting platelet

destruction. Furthermore, there is decrease in Th2 cytokines (20).

In the persistent stage of ITP, there is a shift toward a mixed Th1/

Th2 immune response. While Th1 responses remain active, there is

also an increase in Th2 cytokine production (50). In some cases, as

ITP progresses to the chronic or persistent stage, there can be a

rebalancing of Th1 and Th2 responses. Th2 cytokines, particularly

IL-4 and IL-10, may become more prominent in the chronic stage.

IL-4 can inhibit Th1 responses and promote B cell differentiation,

leading to the production of anti-inflammatory antibodies

(47) (Table 1).
TABLE 1 Cytokines involved in immune thrombocytopenia.

Author Cytokine Level Main Findings

Zhan et al.
(2021) (51)

IL-1b, IL-
36a, IL-33

Downregulated Serum concentrations of cytokines were significantly downregulated in ITP patients (p <0.05) compared with controls.

Li et al.
(2015) (52)

IL-33 Downregulated In patients with active ITP, the concentration of IL-33 in their plasma was significantly reduced (p < 0.01).

Goelz et al.
(2020) (53)

TNF-a, IL-
10, IL-15,
IL-1Ra

Upregulated Upregulated levels of TNF-a, IL-10, IL-15, and IL-1Ra were found in the plasma of individuals with acute ITP.

Ma et al.
(2014) (54)

IL-4 and
IL-10

Upregulated Th2 cytokines (IL-4 and IL-10) were found to be significantly higher in patients with ITP than in patients in the control
group (p <0.05). Conversely, the levels of TH1 cytokines (IFN-g and IL-2), the Th17 cytokine (IL-17), and the Treg
cytokine (TGF-b1) were significantly decreased in ITP patients (P<0.05). Additionally, IL-17 was found to be
significantly higher in patients with chronic ITP as than those with severe ITP (P<0.05).IL-2,

IL-17,
TGF-1

Downregulated

IL-7 Upregulated

Zhang et al.
(2017) (55)

IFN-g, IL-4 Downregulated In the serum of mice with ITP, the levels of certain cytokines (IFN-g, IL-4) were downregulated.

Li et al.
(2021) (47)

IL-6, IL-23 Upregulated A significant increase in cytokine levels was observed in ITP patients compared with the control group (p < 0.001).

IFN-g, IL-
17

Upregulated Serum IFN-g (p = 0.025) and IL-17 (0.005) were elevated in the ITP group.

IL-4, TGF-
b

Downregulated Serum levels were downregulated.

Fatma et al.
(2018) (56)

IL-6 Upregulated Higher cytokine levels were reported in acute ITP.

Li et al.
(2015) (57)

IL-7 Downregulated Plasma cytokine levels were downregulated in peripheral blood.

Qiao et al.
(2017) (58)

IL-9 Upregulated Increased expression of Th9 and IL-9-producing Th9 cells, as well as elevated IL-9 plasma levels, were found to be
positively associated with Th17 cells and the corresponding IL-17 levels.

Goelz et al.
(2020) (53)

IL-10 Upregulated In acute ITP patients, plasma cytokine levels were elevated.

Li et al.
(2016) (59)

IL-11 Upregulated The serum levels of IL-11 were higher in ITP subjects than in control subjects.

Li et al.
(2015) (60)

IL-12 Upregulated Plasma cytokine levels were significantly upregulated in ITP (p < 0.01).

Li et al.
(2015) (61)

IL-12, IL-
23

Upregulated Elevated cytokine levels were reported on the mononuclear cells of ITP patients.

Ye et al.
(2015) (62)

IL-23 Upregulated The patients showed increased mRNA expression levels in IL-23p19, IL-23R, IL-12Rb1, IL-23, and IL-17A.

(Continued)
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6 Role of cytokines in immune
thrombocytopenia

T helper cells are a subset of immune cells that can be

categorized based on their production of cytokines, with Th1,

Th2, and Th17 cells being the most commonly studied. Th1 cells

are responsible for cellular immunity and produce cytokines such as

interferon and interleukin-2, while Th2 cells promote antibody

production by producing cytokines such as IL-4, IL-5, and IL-13

(69). Although ITP was previously thought to be primarily

associated with a Th1 immune response, recent research has

suggested that a less pronounced Th1 response may be involved,

and, in some cases, a Th2 response may be present.
6.1 Interleukin-17

Although IL-17 does not directly influence the differentiation of

Th1 cells, its involvement is crucial for the development of a Th1-

type immune response (70). IL-17 induces the expression of several

cytokines and chemokines, including IL-6, TGF-b, matrix

metalloproteinase, and intercellular adhesion molecule-1 in

various cell types such as BM stromal cells. These cells, in turn,

maintain an inflammatory cytokine milieu (71). A study by

Okamoto et al. reported that individuals with ITP had a higher

abundance of cells expressing specific markers, namely CD68,

CD163, and IL-17, when compared with healthy control subjects

(72). Furthermore, the expression levels of CD68 and CD163

exhibited a positive correlation with IL-17 expression in these

patients (72).

Similarly, another study by Stimpson et al. reported that the

ratio of IL-10 to IL-17 expression in CD4+ T-cell culture showed

discriminatory potential between ITP patients who had complete,

partial, or non-response to corticosteroid treatment (P=0.002) (64).

Zhou et al. showed that Th17-associated pro-inflammatory
Frontiers in Hematology 06
cytokines such as IL-17A/F, IL-6, and IL-23 were elevated in ITP

patients, whereas the levels of inflammatory inhibitory factors,

including IL-10 and transforming growth factor-b, were

decreased (73)

In a study conducted by Ye et al., it was observed that patients

with ITP exhibit increased mRNA expression levels of several

cytokines, including IL-23p19, IL-12p40, IL-23R, IL-12Rb1, IL-
17A, IL-17F, and RORC (62). Additionally, these patients

displayed elevated levels of Th17 cells and plasma IL-17 and IL-

23 and a negative correlation with platelet count (62).
6.2 Interleukin-6

IL-6 plays a crucial role in the regulation of megakaryocytopoiesis

and platelet activity. During thrombocytopenia, an elevated IL-6

concentration may contribute to compensatory megakaryocytopoiesis

and increased residual platelet function in patients with ITP (74). A

cross-sectional case–control study by Fatma et al. showed that IL-6

levels were significantly higher in acute ITP patients than in chronic

ITP and control patients (56). There were also significant positive

correlations observed between IgM, IgG, and platelet counts, as well as

a significant negative correlation between both TNF-a and IL-6 levels

and platelet counts (56). Li et al. found that the percentages of CD8(+)

T lymphocytes and CD19(+) B lymphocytes were significantly higher

in ITP patients than in healthy controls. The serum levels of IL-4, IL-6,

IL-11, IL-17, and TPO were significantly higher in ITP patients than in

healthy controls, while TGFb level was significantly decreased (59).
6.3 Interleukin-7

IL-7 is a cytokine belonging to the IL-2 family that is

synthesized by bone marrow stromal and epithelial cells (75). Its

receptor is composed of two chains: IL-7R alpha (CD127) and
TABLE 1 Continued

Author Cytokine Level Main Findings

Goelz et al.
(2016) (63)

IL-13 Upregulated Increased plasma levels of IL-13 were observed in ITP patients.

Okamoto
et al. (2020)
(64)

IL-17 Upregulated Higher numbers of cells expressing IL-17 were found in ITP patients than in control subjects.

Zhang et al.
(2015) (65)

IL-21 Upregulated The cytokine expression was much higher in ITP subjects (13.07%) than in controls (8.2%).

Liu and Liu
(2022) (66)

IL-22 Upregulated Serum cytokine levels were significantly elevated (p < 0.05).

Hassan
et al.(2022)
(67)

IL-27 Upregulated Higher cytokine levels were observed in ITP subjects (770.6 pg/mL) than in control subjects (373.8 pg/mL).

Li et al.
(2015) (52)

IL-33 Downregulated The plasma cytokine level was significantly downregulated (p < 0.01).

Sun et al.
(2015) (68)

IL-35 Downregulated A significant decrease in plasma IL-35 was reported in active ITP patients (10·27 ± 0·527 pg/mL) compared with
patients in remission (26·00 ± 3·372 pg/mL) and healthy controls (48·96 ± 3·615 pg/mL).
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gamma chain (CD132), which are expressed at high levels on

quiescent T cells, except for CD4+CD25+ Tregs (76). IL-7 has a

crucial role in T-cell development and survival by promoting the

survival of early thymocytes and expanding T-cell precursors,

modulating T-cell development and selection in the thymus.

Additionally, IL-7 can stimulate T-cell immune functions by

promoting the production of Th1 cytokines such as IL-2,

interferon-g (IFN-g), and tumor necrosis factor-a (TNF-a), while
inducing Th2 cytokines IL-4 and IL-5 to a lesser extent (76).

Li et al. reported that the levels of plasma IL-7 were lower in

patients with ITP than in healthy individuals (57). The levels of IL-7

in bone marrow, however, did not differ between ITP patients and

healthy controls. The study found a positive correlation between

plasma IL-7 levels and platelet counts (57).

Based on the known role of IL-7 in apoptosis resistance and the

stimulation of pro-inflammatory cytokines, it can be speculated that

the observed decrease in plasma IL-7 levels in ITP patients may be a

result of negative feedback on the pro-inflammatory function in

these individuals (57).
6.4 Interleukin-9

Recently, Th9 cells have been identified as a distinct subset of T

helper cells that possess the unique ability to selectively produce IL-

9. The pleiotropic effects of IL-9 suggest that Th9 cells may play a

critical role in the pathogenesis of various autoimmune

diseases (77).

Qiao et al. conducted a research study to explore the potential

role of Th9 and Th17 cells in individuals with ITP (58). The study

cohort included 49 ITP patients with active symptoms, 39 ITP

patients in remission, and 20 healthy individuals as a control group.

The findings of the research revealed significantly elevated levels of

Th9 cells and the cytokine IL-9 in active ITP patients. Of note, a

positive correlation was observed between Th9 and Th17 cells, as

well as between the plasma levels of IL-9 and IL-17 in ITP

patients (58).

Similarly, in a study conducted by Goelz et al., it was observed

that individuals with acute ITP exhibited significantly increased

plasma levels of both pro-inflammatory (such as tumor necrosis

factor-a (TNF-a) and IL-15) and anti-inflammatory (such as IL-1

receptor antagonist (Ra), IL-10, and interferon g-induced protein

(IP-10)) cytokines when compared with healthy controls (53).
6.5 Interleukin-10

IL-10 is a vital cytokine involved in the regulation of immune

responses by acting as an anti-inflammatory agent (78). Its primary

source is a specific subset of CD4 lymphocytes (79). The IL-10 gene

is situated on chromosome 1 and harbors promoter point

mutations that may have an impact on IL-10 expression levels.

This, in turn, has the potential to influence the development and

progression of autoimmune diseases (80). Inflammatory conditions

require regulation by IL-10-producing Tregs to effectively control

several autoimmune diseases (81).
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Li et al. conducted a study on newly diagnosed ITP patients and

healthy individuals to investigate the peripheral Th cell subsets and

Tregs (82). The findings indicate that patients with ITP exhibit

heightened activation of effector T cells (Teffs), coupled with a

reduction in the quantity and functionality of Tregs. The levels of

IL-10 in the cultured supernatant were lower in ITP patients but

increased in patients who experienced remission (82).

Soliman et al. found that individuals with specific genotypes of

the IL-10 promoter (1082 AA and 592 AA) have lower levels of IL-

10 and altered immune cell profiles (lower CD4, T-reg, CD4/CD8).

Importantly, IL-10 serum levels and genotype frequencies were not

different between controls and individuals with ITP. Additionally,

lower levels of T-reg cells were associated with a higher likelihood of

developing chronic ITP (83).

According to the research conducted by Goelz et al., their

findings demonstrate a significant increase in the cytokines TNF-

a, IFN-g, IL-6, IL-10, and IL-13 among patients with immune

thrombocytopenia (ITP) during their initial diagnosis (63).

Goelz et al. reported that in acute ITP patients, both pro-

inflammatory (TNF-a, IL-15) and anti-inflammatory (IL-1

receptor antagonist (Ra), IL-10, and interferon g-induced protein

(IP-10)) cytokines were found to be significantly elevated (53). Ma

et al. conducted a study that revealed that the levels of Th2 cytokines

(IL-4 and IL-10) were considerably higher in patients with ITP than

in patients in the control group (P<0.05) (54). In contrast, the levels

of Th1 cytokines (IFN-g, IL-2), Treg cytokine (TGF-b1), and Th17

cytokine (IL-17) were lower in ITP patients (P<0.05) (54).

Zhang et al. reported that the levels of IFN-g, TGF-b1, IL-4, and
IL-10 cytokines were significantly reduced in mice with ITP (55).

However, there was no significant increase in the secretion of pro-

inflammatory cytokines IL-2 and IL-17A or in the proportion of

Th17 cells. The frequency of Treg cells and the mRNA expression of

Foxp3 were significantly decreased in splenocytes of ITP mice (55).
6.6 Interleukin-12

IL-12 is a Th1 cytokine that is primarily produced by cells of the

innate immune system. It plays a critical role in the differentiation

of naive T cells into Th1 cells. A study by Li et al. investigated the

role of imbalanced plasmacytoid dendritic cells (pDCs) and myeloid

dendritic cells (mDCs) in regulating the balance of CD4+ T-cell

subsets in ITP (47). The study results showed that ITP patients had

higher levels of IL-6, IL-12, and IL-23 than those of healthy

controls. Additionally, the levels of Th1 and Th17 cells in ITP

patients increased, along with increased levels of IFN-g and IL-17,

while the proportion of Th2 and Treg cells decreased, along with

decreased levels of IL-4 and transforming growth factor beta (TGF-

b). Furthermore, Pearson correlation analysis showed a positive

correlation between the proportion of total DCs and IL-12/IL-23 in

ITP patients. The study also found that the Th1/Th2 ratio and IFN-

g and IL-12 levels were negatively correlated with platelet counts,

whereas IL-23 was positively correlated with IL-17 and negatively

correlated with platelet count (47). Another study examined the

expression of cytokines belonging to the IL-12 family, including IL-

12, IL-23, IL-27, and IL-35, as well as their relevant cytokines such
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as IFN-g, IL-4, IL-17A, and IL-10, in patients with chronic ITP (84).

The study found significantly higher levels of IL-12p70, IL-23, IL-

27, IFN-g, and IL-17A in the plasma of cITP patients than in that of

control subjects (p<0.01) (84).

Li et al. conducted a study to investigate the role of Th1

polarization and upregulation of Th17 cells in patients with ITP (66).

The study involved 46 patients with ITP and 22 healthy individuals as

controls. The results showed that the expression of mRNA for IL-12

p40, IL-12 p35, and IL-23 p19 was significantly higher in bone marrow

mononuclear cells than in controls. Additionally, the levels of IL-12 and

IL-23 were higher in the bone marrow plasma and peripheral blood

plasma of ITP patients than in controls (66).
6.7 Interleukin-21

IL-21 is a pleiotropic cytokine that exerts its effects on a diverse

array of lymphoid, myeloid, and epithelial cell populations. One of

the significant actions of IL-21 is its ability to impede the

maturation and functionality of dendritic cells derived from the

bone marrow (BMDCs) (85). Zhang et al. found that individuals

with ITP have significantly higher expressions of IL-21 on

mononuclear cells than healthy individuals (65). Specifically, the

ratio of IL-21 to GAPDH mRNA expression on mononuclear cells

was significantly higher in ITP patients (9.524 ± 0.97) than in

healthy controls (3.701 ± 0.60, P<0.01) (65).
6.8 Interleukin-22

IL-22 has both pro-inflammatory and anti-inflammatory

properties and is primarily synthesized by T cells and natural

killer (NK) cells (84). In a study conducted by Liu and Liu, a

cohort of 110 patients with ITP was recruited, consisting of 55

individuals with active ITP, 55 in remission from ITP, and 55

healthy controls (66). The study revealed that IL-22 serum levels

were significantly higher in patients with active ITP than in those in

both the remission group and the control group (p < 0.05) (66).

Similar findings were reported in a review by Azizi et al. who found

that Th22 and IL-22 were increased in ITP (84).
6.9 Interleukin-27

Recent scientific investigations have demonstrated that IL-27

displays immunosuppressive properties through the modulation of

T-cell differentiation and the dampening of inflammatory responses

in autoimmune disorders, such as rheumatoid arthritis (86) and

systemic lupus erythematosus (87). Reduced expression of IL-27 has

been found to be associated with increased cytotoxic T lymphocyte-

mediated platelet destruction in patients with ITP (88). IL-27 has

been discovered to play a regulatory role in the suppression of

acquired immunity by stimulating the development of T helper cells

and inducing the expansion of inducible regulatory T cells that

produce IL-10 (66).
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In the study conducted by Hassan et al., it was found that patients

with ITP had significantly higher levels of IL-27 than healthy controls

(67). Among the patient groups, those with acute ITP had the highest

levels of IL-27, while those in remission had the lowest levels.

Furthermore, patients who received intravenous immunoglobulin

(IVIG) or combined steroid and IVIG therapy had significantly

higher levels of IL-27 than other treatment groups (67). Similar

findings were shared by Gad Allah et al., who reported higher levels

of IL-27 in ITP patients than the controls (p <0.001) (89).
6.10 Interleukin-33

IL-33, classified as a Th2-oriented cytokine, exhibits the ability

to augment the production of Th2 cytokines such as IL-5 and IL-13.

Furthermore, it can function as both a conventional cytokine and a

nuclear factor involved in regulating gene transcription (90). Li et al.

conducted a study to investigate the levels of IL-33 and sST2 in

patients with active ITP compared with those with ITP in remission

and normal controls. The study found a significant decrease in IL-

33 levels in the plasma of patients with active ITP, indicating the

downregulation of IL-33 in this patient group. Additionally, the

sST2 level was significantly upregulated in patients with active ITP

compared with those in remission and normal controls (52). A

study by Zhan et al. demonstrated that the levels of certain

interleukins (IL-1b , IL-36a , IL-36g , and IL-33) were

downregulated in patients with ITP compared with healthy

individuals (51). The study also showed a positive correlation

between the platelet count and the level of IL-37 in ITP patients

(51). In another study by Li et al., it was observed that individuals

with active ITP had a significant decrease in plasma IL-33 levels (p <

0.01) (52). Additionally, soluble ST2 (sST2) levels were upregulated

(p < 0.01) in individuals with active ITP when compared with

normal controls (52).
6.11 Interleukin-35

IL-35 is a recently identified cytokine that is classified as a

member of the IL-12 family. It is mainly produced by Bregs, DCs,

NK cells, and tumor-associated macrophages (TAMs) (91). Sun

et al. reported that individuals with active ITP had significantly

lower levels of IL-35 in their plasma (10.27 ± 0.527 pg/mL) than in

individuals in remission (26.00 ± 3.372 pg/mL) and healthy controls

(48.96 ± 3.615 pg/mL). The researchers also observed that

individuals in remission had lower plasma levels of IL-35 than

healthy controls (p < 0.05) (68).
7 Expression of human leukocyte
antigen in immune thrombocytopenia
and their association with cytokines

Aberrant expression of self-molecules, such as HLA-DR, on

immune-targeted tissues can lead to the development of
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autoimmune diseases by activating autoreactive T lymphocytes and

producing autoantibodies (92). For instance, abnormal HLA-DR

expression on pancreatic islet cells and myelin has been associated

with type I diabetes (93) and multiple sclerosis (94), respectively.

The induction of transient HLA-DR expression by cytokines or

inflammatory mechanisms can enhance the immune response or

direct a tissue-specific immune response. In the case of ITP, HLA-

DR expression is observed in various GPIb+ cell populations

expressing different molecules, including CD41, CD45, CD14,

CD80, and glycophorin (95). Patients with chronic ITP display

high HLA-DR expressions on platelet-isolated spleen cells, and

splenic T cells show a high level of in vitro platelet-stimulated IL-2

secretion (95). Semple et al. found that compared with controls,

children with chronic ITP exhibit increased serum levels of IL-2,

IFN-g, and IL-10, while none of the patients had detectable serum

levels of IL-4 or IL-6 (96). The expression of HLA-DR on platelets

shows an inverse correlation with platelet count, but not with serum

cytokines, suggesting that platelet HLA-DR expression is a common

phenomenon in patients with ITP (96).

HLA-G is a non-classical major histocompatibility complex

class I antigen that exhibits potent immune-inhibitory functions.

I t ha s been demons t ra ted to benefi t pa t i en t s wi th

allotransplantation or autoimmune diseases by engaging

inhibitory receptors, such as ILT-2/LILRB1/CD85j, ILT-4/

LILRB2/CD85d, and KIR2DL4, on immune cells, thereby

inducing apoptosis of cytotoxic T cells, immobilization of NK

cells, and inhibiting mononuclear cells (97, 98). Recent studies

have shown that HLA-G is not limited to placental cells but is also

expressed in human peripheral blood mononuclear cells (PBMCs)

and plasma (99). Furthermore, in addition to its immune-inhibitory

properties, HLA-G interacts with ILT2/ILT4 to suppress

lymphocyte proliferation and antibody secretion by activated B

cells, thereby facilitating allotransplantation by preventing immune

rejection through its actions on immune cells (100).

In a recent study conducted by Li et al., the potential role of

HLA-G in the pathogenesis of ITP was investigated (101). The

researchers observed a significant decrease in the levels of HLA-G in

the plasma of ITP patients who tested positive for antiplatelet

autoantibodies compared with healthy controls. Furthermore,

they observed reduced expressions of membrane-bound HLA-G

and immunoglobulin-like transcripts on CD4+ and CD14+ cells in

ITP patients. Moreover, the study found that HLA-G upregulated

the secretion of IL-4 and IL-10 while downregulating the secretion

of TNF-a, IL-12, and IL-17 by PBMCs of ITP patients. These results

suggest that HLA-G may promote Th2 differentiation and suppress

Th1 and Th17 immune responses (101).
8 Role of cytokines in the treatment
of immune thrombocytopenia

Human IL-11 has been demonstrated to have anti-inflammatory

properties by decreasing the expression of proinflammatory cytokines

such as IL-1 and TNF-a. Furthermore, IL-11 reduces the expression of

chemokine receptors, resulting in the inhibition of phagocytic cell
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migration to inflamed areas and decreased phagocytosis of immune-

complexed platelets (102). In a study, Lin et al. investigated the

therapeutic efficacy of recombinant human interleukin-11 (rhIL-11)

in patients with ITP (103). The results of the study showed that rhIL-11

treatment led to a response rate of 67.7% in ITP patients. Patients who

responded positively to treatment exhibited a significant decrease in

Th1 and Tbet levels and an increase in Th2 and GATA-3 levels.

Furthermore, rhIL-11 treatment led to the normalization of Th1/Th2

and Tbet/GATA-3 ratios in these patients, which were similar to those

observed in healthy controls (103).

Zheng et al. utilized a mouse model of CD41-induced ITP to

investigate the underlying mechanisms of IL-9 treatment (104). The

researchers observed that IL-9 treatment increased the numbers of

mature megakaryocytes, which are progenitor cells that differentiate

into platelets, and CD41+Sca-1+ cells, which are stem cells that

differentiate into various cell types, in the bone marrow of the

model mice. Additionally, the researchers discovered that IL-9

treatment boosted the activation of downstream signaling

molecules, such as phosphorylated signal transducer and activator

of transcription 5 (STAT5) (104).

In a study conducted by Zhan et al., it was observed that the

serum levels of various interleukins (IL-4, IL-5, IL-6, IL-10, IL-

12p70, and IL-13), growth-related oncogene (GRO), interferon

(IFN)-g, and TNF-a were significantly lower in pre-treatment

patients than in healthy controls (p < 0.05). However, in patients

who achieved remission after receiving high-dose dexamethasone

(HD-DXM) treatment, the levels of these cytokines were

significantly higher (p < 0.05) than their pre-treatment levels.

Except for TNF-a, there was no significant difference (p > 0.05)

in cytokine levels between remission patients and healthy

controls (105).

In a small cohort of patients with treatment-resistant ITP, IFN-

a (IFN-a) has been utilized with some success by Pfueller et al.

(106). These patients exhibited heightened levels of the cytokines

IL-4 and IL-10, but low levels of IL-2 and IFN-g. After IFN-a
treatment, there was a notable increase in IL-2, IFN-g, and NK cell

activity, coupled with a decrease in IL-4 and IL-10. Furthermore,

there was a decrease in autoantibodies targeting GPIIb/IIIa (106).

An alternative treatment for chronic ITP could be the induction of

immunological tolerance against the platelet-derived GPIIb/IIIa

complex through oral immunization with a solubilized form of

this glycoprotein receptor.
9 Conclusion

ITP is a disease characterized by immune system dysregulation,

leading to the destruction of platelets and a decrease in platelet count.

ITP pathogenesis is multifaceted and involves changes in T lymphocyte

responses, alterations in the Th1/Th2 balance, and cytokine

production. In ITP, a shift toward a Th1 cytokine profile is observed,

resulting in the increased production of cytokines such as IFN-g, IL-2,
and TNF-a. This shift is associated with the activation of cytotoxic T

cells and macrophages, which destroy platelets. Conversely, Th2

cytokines such as IL-4 and IL-10 are downregulated in ITP, leading

to the decreased production of anti-inflammatory cytokines and a
frontiersin.org

https://doi.org/10.3389/frhem.2023.1191178
https://www.frontiersin.org/journals/hematology
https://www.frontiersin.org


Andreescu 10.3389/frhem.2023.1191178
further pro-inflammatory state. The therapeutic role of cytokines in

ITP is complicated since both pro- and anti-inflammatory cytokines

have potential therapeutic applications. For instance, high-dose

dexamethasone administration can stimulate the production of anti-

inflammatory cytokines such as IL-10, promoting platelet production

and reducing platelet destruction. However, further research is

necessary to gain a deeper understanding of cytokine function in ITP

and identify new therapeutic targets for this challenging disease.
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