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Highly-sensitive chimerism
analysis in blood after allogeneic
hematopoietic cell
transplantation in childhood
leukemia: Results from the
Nordic Microchimerism Study
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Copenhagen, Denmark, 3University of Helsinki and Division of Pediatric Hematology-Oncology and
Stem Cell Transplantation at Hospital for Children and Adolescents, University of Helsinki,
Helsinki, Finland, 4Department of Pediatric Hematology and Oncology, Oslo University Hospital,
Oslo, Norway, 5Department of Pediatric Oncology, Sahlgrenska University Hospital, Gothenburg
University, Gothenburg, Sweden, 6Division of Pediatric Oncology and Hematology, Skåne University
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Analysis of chimerism in blood post‐HCT using STR‐PCR is routinely applied in

parallel with quantification of MRD to predict relapse of leukemia. Real time

quantitative PCR (RQ-PCR) chimerism is 10‐ to 100‐fold more sensitive, but

clinical studies in children are sparse. In a prospective multicenter study, we

analyzed increasing mixed chimerism (IMC) in blood samples following

transplantation for leukemia in 64 children. IMC was defined as a minimum

increase of either 0.1% or 0.05% recipient DNA between two samples or a ≥10-

fold increase. Samples closer than 30 days to diagnosis of relapse were omitted.

The risk of relapse was higher in children with IMC of both 0.1% and 0.05%

compared to children without IMC (27.8 (95% CI 4.4-175.8; P<.001), and 18.4 (95%

CI 2.8-120.5; P=0.002), respectively). From the date of IMC, the 3-year CI of

relapse or MRD-positivity was 26.7% (CI 9.4-47.0) and 18.5% (6.4-35.3) for IMC ≥

0.1% (n=27) and ≥ 0.05% (n= 40), respectively. In the subset of children without an

IMC ≥ 0.1% or ≥ 0.05%, CI of relapse or molecular relapse were 16.7% (5.0 -34.1)

and 10.8% (3.4 -23.3), respectively. In all cases with a relapse undetectable by IMC,

MRD remained undetectable prior to relapse and standard chimerism negative. In a

landmark analysis, neither an IMC ≥ 0.1% nor ≥ 0.05% prior to 90 days post‐HCT

was significantly associated with an increased relapse incidence. These results
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indicate that the serial monitoring of RQ‐PCR chimerism in peripheral blood post-

HCT may be a valuable supplement to the minimal residual disease analysis for an

early detection of relapse in acute childhood leukemia.
KEYWORDS

chimerism, acute leukemia, allogeneic hematopoietic stem cell transplantation (AlloHCT),
relapse, pediatric leukemia, real-time quantitative PCR
1 Introduction

Allogeneic hematopoietic stem cell transplantation (HCT)

represents a curative option for high-risk childhood leukemia, but

relapse remains the major cause of treatment failure (1). The outcome

following post-HCT relapse is dismal (2–6). The potential for an early

intervention with fast tapering of immunosuppressive treatment,

administration of donor lymphocyte infusions (DLI) or targeted

therapy with i.e. leukemia specific antibodies (for example

blinatumomab), anti-CD19 chimeric antigen receptor (CAR) T-cell

therapy or tyrosine kinase inhibitors (TKI) has increased the focus on

post-HCT monitoring for impending relapse (7–9).

Screening for relapse post-HCT is currently based on detection of

minimal residual disease (MRD) or recipient DNA (chimerism).

MRD analyses by flow cytometry or quantitative PCR reach

sensitivity levels of 10-4 – 10-5 for more than 90% of all children

with acute lymphoblastic leukemia (ALL) (10, 11). In acute myeloid

leukemia (AML), MRD is most frequently monitored by flow

cytometry with one to two logs lower sensitivities than in ALL (12,

13). More sensitive PCR-based analysis can be used in only 50% of

children with AML, and with the risk of loss of markers or persistence

of fusion transcripts, the interpretation is complicated (14–16).

Furthermore, in general, MRD is in most cases analyzed on bone

marrow (BM) samples, which limits the frequency of measurements

in children.

In the allogeneic HCT setting, chimerism refers to the presence of

hematopoietic cells of donor origin. In malignant disease, the goal is

to achieve complete donor chimerism (CDC). PCR based detection of

short tandem repeats (STR-PCR) has been the gold standard in the

previous decades, with a sensitivity of 1-5% recipient cells (17, 18).

Chimerism analysis is simple and applicable regardless of the pre-

HCT diagnosis. Increasing or reappearing mixed chimerism (MC) in

peripheral blood (PB) by STR-PCR has consistently been associated

with an increased incidence of relapse (19–23). A major limitation is

the low sensitivity, as reappearance of 1-5% recipient DNA in PB is

often past the window of an impending relapse (23). New methods

based on real-time quantitative PCR (RQ-PCR) techniques have been

developed over the past decades, using amplification of highly

polymorphic targets such as single-nucleotide polymorphisms

(SNP) or insertion-deletions (In/del) and, more recently, the

application of digital PCR and Next Generation Sequencing (NGS)

platforms (24–28). Clinical studies have shown that analysis of

chimerism by RQ-PCR is a more precise and thus early predictor

of relapse compared to standard chimerism analysis (29–38). Studies

in adults have reported earlier detection of relapse, and better overall
02
and event free survival if immunomodulation is based on results of

chimerism analysis by RQ-PCR (31, 39–41). Currently, published

evidence suggests a probable association between RQ-PCR chimerism

analysis in PB and risk of relapse related to the dynamics of

chimerism, with less evidence towards the importance of achieving

or not achieving CDC (30, 35, 42). However, there are only few

clinical studies in children and neither scientific nor clinical

consensus on the interpretation of results have yet been established.

In a previous retrospective study of children with leukemia from our

group, we found that IMC ≥ 0.1% and ≥ 0.05% in PB analyzed by

high-sensitivity RQ-PCR chimerism was associated with a

significantly increased risk of relapse detectable with a median of

208 days prior to relapse. A major limitation to this study was its

retrospective design and lack of a pre-defined sample protocol.

In this prospective multicenter study of Nordic children

transplanted for leukemia we report results of a high-sensitivity

RQ-PCR chimerism analysis in successive samples of PB following

a pre-defined sample protocol with frequent samples and compare

results to with the MRD and STR-PCR chimerism analyses.
2 Materials and methods

2.1 Patients and samples

This prospective multicenter study was performed in children

consecutively transplanted for leukemia between December 2014 and

March 2018 at the Department for Children and Adolescents,

Rigshospitalet, Copenhagen, Denmark; the Division of Pediatric

Hematology-Oncology and Stem Cell Transplantation at Hospital

for Children and Adolescents, University of Helsinki, Finland; the

Department of Pediatric Hematology and Oncology, Oslo University

Hospital, Oslo, Norway; the Department of Pediatric Oncology,

Sahlgrenska University Hospital, Gothenburg, Sweden, and the

Division of Pediatric Oncology and Hematology, Scania University

Hospital Lund, Sweden.

Inclusion criteria were age below 16 years at diagnosis and below

18 years at transplantation for leukemia and for Sweden, Norway and

Finland a signed informed consent from a parent/legal guardian.

The PB samples were collected in sodium citrate tubes at study

enrolment pre-HCT and bi-weekly from 30 days until 6 months post-

HCT and monthly thereafter until relapse, transplant related death or

end of follow-up at 18 months post-HCT. Samples were sent by

courier to the Department of Clinical Immunology, Copenhagen

University Hospital, Rigshospitalet, for RQ-PCR chimerism analysis
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in batch at end of follow-up. Results were blinded for

treating clinicians.

The data collected from each transplant center included data from

the initial diagnosis and treatment stratification, HCT procedure,

clinical outcome, and results from locally performed STR-PCR

chimerism and MRD analyses.

The study was performed in accordance with the Declaration of

Helsinki and approved by the Danish Data Protection Agency (ID 30-

1319), the Ethical Committees of the Capital Region of Denmark (H-

3-2014-FSP21), the Regional Ethical Committee of South East

Norway (2015/2421/REK sør-øst), the Central Ethical Review Board

of Gothenburg, Sweden (618–15), and the regional ethical committee

of Helsinki and Uusimaa Hospital District, Finland (II/15).
2.2 Analysis of STR-PCR chimerism

Analysis of STR-PCR chimerism is recommended by the

Eurochimerism consortium as a standardized diagnostic method for

detection and monitoring of chimerism after HCT and is performed

locally following established guidelines (43, 44). The STR-PCR

chimerism analysis was performed in accredited laboratories at all

centers. The sample frequency for STR-PCR chimerism analysis was

locally defined, and could thus vary between centers.
2.3 Analysis of RQ-PCR chimerism

DNA was extracted from unseparated peripheral blood using a

semi-automated platform (Maxwell, Promega, Madison, WI, USA),

following manufacturer’s instructions. DNA was frozen and stored at

-20°C and samples analyzed in batch at end of follow-up. The analysis

of RQ-PCR chimerism was performed using a commercially available

kit (KMRtype and KMRtrack, GenDx, Utrecht, Netherlands). This

technique is based on allele-specific RQ-PCR of 34 specific insertions/

deletions using TaqMan technology. We previously described our

initial confirmation of a quantitative sensitivity of 0.1-0.01% in our

laboratory and acceptable background at 250 ng input DNA (45).

A screening of 34 polymorphic systems was performed on pre-

HCT samples from patient and donor, to obtain a minimum of two

patient-specific markers per pair. Subsequently, the post-HCT DNA

samples were screened in duplicates for patient DNA using

manufacturer’s instructions. DNA negative for the selected markers

was used as negative control. Results were calculated using the DDCT
method, quantifying DNA relative to a positive control and a

reference gene (RNaseP) (44).
2.4 Classification of chimerism results

The detection limit of RQ-PCR chimerism was defined as 0.01%

recipient DNA, and values below this level were considered to be

complete donor chimerism (CDC).

As previously described (45), RQ-PCR chimerism results were

classified according to an increase of recipient DNA from one sample

to the next (increasing mixed chimerism (IMC)). Thus, a child with

detectable but stable levels of recipient DNA was not categorized as
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having IMC. We analyzed two different classifications of IMC: a) ≥

0.1% increase in recipient DNA between two consecutive samples and

b) ≥ 0.05% increase in recipient DNA between two consecutive

samples (current value ÷ previous value).

As previously described (45), and based on results from a dilution

series performed in our laboratory, an increase of 0.05% recipient

DNA was considered close to the accuracy of the RQ-PCR chimerism

method. Thus, an IMC of 0.05% was only considered significant if the

recipient DNA also increased by a minimum of 100% compared to

the previous sample (corresponding to 1 CT). Further, an increase by

a minimum of 100% compared to the previous sample

(corresponding to 1 CT) was also required if the IMC occurred at

an absolute level of 5% recipient DNA or above, as at this level the

accuracy of the RQ-PCR chimerism is reduced (46). Regardless of the

classification, a relative increase ((current value ÷ previous value)/

previous value) 10 times (one log, corresponding to 3.3 CT-values)

occurring from a level above 0.01% recipient DNA was always

considered an IMC. We further classified children as having one or

two episodes of IMC.
2.5 Minimal residual disease

MRD was analyzed by RQ-PCR according to the EuroMRD

guidelines (47) or by multicolor flow cytometry as described in the

NOPHO ALL-2008/iBFM-FORUM and the NOPHO AML 2012

guidelines, in all participating centers. The MRD detection method

varied between disease groups, thus for further analysis MRD was

categorized as undetected, detectable but unquantifiable, detectable

below 10-3, or detectable ≥10-3.
2.6 Statistics

Quantitative variables are described using median (range) unless

otherwise stated.

Event free (EFS) and overall survivals (OS) were calculated using

the Kaplan–Meier method and comparisons performed with the log-

rank test. The cumulative incidence of relapse (CIR) was estimated

using the Aalen-Johansen estimator (48) and compared between

subgroups by Gray’s test (49). Non-relapse mortality (NRM) was

considered a competing event.

Primary clinical endpoint was relapse, defined as ≥ 5% leukemic

cells in the BM or extramedullary relapse. A secondary clinical

endpoint was a composite endpoint of hematological relapse and

detection of MRD above ≥10-3 and less than 5% in AML, ALL and

CML if this was interpreted as a molecular relapse by the

treating clinician.

In case of hematological relapse, samples taken within 30 days

of relapse were not included in the analysis, as these were

considered coinciding with relapse. In the analysis of the

composite endpoint , samples taken within 30 days of

hematological relapse or on the day of MRD-positivity were not

included in the analysis, as samples beyond this point could be

influenced by clinical intervention. In children with both a

hematological and molecular relapse, only the first event was

considered for analysis of the composite endpoints.
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To evaluate the achievement of CDC in the cohort the cumulative

incidence of CDC was estimated using the Aalen-Johansen estimator

(48). NRM and relapse were considered competing events.

To evaluate associations between IMC and occurrence of relapse,

we used a cause-specific Cox regression analysis including RQ-PCR

chimerism as a time-varying variable (50, 51). Children with NRM

were censored at time of death. The proportional hazards assumption

was assessed by the Kolmogorov-type supremum test (52). For

analysis of CIR in the subset of children with an episode of IMC,

baseline was date of IMC and time was defined as time from IMC to

relapse, NRM or censoring at end of follow up.

To analyze the effect of an early IMC on later relapse we fixed a

landmark at 90 days post-HCT and categorized children based on the

occurrence or not of an IMC between days 30 and 90 post-HCT. Two

children with a relapse prior to 90 days were thus excluded from this

analysis. CIR was estimated for children with and without IMC prior

to 90 days and the time defined as that from 90 days post-HCT to

relapse, NRM or censoring.

Analysis was performed with the statistical software package R

(The R Foundation for Statistical Computing, Vienna, Austria)

version 3.4.2.
3 Results

3.1 Patients and samples

A total of 65 children received an HCT allogeneic during the

study period. Informative markers for RQ-PCR chimerism analysis

were identified for 64 of 65 patient/donor pairs (Table 1). For one

child, insufficient availability of pre-HCT DNA prevented

identification of informative markers. The median follow-up time

was 2.4 (1.0-4.4) years. In total, 986 samples of whole peripheral blood

DNA were analyzed, with a median of 15 (1–23) samples per child.

The percentage of missing samples at each timepoint during follow-

up is illustrated in online Supplemental Material Table A.

By RQ-PCR, 658 (67%) of the 986 samples showed MC ≥0.01%

recipient DNA; furthermore, all children had at least one sample with

MC. A total of 215 (22%) samples had MC ≥0.1% recipient DNA. To

illustrate the incidence of achieving CDC, the cumulative incidence of

CDC below 0.01% and 0.1% is illustrated as online Supplemental

Material Figure 1. In total, 60 samples from 27 children had an IMC ≥

0.1%, and 107 samples from 40 children had an IMC ≥ 0.05%

recipient DNA (Figures 1, 2).
3.2 Results by STR-PCR and RQ-PCR
chimerism

STR-PCR chimerism was analyzed locally at each center and

results were available for all children, with a median of four (1–19)

analyses per child and a total of 590 samples with concurrent STR-

and RQ-PCR chimerism analysis.

By STR-PCR, MC ≥5% recipient DNA was detected in 20 samples

from three children. Of the 590 samples with concurrent STR- and

RQ-PCR analysis, 20 (3%) showed MC by both, 179 (30%) were CDC
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by both and 391 (66%) showed MC by RQ- but CDC by STR-PCR

chimerism analysis.

At time of IMC by RQ-PCR, 29 of 33 (88%) samples with

concurrent STR-PCR results available showed CDC by STR-PCR,

while four of 33 (12%) showed MC.
3.3 Clinical outcome

A total of eight hematological relapses occurred (ALL: n=5, AML:

n=3) a median of 11.0 (2.6-31.4) months post-HCT. The 3-year CIR

was 14.1% (95% CI 6.2 – 25.3).

Two children received DLI three times, both following MRD-

positivity (chronic myeloid leukemia (CML): n=1, AML: n=1). Both

were in complete remission at end of follow-up. One child with AML

received sorafenib due to detectable MRD prior to progressing to

overt relapse. In total, ten children experienced a relapse, MRD-

positivity or both.
TABLE 1 Summary of patient and transplant characteristics.

Characteristics Values (n=64)

Center of transplantation DK/FI/SW/NO 35/15/8/6

Age at HCT in years, median (range) 8.7 (0.6-18.0)

Male gender, n (%) 37 (58)

Immune phenotype, n (%)

Acute lymphoblastic leukemia 35 (54.7)

Acute myeloid leukemia 23 (35.9)

Myelodysplastic syndrome+ 3 (4.7)

Chronic myeloid leukemia 3 (4.7)

Disease state at HCT, n (%)

1st CR 37 (57.8)

2nd CR 19 (29.7)

>2nd CR 5 (7.8)

Not applicable± 3 (4.7)

Conditioning regimen, n (%)

TBI and Etoposide 16 (25.0)

Chemotherapy based regimens

Busulfan based 36 (56.3)

Other 12 (18.8)

Donor type, n (%)

MUD 39 (60.9)

MSD 18 (28.1)

Haploidentical 5 (7.8)

Other related 2 (3.1)
HCT, hematopoietic stem cell transplantation; CR, complete remission; TBI, total body
irradiation; MUD, matched unrelated donor; MSD, matched sibling donor.+ Includes one
child with juvenile myelomonocytic leukemia. Both children with MDS were classified as
refractory cytopenia without blast excess. ±Not applicable for three children with
myelodysplastic syndrome/juvenile myelomonocytic leukemia.
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In total, seven children died, four following relapse and three of

NRM (pulmonary hypertension (n=2) and CMV infection (n=1)).

The overall survival was 87.3.1% (78.4 – 97.1). Twenty-one children

developed acute GVHD (grade II (n=12), grade III (n=6) and grade

IV (n=3); three developed limited and ten extensive cGVHD.

There was no association between relapse risk and donor type (MUD/

MSD versus other), type of leukemia (acute versus non-acute), disease status

at HCT (first complete remission (CR1) versus >CR1) or conditioning

regimen (total body irradiation (TBI) versus non-TBI) (data not shown).
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3.4 Increasing RQ-PCR chimerism and
risk of relapse

The risk of relapse was significantly higher in children with one or

more episodes of IMC compared to those without for both

classifications of IMC with a hazard ratio (HR) for relapse of 27.8

(95% CI 3.5-135.6; P<.001) and 18.4 (95% CI 2.8-120.5; P=0.002) for

children with IMC ≥ 0.1% (n=27) and ≥ 0.05% (n=40), respectively

(Table 2). The risk of relapse or MRD-positivity was significantly
B

A

FIGURE 1

RQ-PCR chimerism results and outcome for two classifications of increasing mixed chimerism. IMC was defined as (A) ≥ 0.1% or (B) ≥ 0.05% recipient
DNA. MRD refers to events of detectable MRD above ≥10-3 and less than 5%, interpreted by treated clinician as molecular relapse. IMC, increasing mixed
chimerism; NRM, non-relapse mortality; MRD, minimal residual disease.
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higher in children with an IMC ≥ 0.1% but not in those with IMC ≥

0.05%, compared with children without IMC (Table 2).

From the first occurrence of an IMC, the 3-year CI of relapse or MRD-

positivity was 26.7% (CI 9.4-47.0) and 18.5% (6.4-35.3) for IMC ≥ 0.1%

(n=27) and ≥ 0.05% (n= 40), respectively (Figure 3). From the second

occurrence of an IMC, the 3-year CI of relapse orMRD-positivity was 63.6%

(CI 3.8-93.9) and 38.9% (7.9-70.4) for IMC≥ 0.1% and ≥ 0.05%, respectively.

In the subset of childrenwithout IMC≥ 0.1% and≥ 0.05%, respectively, the 3

years CIs of relapse or MRD were 16.7% (5.0 -34.1) and 10.8% (3.4 -23.3).

A first IMC ≥ 0.1% and 0.05% was observed between 30 and 916

days prior to relapse, and 86 and 21 days prior to MRD-positivity in

two additional children (Table 3).

Four children relapsed without previous IMC, yet of these two

had an IMC ≥ 0.1% 9 and 10 days prior to relapse. All four had one or

more missing samples prior to the relapse and three of the four

children relapsed early (79-91 days post-HCT). The individual

profiles of all children with a relapse or MRD-positivity with results

of RQ- and STR-PCR chimerism and MRD are provided as online

Supplementary Material Figures 2, 3.

In a post-hoc analysis we re-classified IMC ≥ 0.1% and ≥ 0.05% to

include only those increases that happened from levels above 0.1 and 0.01%

recipient DNA (i.e., not from CDC) to explore if this would provide a better

specificity without loss of sensitivity. The association with relapse remained

significant but less cases of relapse were detected (data not shown).
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3.5 The effect of early mixed chimerism on
risk of subsequent relapse

We next estimated the effect of early IMC, defined as prior to day

90, on subsequent risk of relapse or MRD-positivity by creating a

landmark at 90 days post-HCT. The children were categorized as with

or without an IMC prior to the landmark. Events of IMC after day 90

post-HCT were not considered. By this method, IMC was not

associated with an increased CIR (Figure 4). In a post-hoc analysis

we analyzed results using an alternative landmark at 120 days post-

HCT. This did not affect results (data not shown).
3.6 Increasing STR-PCR chimerism and risk
of relapse

Three children had STR-PCR chimerism above 5% in whole blood

during follow-up. One child was treated with DLI due to detection of

MRD and was in complete remission at end of follow-up, one child died

due to NRM and one is in complete remission. STR-PCR chimerism

was not associated with risk of relapse but was significantly associated

with a composite endpoint of relapse or MRD-positivity (Table 2).
3.7 Minimal residual disease

Results ofMRD analysis in BMwere available for 61 of 64 children, with

a total of 329 samples, 307 of them concurrent with RQ-PCR chimerism in

PB and a median of four (1–8) MRD results per child. In total, 19/329

samples from six children had detectable MRD; three samples from two

children were positive below quantifiable range (10–4), eight samples from

two children were positive below 10-3 and another eight samples from two

children were ≥10-3. In 17/19 samples with detectable MRD, RQ-PCR

chimerism analysis showed MC 0.01%. Of the six children with detectable

MRD, one was treated with sorafenib and subsequently progressed to overt

relapse, two receivedDLI and are in complete remission and three had only a

transient MRD below 10-3 and are in complete remission without DLI. Due

to the low number of children with detectable MRD and relapse, further

analysis was not meaningful to perform.
3.8 Detection of impending relapse by RQ-
PCR chimerism, STR-PCR chimerism or
minimal residual disease

Among the eight children with a relapse, one was preceded by

positive results in the RQ-PCR and MRD analyses and three only by
FIGURE 2

Individual patient profiles illustrating microchimerism, clinical events
and transplant outcome. Colors depict level of increasing mixed
chimerism as no IMC, IMC < 0.1% and ≥ 0.05% recipient DNA IMC
≥0.1%. Text-labels indicate concurrent diagnosis of relapse, MRD-
positivity, acute GVHD grades 2-4, chronic GVHD, identification of
viral reactivation (Cytomegalovirus, Adenovirus or Epstein-Barr virus)
or detection of MRD in bone marrow. R, relapse; NRM, non-relapse
mortality; MRD, detectable minimal residual disease; V, viral
reactivation; cGVHD, chronic graft versus host disease; aGVHD, acute
graft versus host disease.
TABLE 2 Risk of relapse related to absolute level of RQ-PCR chimerism and two investigated definitions of IMC.

Absolute level of RQ-PCR
chimerism

IMC ≥ 0.1% IMC ≥ 0.05% STR-PCR chimerism

Outcome HR (95% CI) P HR (95% CI) P HR (95% CI) P HR (95% CI) P

Morphological relapse 1.2 (0.7 -2.0) .42 27.8 (4.4-175.8) <.001 18.4 (2.8-120.5) .002 1.0 (0.7-1.4) .871

Morphological relapse or detectable MRD 1.6 (1.3-2.1) <.001 8.6 (1.5-50.4) .0184 3.9(0.9-33.5) .062 1.0 (1.0-1.1) .024
frontie
IMC, increasing mixed chimerism; HR, hazard ratio; CI, confidence interval.
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B

C D

A

FIGURE 3

Cumulative incidence of relapse in patients with increasing mixed chimerism. Panels (A, C) show CIR in a subset with recipient chimerism ≥ 0.1% at least
once (A) or twice (C) during follow-up. Panels (B, D) show subsets with recipient chimerism ≥ 0.05% recipient DNA at least once (B) or twice (D). Time
was defined as months from the first or second episode of IMC, respectively. Numbers at risk are denoted above the x-axis. IMC, increasing mixed
chimerism; CIR, cumulative incidence of relapse.
TABLE 3 Days from HCT and IMC > 0.1% to morphological relapse or detection of MRD.

Days from HCT to: Days from first IMC > 0.1% to: Days from first IMC > 0.05% to:

ID Immune
phenotype

morphological
relapse

detection of
MRD

morphological
relapse

detection of
MRD

morphological
relapse

detection of
MRD

S3 ALL 91 NA NA NA NA NA

S5 ALL 272 NA NA NA 0* NA

D2 AML 79 NA 10* NA 10* NA

F1 ALL 454 NA 371 NA 412 NA

N1 ALL 957 NA 916 NA 916 NA

N4 ALL 84 NA 9* NA 9* NA

S6 AML 425 NA 30 NA 30 NA

J3 AML 402 161 71 Not detected 129 Not detected

L2 AML NA 60 NA 21 NA 21

L5 CML NA 173 NA 86 NA 86
F
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*Results with less than 30 days between IMC and relapse were excluded from statistical analysis but included here for clarity. IMC, increasing mixed chimerism: HCT, hematopoietic cell
transplantation. NA, not applicable.
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RQ-PCR chimerism analysis. In four children the relapse was not

predicted by any method. Among the three children with a molecular

relapse, two were preceded by positive results of RQ- and one also by

STR-PCR chimerism analysis. Figure 2 depicts the MRD results ≥

10^-3 in relation to RQ-PCR chimerism. Plots of all cases of relapse

and MRD-positivity depicting results of RQ- and STR-PCR

chimerism and MRD analysis are available as online Supplemental

Material Figure 1.
4 Discussion

Early and precise detection of relapse is essential to decide indications

for pre‐emptive treatment or intensified follow-up. RQ‐PCR chimerism

is a simple method applicable across all leukemia subtypes. However, the

clinical impact of MC and IMC is not yet well‐established, especially

among children, and there is no scientific consensus on a clinically

relevant cut-off. In general, studies with emphasis on the dynamic

changes consistently report an association with relapse (39, 40, 45, 53)

whereas some studies of RQ-PCR chimerism at a single or few timepoints

do not (37, 42, 54–56). A challenge thus remains in the definition of a

positive test that identifies children with a sufficiently high risk of relapse

to justify clinical intervention or an intensified follow-up.

In this prospective, multicentre study we tested two classifications

of IMC developed in a previous retrospective study (45) and confirm

that by RQ-PCR chimerism analysis, an IMC is associated with a higher

risk of relapse and two IMCs imply a poor outcome. Importantly, we

did not include samples taken within 30 days before relapse, as we

would thus be testing the ability of RQ‐PCR chimerism to identify an

overt rather than an impending relapse. Using an IMC ≥ 0.05%

provided no benefits compared to ≥ 0.1% but entailed more false

positive results. Based on this we recommend the use of IMC ≥ 0.1% or

a more than one log increase between two samples as a clinical cut-off.

In four of eight children with relapse, relapse was not preceded by

IMC. In all four, STR-PCR chimerism andMRD analysis were negative

up to the relapse. Importantly, three of the four events occurred early,
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and two children had only one sample taken prior to relapse, thus

excluding the possibility of detecting IMC between two samples. All

four had missing samples prior to-relapse. Furthermore, two children

had a detectable IMC not included in the analysis because it occurred

within 30 days of relapse. Our results thus suggest that causes of false-

negative results could be explained by non-adherence to sample

protocol and a rapid development of the relapse (57). As illustrated

in online Supplemental Material Table A, protocol adherence declined

during follow-up and could to some extent explain false negative as well

as true negative results. By inclusion of a time-factor in the definition of

IMC and calculation the degree of IMC per time unit, the data might be

less sensitive tomissing samples. One study defined an increment factor

based on the course of chimerism kinetics over time, calculating time as

days between current sample and last minimum or maximum value

preceding relapse (53). While valuable in the attempt to clarify the

various causes of IMC, such attempts can be difficult to translate into a

clinical setting where future events are unknown. Further, for some

subtypes of neoplasms, relapse may develop within the course of weeks,

and in these cases frequent samples during follow-up is essential with or

without the use of an increment factor. We here describe data from a

heterogenous cohort, with insufficient power to adjust for pre-HCT

disease. The relative impact of pre-HCT on the interval between IMC

and relapse is not known and studies designed to explore this

are warranted.

The association between sequential analysis of STR-PCR

chimerism and relapse is well documented (7, 54, 58, 59). We

found an association only when including detectable MRD in a

composite endpoint. Several factors could explain this. STR-PCR

chimerism was analysed at fewer time-points than RQ-PCR

chimerism. We omitted samples closer than 30 days to relapse, an

important difference from most studies of STR-PCR chimerism. Very

few samples were positive by STR-PCR and with the low number of

events our analysis is likely underpowered. Still, our results are in line

with our previous, retrospective study in which RQ- and STR-PCR

chimerism were analysed at the same timepoints, suggesting that

STR-PCR is not sensitive enough to detect an impending relapse (45).
BA

FIGURE 4

Cumulative incidence of relapse according to IMC prior to 90 days post-HCT. Children were categorized at a landmark of 90 days post-HCT as with or
without IMC ≥ 0.1% (A) and ≥ 0.05% (B) prior to the landmark. Time was defined as months from 90 days post-HCT, NRM or censoring and children with
relapse or NRM prior to this were excluded. Continuous line depicts children without, dashed line with IMC, respectively. P values derive from
comparisons using Gray’s test.
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One clear benefit of STR-PCR chimerism analysis is its precision

at levels above 5-10%, at which the RQ-PCR methodology has a low

accuracy. In our study, this is reflected by large discrepancies between

STR-PCR and RQ-PCR results at levels of recipient DNA above 5%,

as shown in Supplemental Material Figure C. Tyler et al. suggested a

personalized approach to chimerism analysis using the two methods

interchangeably, depending on the level of recipient DNA (46). A

more simple approach could be the application of digital PCR or NGS

technology for chimerism analysis, as these techniques provide

excellent accuracy also at high levels of recipient DNA and with

comparable sensitivity to RQ-PCR chimerism analysis (24, 25, 60, 61).

Post-HCT MRD impacts relapse risk and survival among pediatric

patients (16, 62–69). In a comprehensive analysis of the prognostic

value of peri-HCT MRD in pediatric ALL Bader et al. found detectable

MRD at any level post-HCT to be highly predictive of a relapse

surpassing the impact of pre-HCT MRD (68). In most of the studies

of post-HCT MRD however, a large fraction of relapses remain

undetected (16, 65, 68, 70, 71). In the present study, MRD analysis in

BM identified two children with a molecular relapse, and one of eight

children with a relapse. This could be explained by the limited number

of BM analyses during follow-up, and the fact that we did not include

samples closer than 30 days to a relapse. Further, in our cohort, the

method of MRD analysis varied greatly between the subgroups and our

study was not designed to evaluate the prognostic value of MRD. MRD

analysis can be performed on PB, allowing for more frequent analyses

than in BM. Studies have shown comparable results for BM and PB for

T-cell ALL and AML, but not pre-B-ALL (70, 72–74). In a recent study,

Jacobsohn et al. found a difference in the OS between children with and

without detectable Wilms’ tumour 1 (WT1) gene at day 42 post-HCT

in BM, but not in PB (16). A recent study combined NGS-based MRD

analysis with RQ-PCR chimerism in PB of adults with AML and with

this approach six of eight events of relapse were detected (75).

Importantly, applying RQ-PCR chimerism and MRD analyses to PB

reflects two separate approaches that are clearly not interchangeable. It

remains unknown to what degree detectable RQ-PCR chimerism post-

HCT reflects persistence of the malignant clone or benign

haematopoiesis, but most likely it is a combination. The efficacy of

HCT relies in large part on the ability of donor T cells to eliminate

residual disease present at HCT through the graft versus leukemia (GVL)

effect. A prevailing hypothesis is that chimerism analysis is an indirect

marker of the alloreactivity of the graft, thus that even if detectable MC is

caused by benign recipient haematopoiesis this might be linked to a

decline in GVL effect. In a study of lineage-specific STR-PCR chimerism,

Bader et al. were able to show that MC prior to relapse mainly debuted in

T-cells and/or monocytes, subsequently in granulocytes, independent of

the type of leukemia in question (76). Roux et al. found already in 1993

that a relapse of CML was preceded by MC in the mononuclear cell

fraction (77). Thus, IMC could reflect an increasing tolerance of the graft

eventually paving the way for a relapse (76, 77). A recent study described

exhausted, functionally impaired, leukemia specific T-cells present in the

BM of patients with AML relapsing after HCT, but not in patients in

long-term remission illustrating the importance of durable

immunosurveillance for disease-control (78). On the other hand,

persistence of chimerism might in turn directly modulate tolerance

(79, 80). In contrast, in a recent study of RQ-PCR chimerism in CD3

negative mononuclear cells of PB in adults with AML, IMC andMCwere

both associated with higher risk of relapse, suggesting a more direct
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detection of the malignant clone (81). Studies on the dynamics between

RQ-PCR chimerism and immune recovery post-HCT are warranted.

We previously found that RQ-PCR chimerism analysis during the

first 90 days post-HCT did not identify children with increased relapse

risk (45). In the current study, we confirm these results in a setting with

predefined sample frequency and a higher number of samples per child

(median of 15 vs 10). Previous studies in adult cohorts have found no

association between RQ-PCR chimerism early post-HCT and relapse risk

(42), and one study linked early events of IMC to viral infections (53).

Interestingly, in a pediatric-adult cohort of patients transplanted for

AML, Wiedemann et al. found that achieving CDC later than 50 days

post-HCTwas associated with a lower 2-year relapse-risk (13% vs. 51%; p

= 0.002). One could speculate that the velocity of achieving CDC post-

HCT reflects graft alloreactivity in a period early post-HCT where events

of IMC have multiple causes.

Early detection of impending relapse post-HCT has in large part

gained interest due to the rapid increase of possibly curative interventions.

Studies on STR-PCR chimerism guided immunomodulatory therapy in

children (accelerated tapering of immunosuppressive therapy or DLI) have

been able to achieve improve outcomes for children with MC (8, 58, 82–

84). Changes in post-HCT immunosuppression guided by RQ-PCR

chimerism have led to improved survival rates and/or reversion of MC

in single-center studies of adult patients with leukemia (34, 40, 41). The

rapid development of novel targeted or immunomodulatory therapies may

provide much-needed alternatives, in some cases as a bridge to a second

HCT (85). In B-cell precursor ALL (pre B-ALL) this development has been

particularly impressive and CD19-targeted strategies including

blinatumomab, Fc-optimized CD19 antibodies (86) and most recently

CAR-T therapy have been added to the repertoire (87). For most treatment

options, an early intervention is critical for outcome (88, 89). Further,

treatment efficacy might rely on low tumor burden (88). Using the current

strategies for MRD analysis, the interval between detectable MRD and

relapse may be too short to allow for pre-emptive strategies due to rapid

progression (71). In the current study, we establish that IMC by RQ-PCR

chimerism identifies children with a high risk of relapse, with a time-

interval allowing for clinical intervention. However, prospective studies of

RQ-PCR chimerism guided interventions in children are warranted, as are

those on the possible relationship between MC, IMC and GVL effect.
4.1 Limitations

This study is limited mainly by the small size and low number of

events. This limited our possibility to adjust for confounders or to

perform subgroup analysis. Three children received treatment for

imminent relapse post-HCT that might impact our results.

Furthermore, there was a discrepancy between the number of

samples analyzed by RQ- and STR-PCR chimerism, complicating

the comparison between the two methods. Finally, there were missing

samples during follow-up, treated as missing-at random.
4.2 Conclusions

In conclusion, we confirmed that IMC by RQ-PCR chimerism

analysis in PB appears to be associated with an increased risk of

relapse. An IMC of ≥ 0.1% or more than one log increase from the
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previous sample was detectable at an interval prior to relapse to allow

for a clinical intervention and/or intensified follow-up. Ultimately, the

effect of chimerism-guided intervention can only be determined in

prospective trials with pre-defined classifications and standardized

interventions. Based on our results, we suggest an individualized

approach to follow-up based on biweekly RQ-PCR chimerism

analysis in PB until 6 months post-HCT, then monthly until 18

months post-HCT. If IMC ≥ 0.1% is detected, biweekly RQ-PCR

chimerism analysis is performed until CDC. If a second IMC ≥ 0.1% is

detected, MRD is analyzed in BM. While biweekly or even monthly

MRD analysis in BM is unfeasible in children, increasing the

frequency of BM MRD analysis based on the occurrence of IMC

could possibly identify children at higher risk of relapse eligible for

intensified follow-up.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Ethics statement

The study was performed in accordance with the Declaration of

Helsinki and approved by the Danish Data Protection Agency (ID 30-

1319), the Ethical Committees of the Capital Region of Denmark (H-3-

2014-FSP21), the Regional Ethical Committee of South East Norway

(2015/2421/REK sør-øst), the Central Ethical Review Board of

Gothenburg, Sweden (618–15), and the regional ethical committee of

Helsinki and Uusimaa Hospital District, Finland (II/15). In Denmark,

written informed consent from the participants’ legal guardian/next of

kin was not required to participate in this study in accordance with the

national legislation and the institutional requirements.
Author contributions

AH, HM, TM, KV, JB, KM, DT, SR, HM, CH, KGM, MI

conceived of and designed the study. AH, TM, KV, JB, KM, DT,

CH, MI collected the data. AH, HM conducted the experiments. AH,

SR performed the formal analysis. AH, HM, TM, KV, JB, KM, DT, SR,

HM, CH, KGM, MI interpreted the data. AH drafted the manuscript.

All authors have critically revised the manuscript. All authors

contributed to the article and approved the submitted version.
Frontiers in Hematology 10
Funding

This study was supported by the Danish Childhood Cancer Foundation,

Swedish Childhood Cancer Fund, Danish Cancer Society, The Norwegian

Childhood Cancer Foundation, Dagmar Marshalls Fund and Engineer Otto

Christensen’s Fund. These had no role in the study design, data collection or

analysis, preparation of the manuscript, or decision to submit.
Acknowledgments

The authors would like to thank the families treated at the Nordic

transplant centers participating in this study.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/frhem.2023.1055484/

full#supplementary-material

SUPPLEMENTARY FIGURE 1

Cumulative incidence of complete donor chimerism below 0.1% and 0.01%
recipient DNA.

SUPPLEMENTARY FIGURE 2

Individual patient profiles of four children with relapse not detected by IMC >0.1
or 0.05% by RQ-PCR chimerism analysis. For clarity, MRD results described as

“undetected” are set to 0, regardless of the sensitivity of the applied method.

SUPPLEMENTARY FIGURE 3

Individual patient profiles of six children were relapse or molecular relapse was
detected by IMC >0.1 or 0.05% by RQ-PCR chimerism analysis. For clarity MRD

results described as “undetected” are given the value 0.
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