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Mature B cell malignancies constitute a wide range of biologically and clinically

heterogeneous hematological diseases. Despite an increasingly thorough

understanding of the pathophysiology of these pathologies and significant

improvements in therapies, a dismal outcome still affects a large number of

patients. Therefore, further investigations into new treatment perspectives are

highly needed and they depend entirely on the ex vivo culture of patient cells.

Primary cells usually demand superior culture models, as they are notoriously

difficult to cultivate. The literature is not devoid of approaches ranging from

two- to three-dimensional systems for culturing mature malignant primary B

cells. However, they display substantial protocol inter-variation. This imposes a

high risk of failures, repeats, and inconsistent results, which are neither

compatible with the rare value of primary cells nor the efficiency of the drug

discovery process. In this review, we provide a thorough overview of the

different approaches that have been implemented in the literature for the

culture of mature malignant primary B cells, and we discuss associated

considerations and limitations to assist researchers in determining a fit-for-

purpose culture system, thereby attempting to reduce the number of trials and

errors as well as associated biomaterial expenditure.

KEYWORDS

B lymphoma cell, primary cell culture, 2D cell culture, 3D cell culture, coculture (co-
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Introduction

Mature B neoplasms represent a heterogeneous group of pathologically and clinically

divergent malignancies originating from developed B cells. They comprise Chronic

Lymphocytic Leukemia (CLL) (1), Follicular Lymphoma (FL) (2), Marginal Zone

Lymphoma (MZL) (3), Hairy Cell Leukemia (HCL) (4), Mantle Cell Lymphoma (MCL)

(5), Diffuse Large B-Cell Lymphoma (DLBCL) (6), Burkitt Lymphoma (BL) (7), and

Multiple Myeloma (MM) (8). Despite significant progress in therapeutic options and

regimen efficacy, clinical outcomes generally remain unsatisfactory due to disease

complexity and intra/inter-heterogeneity. Therefore, there is a germane need to further
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decipher the mechanisms underlying not only disease

etiopathology but also drug efficacy and resistance. This implies

the extensive use of pre-clinical models, such as ex vivo

culture systems.

For this review, we perused the literature to present an

overview of the strategies ranging from two-dimensional (2D)

to three-dimensional (3D) approaches that have been

implemented to maintain mature malignant primary B cells in

an ex vivo culture environment. A 2D culture consists of culturing

cells as monocultures on flat and hard surfaces. In 2.5D culture

platforms, one or several other relevant cell types are cocultured

with the cells of interest to better recapitulate cellular interactions

occurring in the natural microenvironment. Finally, 3D culture

approaches strive to increase the fidelity of the cellular and

molecular Tumor MicroEnvironment (TME) in terms of

composition, structure, and dynamics. Scaffold-based 3D models

(9), organoids (10), on-chip technology (11), bioprinted

constructs (12), and bioreactors (13) are all 3D culture

approaches that can assist in emulating the complexity of

the TME.

Our goal is to provide researchers with a comprehensive

summary of the approaches that have been implemented in the

literature for the ex vivo maintenance of mature malignant B

cells to dispense them from time-consuming literature searches

and to minimize the laborious technical optimization performed

on precious and limited primary material. To that end, we

describe the growth outcomes resulting from the different

culture methods published in the scientific literature while

pinpointing associated technical and biological pitfalls.
Normal B cell dynamics and
associated malignancies

Natural B cell development

The efficient generation of a diverse immune B cell repertoire

that protect against (re)infection results from finely tuned and

remarkably engineered genetic and molecular processes

originating in primary lymphoid tissue (bone marrow) and

progressing in secondary lymphoid organs (such as lymph

nodes and the spleen) (14).

Early maturation of B cells occurs in the bone marrow, the

seat of hematopoiesis, wherein stepwise gene rearrangement-

based events lead to the development of a primary virgin

collection of B cells (i.e., unchallenged by antigens) that

features B Cell Receptors (BCRs) with sundry variable regions

of surface immunoglobulins (14). Following bone marrow egress

and blood- or lymph-mediated immune challenges, the final

maturation and selection of B cells occur in transient, dynamic,

and polarized microstructures called Germinal Centers (GCs)

that are located in the B cell follicles of secondary lymphoid

organs (15, 16). Specifically, once antigen-engaged, activated B
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cells migrate to the follicle border zone enriched in CD4+ helper

T cells (Th) (hence termed the T zone) under the influence of

chemokines, such as C-C motif Ligand 21 (CCL21) (17). This

homing molecule is secreted by resident stromal Fibroblastic

Reticular Cells (FRCs), which support the structure and function

of the T zone (18).

At the follicle-T zone interface, B cells present Th with cognate

antigens and subsequently undergo an initial in loco proliferation

(15, 16). At this stage, after Th-mediated isotype switching, a

fraction of the pre-GC early-activated B cells (seemingly

presenting the highest initial BCR affinity) differentiates into

short-lived plasma or memory cells (15, 16). Another preferred

portion will enter the B follicle and coalesce into intensively

proliferating and tight cell clusters, thereby forming the GC

Dark Zone (DZ), together with a supportive network of stromal

C-X-C motif chemokine Ligand 12 (CXCL12)-expressing

Reticular Cells (CRCs) and some follicular CD4+ T helper cells

(Tfh) (15, 16). There, GC DZ B cells (also called centroblasts)

undergo active proliferation and substantial intraclonal

diversification via Somatic HyperMutation (SHM) of the exon

coding for the surface immunoglobulin variable region (15, 16).

Centroblasts then transition to the most distal zone of the

GC, the Light Zone (LZ) (where they are referred to as

centrocytes), to enable the selection of the most affine variants.

These variants can undergo repetitive bidirectional travel

between the DZ and the LZ in order to further increase

antigen affinity (15, 16). In parallel, dysfunctional BCR-bearing

centrocytes endure apoptosis and are eliminated by tingible body

macrophages (19). Aside from macrophages and centrocytes,

numerous auxiliary cell populations also reside in the GC LZ.

These include naïve follicular B cells, CD8+ T cells, and

Follicular Dendritic Cells (FDCs), which drive BCR affinity

testing by presenting antigens and supporting selected cell

survival/proliferation in concert with Tfh (15, 16). Selected

high-affinity B cells can commit to either plasma or memory

cell differentiation, although the discriminative factor(s) driving

each cell fate decision remains to be fully elucidated (15, 16).

The inner mantle zone and the outer marginal zone both

constitute GC circumscribing compartments. While the former

is the result of the hyperactive GC-mediated displacement of

primary resident cells (20), the latter, best appreciated in the

spleen, mostly harbors sentinel memory B cells that are

strategically positioned to ensure a swift frontline response

during pathogenic provocation (21).
Mature B lymphoma/leukemia ontogeny
and treatment strategies

Although intricately efficient, the overall natural history of B

cells remains an error-prone process that can give rise to a large

spectrum of malignancies resulting from distinct stages of B cell

maturation (22, 23) (Figure 1). It is noteworthy that the cell of
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origin of each B neoplasm subtype has been under continuous

debate. Recent investigations have compelled us to discard the

compartmented view relative to the follicle reaction since they

point out gradual phenotypical transitions in the GC, thereby

defining multiple subpopulations and further complicating the

physiological and pathological picture (27).

Therapeutic recommendations for B lymphoma are

regularly updated, and they depend on the patient’s

phenotypic and genetic profiles. However, the frontline

treatment is usually based on an immunochemo approach,

consisting of variations around the classic rituximab plus
Frontiers in Hematology 03
cyclophosphamide, vincristine, doxorubicin and prednisone

(R-CHOP) treatment (28–32).

While substantial progress has been made regarding B

lymphoma/leukemia treatment strategies, there is still a

general unmet need experienced by ineligible, relapsed, or

refractory patients who face bleak outcomes. Intensification of

treatments with high doses of chemotherapy followed by

autologous stem cell transplant is the gold standard for

responders to salvage regimens, but this strategy is restricted

to patients who are fit and still chemo-sensitive (28–32).

Although the development of new technologies, such as Bi-
FIGURE 1

Germinal Center (GC) reaction. Upon cognate antigen B Cell Receptor (BCR) engagement, naive B cells migrate to secondary lymphoid organs,
where a prime interaction with activated helper T cells in the T zone initiates three possible cell fates: cell differentiation into short-term plasma
cells, maturation into memory B cells, or commitment to the GC response (15, 16). In the last case, B cells undergo iterative cycles of extensive
proliferation, Somatic HyperMutation (SHM), and affinity-based selection in functionally and spatially segregated GC compartments, namely the
Dark Zone (DZ) and Light Zone (LZ) (15, 16). Eventually, while B cells presenting a crippled BCR experience apoptosis, selected B cells undergo
terminal differentiation into long-lived progeny, either plasma cells or memory cells (15, 16). All these processes are coordinated/supported by
diverse and zone-specific cell populations, such as Fibroblastic Reticular Cells (FRCs) (T zone support and function; C-C motif Ligand 19 and 21
(CCL19 and CCL21)- mediated homing of B and T lymphocytes), stromal C-X-C motif chemokine Ligand 12 (CXCL12)-expressing Reticular Cells
(CRCs) (DZ migration and support), and Follicular Dendritic Cells (FDCs) (selection through antigen display; B cell survival), as well as other
immune cells, such as follicular CD4+ T helper cells (Tfh) (B cell survival and differentiation) and macrophages (apoptotic B cell clearance) (15, 16,
24). The GC is surrounded by the mantle zone composed notably of resting B cells and the marginal zone inhabited by guarding B cells involved
in the innate-like head immune response (20, 21). Although essential for host protection against pathogens, the B-mediated immune response
inherently possesses a detrimental downside, specifically the potential for lymphomagenesis at various stages of the B cell’s transition through
its maturation process. Thus, normal counterparts of Follicular Lymphoma (FL), Germinal Center B cell-like (GCB) Diffuse Large B-Cell
Lymphoma (GCB-DLBCL), Activated B Cell-DLBCL (ABC-DLBCL), and Burkitt Lymphoma (BL) all originate from the GC. While the two former
types seem related to LZ residing cells, ABC-DLBCL offers signs of plasmablast engagement, and BL coincides with DZ residing cells (22, 23).
Marginal Zone Lymphoma (MZL) is thought to be derived from an antigen-activated cell originating from the marginal zone (21). Chronic
Lymphocytic Leukemia (CLL) is divided into two molecular subgroups according to the mutational status of the ImmunoGlobulin Heavy-chain
Variable region (IGHV). Cells presenting unmutated IGHV (U-CLL) are likely GC-virgin, while mutated ones (M-CLL) would correspond to GC-
experienced cells (25). Likewise, Mantle Cell Lymphoma (MCL) cells can present a naïve-like (conventional MCL: cMCL) or memory-like (non-
nodal MCL: nnMCL) phenotype (26). Finally, Hairy Cell Leukemia (HCL) presents features of late-activated memory B cells (4), and Multiple
Myeloma (MM) is characterized by abnormal plasma cells (8). Created with BioRender.com.
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specific T-cell Engagers (BiTE) and Chimeric Antigen Receptor

T (CAR-T) cells, have yielded hope for the aforementioned

patient subsets, therapy success is often thwarted by treatment-

related toxicities (33, 34). Therefore, there is an urgent need to

improve not only salvage treatments but, more importantly,

first-line approaches because the best way to treat relapse is to

avoid it.

In an era of emerging personalized medicine where the

implemented treatment is tailored to a patient’s cell-specific

make-up, it has become more necessary than ever to establish ex

vivo culture models to further decipher disease pathophysiology

and support and expedite drug testing and discovery.
2D culture

Partial supplementation outcomes from
the literature

Inevitably, the dynamic and zone-specific microenvironment

is the main player in B cell physiological development. In line with

this, B cell neoplasms tend to be paragons of microenvironment-

dependent tumors, as reflected by the fact that they swiftly

undergo apoptosis when cultured ex vivo (35, 36). Hence,

attempts at 2D monoculture supplementation have stemmed

from the inherent readiness of malignant cells to exploit and

skew cellular and molecular crosstalk between their normal

counterparts and in vivo niches (37). As such, despite a lack of

standardization in the literature, governing strategies include B

cell activation mediated by the main receptors BCR, CD40, and/or

Toll-Like Receptor (TLR).

While the former is critical to overall normal B cell

maturation (38), CD40 engagement by a productive immune

synapse, with notably CD40L-expressing Tfh cells, is a sine qua

non to the proper induction, progression, and completion of the

aforementioned B follicle-mediated humoral response (39).

TLRs are pattern recognition receptors that physiologically

provide B cells with an innate response capacity (40).

Numerous lines of evidence support the key pathogenic role of

these actors in mature B cell malignancies. The prime

implication of BCR in B cell-related malignancies notably

pertains to the presence of stereotyped BCR, especially in CLL

(41) but also in MCL and MZL (42), which argues more for

genuine antigen pressure than sheer serendipity (43). This is

further demonstrated by the therapeutic success of Bruton’s

tyrosine kinase inhibitors, mostly in the clinical management of

CLL (44), but also MCL and MZL (45). Several observations

have also positioned CD40 as a disease driver. For example,

CCL22-expressing CLL cells chemo-attract CD40L-expressing

CD4+ T cells, which then seemingly favor CLL cell proliferation,

since CD40L+ T cells colocalize with the cluster of proliferative

malignant cells in lymph node and bone marrow pseudo-follicles

(46). The relevance of TLR in B lymphoma/leukemia ontogeny
Frontiers in Hematology 04
can be speculated following the observation that its pathology

can be associated with viral or bacterial infections, as evidenced

by MALT lymphomas and Helicobacter pylori (47).

Generally speaking, the most prominent results in terms of

the ex vivomaintenance of mature malignant primary B cells are

elicited from combined supplementations. This is best explained

by the fact that crosstalk and intersecting nodes exist between

the different signaling pathways (48) and because it is now well

established that no single mechanism ever constitutes the sole

pathological driver in a complex hijacked microenvironment.

These co-inputs usually consist of the activation of one or several

of the abovementioned B cell receptors in concert with

stimulatory growth factors (e.g., cytokines) expressed by

adjuvant cell populations co-residing in vivo with (malignant)

B cells in secondary lymphoid organs, blood, or bone marrow

(Figure 2). In vitro, BCR activation is technically achieved

following exogenous anti-IgM antibody binding. CD40

stimulation is implemented using either CD40 Ligands

(CD40Ls) or other CD40 agonists (i.e., anti-CD40 antibodies),

delivered exogenously in a soluble free form or cell-associated in

a coculture system. In the latter case, murine fibroblasts are

either stably transfected with CD40L (CD40LT cells) (58) or

artificially express FcgRII (CDw32 L cells), thereby allowing the

crosslinking of anti-CD40 antibodies (59). Finally, the

stimulation of TLR9, located on the endoplasmic reticulum of

resting cells, is mediated by endocytosed synthetic unmethylated

Cytosine-phosphate-Guanine OligoDeoxyNucleotides (CpG

ODN) (60).

Figure 3 summarizes the growth outcomes (detailed in depth

hereafter) obtained from mature malignant primary B cells

following diverse partial ex vivo supplementations. Specifically,

while sole BCR activation has been shown to favor CLL cell

proliferation (61) and survival (62), a single treatment with

TLR9 Ligands (TLR9Ls) has been associated with increased CLL

(63–65), SLL (65), FL (65), and MZL (65, 66) cell proliferation.

CD40 activation induces FL (67, 68) and CLL (61, 63, 69) cell

proliferation and promotes FL (70, 71), CLL (72–75), and MCL

(76) cell survival. Notably, TLR9 stimulation potentiates CD40-

activated CLL cell proliferation (77).

CD40 stimulation is often combined with InterLeukin-4 (IL-

4) supplementation. On its own, IL-4 enhances MCL cell

proliferation (78) and CLL (73, 74, 79–85) cell viability;

however, it seems to yield no success in terms of proliferation

for this latter subtype (79, 83, 85, 86). Importantly, dual CD40/

IL-4 stimulation has been shown to improve/potentiate the

abovementioned pro-survival/proliferative outcomes (61, 78,

83, 86–92). The extra presence of IL-21 in this duo further

heightens the proliferative response of CLL cells (86, 93).

Conversely, BCR activation in combination with IL-4 does not

seem to efficiently promote CLL cell proliferation (61, 83, 86, 94).

CD40 activation synergizes with IL-10 to promote CLL (69)

and MCL (95) cell proliferation. The addition of IL-2 to this

cocktail further dramatically enhances the mitogenic effect in the
frontiersin.org
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former subtype, since IL-10 upregulates the a chain of the IL-2

receptor (69). Sole IL-2 promotes CLL cell proliferation (83, 96,

97) and survival (98). Pro-mitogenic IL-2 also enhances the (IL-

15-driven)-proliferation of primary CLL and HCL cells (96). IL-

2 also synergizes with TLR9 activation to promote primary CLL

cell proliferation (63, 99) and so does IL-15 (100) because both

interleukin receptors share a b subunit that is upregulated by

TLR9L (101). In line with this, this trio displays a pro-

proliferative effect on CLL cells (64). Similarly, IL-2 positively

drives CLL cell proliferation in synergy with BCR (83, 94, 102) or

CD40 (69) activation as well as co-stimulation mediated by

protein kinase C activator Phorbol 12-Myristate 1-Acetate

(PMA) (96) or Staphylococcus Aureus Cowan strain I (SAC)

(102), which already display, on their own, pro-survival (62, 80,

81) and pro-proliferative (61) effects, respectively. Enhanced

proliferative effects were also observed in CLL (103) and FL (67)

cells when IL-15 was combined with CD40 activation.

The B cell Activating Factor (BAFF) and A PRoliferation

Inducing Ligand (APRIL) enhance primary CLL (80, 85, 104–

107), FL, BL, DLBCL (108), MCL (109) and MM (110) cell
Frontiers in Hematology 05
survival. APRIL also enhances FL, BL, and DLBCL cell

proliferation (108) while BAFF promotes FL cell proliferation

in association with BCR activation (87). IL-7 increases CLL cell

proliferation, even more in the presence of IL-2 or Tumor

Necrosis Factor a (TNFa) (97). IL-8 (111, 112) and IL-13 (83)

have been shown to favor CLL cell survival. However, IL-13 also

inhibits IL-2-mediated CLL cell proliferation, as does IL-4

(83, 94).

Insulin Growth Factor-1 (IGF-1) (113), CXCL12 (52,

62, 107) and CXCL13 (62), CCL19 and CCL21 (62),

Vascular Endothelial Growth Factor (VEGF) (85, 114,

115), type I and II InterFeroN (IFN) (116, 117), and

TNFa (118) are also implicated in CLL cell survival, as

well as CLL (97, 119) and HCL (120) cell proliferation for

the lastly mentioned actor.

In contrast, IL-5 augments CLL cell apoptosis, an effect partially

counteracted by IL-4 (82). IL-31 (68) and IL-21 (121) increase FL

andMM cell proliferation (especially in the presence of TNF for the

latter subtype), respectively. IL-6 increases MM cell proliferation

and survival (121) as well as CLL cell viability (111, 122).
FIGURE 2

Example of actors exploited to drive the ex vivo survival/proliferation of mature malignant B cells. The implemented strategies for the ex vivo
maintenance of malignant B cells are based on the pro-survival, pro-proliferative, and/or pro-migratory physiological signaling pirated by
malignant B cells. These cues encountered in vivo are in part mediated by the activation of B cell conventional receptors, namely B Cell
Receptor (BCR) (38), CD40 (39), and the Toll-Like Receptor 9 (TLR9) (40), respectively, via antigen presentation (notably by Follicular Dendritic
Cells (FDCs) in Germinal Centers (GCs) during antigen-affinity selection) (15, 16), interaction with CD40L (notably displayed by follicular helper T
cells (Tfh) in the GC) (39), and encounter with microbial unmethylated Cytosine-phosphate-Guanine diNucleotides (CpG dN) (40). Moreover, a
cytokine/chemokine-based regulation is orchestrated by diverse ancillary cell types co-populating the B cell niches (i.e., the lymphoid organs,
the blood and the bone marrow). For instance, InterLeukin-7 (IL-7), expressed notably by Bone Marrow Stromal Cells (BMSCs), is a crucial actor
in the survival, proliferation, and maturation of B cell progenitors (49). Furthermore, B cell interactions in lymphoid organs with Tfh support
proper progression through the follicular humoral immunity process, notably through CD40L-, IL-21-, IL-4- and IL-10-mediated signals (50, 51).
In addition, C-X-C motif chemokine Ligand 12 (CXCL12)-expressing Reticular Cells (CRCs) produce the chemokine CXCL12, presumably in a
proteoglycan-adsorbed manner on the cell membrane (52), thereby allowing the confinement of B cells in the dark zone of the GC (53). FDCs
produce IL-15 and IL-6. While the presentation of the former as a membrane-bound form positively affects B cell proliferation (54), the latter
drives proper GC reaction (55). Monocyte-derived cells, such as macrophages, produce B cell Activating Factor (BAFF) and A PRoliferation
Inducing Ligand (APRIL), two transmembrane proteins that can be processed into soluble forms and are implicated in B cell maintenance and
survival (56). IL-2, produced notably by activated T cells, controls B cell proliferation and differentiation (57). Created with BioRender.com.
frontiersin.org
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Intrinsic considerations

Although recurrent tendencies can be outlined (Figure 3),

one ought to keep in mind that ex vivo culture outcomes remain

highly dependent on the patient, regardless of the implemented

supplementation approach. In congruity with the well-

established fact that patients suffering from the same

pathology can display variable/opposite treatment responses

(as exemplified by CD40 agonism-based DLBCL therapy

(123)), one can easily anticipate that malignant primary cells

will display a breadth of behaviors under the same stimuli due to

their inherent inter-heterogeneity.

Hence, patient cells can be divided into CD40 (95, 124) and

BCR (125) responders and non-responders. In line with this, the

added value of the various supplementations discussed above is

not straightforward, and culture behaviors can be highly

heterogeneous in amplitude response (65, 69, 81, 83, 86, 93, 97,

102, 111, 119, 121, 126–128). Dual/opposite effects resulting from

a specific cocktail can even be observed (61, 69, 98) as exemplified

by the occasional inhibitory action of IL-4 on malignant cell

proliferation (88, 95), in accordance with its described counter-

proliferative function regarding IL-2 (94, 129).
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Researchers have increasingly succeeded in establishing

genetic/phenotypic correlations to explain these multifarious

responses to stimulation. For instance, while IL-4 induces

proliferation in GCB-DLBCL cell lines, it displays the opposite

effect on ABC-DLBCL ones (130). Additionally, primary GCB-

DLBCL specifically featuring CD10+, Bcl2-, and extra nodal

lesions are more favorably prone to long-term ex vivo

maintenance when co-stimulated with IL-4 and CD40L than

other subsets (131). In addition, Wang et al. reported that IL-21-

driven cell growth and survival seem specific only to type III

latency Epstein-Barr Virus (EBV)+-DLBCL and that the

opposite effect can be expected for EBV–DLBCL (132). IL-21

was also found to show a dual effect on BL and t (14, 18)-

featuring DLBCL and FL cell lines, with an increase in

proliferation among the former and apoptosis induction

among the others (133).

Relative to CLL mutational status, Unmutated (U) CLL cells

seem more prone to ex vivo apoptosis than their Mutated (M)

counterparts when cultured in a simple growth medium (74,

134) although contrasting evidence has also been reported (135).

Along those lines, while TLR9 activation generally leads to the

proliferation and survival of primary U-CLL cells, it induces
FIGURE 3

Summary from the scientific literature on the ex vivo 2D culture outcomes obtained with various exogenous partial supplementations of mature
malignant primary B cells. Various molecules have been shown to inhibit malignant B cell death and/or to promote their proliferation when
monocultured in vitro. They include B cell main receptor activators, such as Cytosine-phosphate-Guanine OligoDeoxyNucleotides (CpG ODN),
anti-IgM antibodies (anti-IgM), and CD40 agonists, as well as many InterLeukins (IL-). The B malignancy subtype(s), for which each molecule has
proven effective for ex vivo cell growth, is indicated in the figure. For more details and associated references, the reader is invited to refer to the
main text in Partial supplementation outcomes from the literature. Combined supplementation generally potentiates the growth outcomes
already observed with each actor due to synergy/additional effects. Chronic Lymphocytic Leukemia (CLL), Small Lymphocytic Lymphoma (SLL),
Follicular Lymphoma (FL), Marginal Zone Lymphoma (MZL), Hairy Cell Leukemia (HCL), Mantle Cell Lymphoma (MCL), Diffuse Large B-Cell
Lymphoma (DLBCL), Burkitt Lymphoma (BL), Multiple Myeloma (MM), Tumor Necrosis Factor a (TNFa), Insulin Growth Factor-1 (IGF-1), Vascular
Endothelial Growth Factor (VEGF), InterFeroN (IFN), Staphylococcus Aureus Cowan strain I (SAC), Phorbol 12-Myristate 1-Acetate (PMA), B cell
Activating Factor (BAFF), A PRoliferation Inducing Ligand (APRIL), C-X-C motif chemokine Ligand 12 (CXCL12), C-C motif Ligand 19 and 21
(CCL19 and CCL21). Created with BioRender.com.
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apoptosis in most of the M-subtype samples (100, 136), although

antagonizing evidence also exists (137). Notably, this last study

showed that IL-21 amplifies both differential TLR9L-induced

growth behaviors. Moreover, while CLL samples featuring 13q

deletion as a unique aberration are particularly sensitive to

TLR9L-induced apoptosis (138), those bearing the additional

ataxia-telangiectasia mutated protein anomaly are prone to

d i sp lay grea ter v iab i l i ty under the TLR9L+IL-15

supplementation regimen (100). Furthermore, cells bearing

only Trisomy 12 as a genetic abnormality show superior

proliferative proclivity under the same stimulatory conditions,

although both U-CLL and M-CLL cells are positive responders

to this cocktail (100). Combined CD40/TLR9 activation seems to

more prominently drive U-CLL cell proliferation (139).

Similarly, only the CD38+ CLL subset was found to undergo

apoptosis in response to crosslinked IgM stimulation. However,

the physiological outcome was the opposite when stimulated

with crosslinked IgD (140).
Technical considerations

Attributes aside from intrinsic cell make-up can influence

cell response to external stimuli, such as the sequential and

combinatory nature of the supplementation system. For

instance, although IL-10 can potentiate CD40-activated CLL

cell proliferation (69), it acts deleteriously when used singly

(141). This proapoptotic effect, however, seems restricted to

CLL, as other types of mature B neoplasms do not display such

an IL-10 response (141). Furthermore, while the sole (63, 103,

142) or post-CD40 activation (143) addition of IL-21 can result

in some proapoptotic activity on CLL cells, it can also yield a

pro-proliferative/survival effect when concomitant to CD40

activation (63) or following IL-4 priming (86, 93). However, a

single IL-21 treatment did not consistently lead to CLL cell

apoptosis (93), suggesting that alternative parameters could be

the reason for the observed discrepancies.

Indeed, one should also keep in mind that reagent

specificities can account for the divergences observed in the

literature (144). For instance, IL-6 antiapoptotic activity on CLL

cells appears to be strictly restricted to the dimer form and is

modulated by the origin of the cytokine, possibly because of

variations in stability (122). Molecule dosage also determines cell

responsiveness (102, 119), as receptor/ligand interactions cannot

be restrictively defined as “on-off” operations (145).

Importantly, the specifics (e.g., valency) of the different anti-

CD40 antibodies modulate the level of B cell activation (145).

Moreover, multimerized soluble or membrane-bound forms of

CD40L and crosslinked anti-CD40 antibodies have been shown

to facilitate CD40 activation compared to free monomeric

ligands or antibodies, as they better allow receptor clustering

and downstream signaling cascades (145, 146). Furthermore,

depending on the membrane-based model used, the CD40
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agonist density on the cell membrane can vary, thereby

leading to differential signal modulation (145). Similarly,

immobilized anti-IgM antibodies induce more potent BCR

activation in CLL cells compared to the free entities (147), or

they even induce growth behavior in opposition to the one

triggered by the untethered counterparts, possibly due to the

sustained vs. transient nature of the signal (125).

Of note, the full influence of CD40 activation can be tricky to

assess in systems utilizing CD40L- or FcgRII-expressing cell

lines, as it can be misconstrued or outweighed by the

cytoprotective impact putatively already provided by the feeder

layer itself. Notably, while murine fibroblasts expressing CD40L

were found to provide death protection for CLL cells, their

untransfected counterparts did not (72, 90). However, the

addition of anti-CD40 antibodies to the CDw32 L coculture

system did not add value to FL cell survival (148).
Biological considerations

One major caveat of 2D monoculture is its inability to

exhaustively recapitulate, quantitatively and qualitatively, but

also spatially and temporally, the intricate in vivo

microenvironment, which is characterized by a dynamic and

finely tuned interplay of abundant regulatory molecules. Hence,

attempts to improve cell survival and proliferation through

partial exogenous supplementation carry the risk of inducing

subpopulation selection and/or phenotypic shifts that are

exaggerated and/or unrepresentative compared to the in

vivo situation.

For instance, aside from cell survival and proliferation,

specific medium supplementation can influence other cellular

outcomes, such as cell differentiation. Although one may assume

that this effect would be negligible considering the supposed

“maturation arrest” state characteristic of tumor cells, CLL cells

have been demonstrated to possess not only an inherent

propensity to undergo plasmacytic differentiation but also

Class Switch Recombination (CSR) and SHM. This

provocative plasticity, and blockage thereof, is entirely

dependent on environmental cues (149). Hence, ex vivo, the

combination of CD40 activation with IL-10 induces CLL cell

immunoglobulin secretion (69, 150). This phenotype shift into

Immunoglobulin-Secreting Cells (ISCs) is potentialized by the

addition of IL-2 (69, 151), although CD40 activation alone (61,

69) or in the presence of sole IL-2 (61, 69) or IL-4 (61, 88, 151),

or single IL-4 (85) treatment, has seemingly failed to

significantly induce ISCs. On the other hand, IL-4, in concert

with CD40 activation (150) or hydrocortisone (152) is linked to

CLL IgE switching, although quite inconsistently (61). The

additional presence of IL-21 in the CD40L and IL-4 cocktail

does not seem to trigger the plasmacytic phenotype (93),

although sole IL-21 stimulation of primary CLL cells yields

various results in terms of the induction of the differentiation
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marker Blimp1 (153). These discrepancies can be explained by

the fact that the differentiation potential of CLL cells is inversely

correlated with their anergic state (153). Of note, sole IL-21

treatment increases Blimp1 abundance in DLBCL cells (132).

While TLR9L-, IL-2-, and IL-15-mediated stimulation of

CLL cells first induces robust cell proliferation, it eventually

leads to cell differentiation into ISCs (64). Furthermore, IL-2, in

association with SAC (61) or crosslinked-IgD (140), induces

CLL cell differentiation into ISCs. PMA is a strong inducer of

ISCs (154–156), and this effect is amplified in the presence of

residual T lymphocytes (156) or associated cytokines IL-2 (157)

or IL-4 (158). Using a two-step culture system consisting of the

sequential use of pro-proliferation and pro-differentiation multi-

cytokine cocktails, Ghamlouch et al. concluded, after exhaustive

assessment of immunophenotypic, morphologic, and molecular

features, that CLL cells undergo plasmacytic differentiation in

the presence of PMA, or TLR9L and CD40L, but not in CD40L-

only (159, 160). Of interest, BAFF and APRIL induce

differentiation into ISCs as well as CSR in CLL cells (85).

Although it can bear a significant analytical downstream

impact, the progression of malignant B cells through the

maturation process has seldom been investigated in studies

using a stimulatory cocktail primarily aimed at maintaining

primary cells ex vivo. However, CLL cell plasmacytic

differentiation has been associated with poorer cell survival

capacity and decreased expression of actors driving malignant

programming (64, 161). Thus, while this observation justifies the

impetus for “differentiation therapy” (162), it can easily lead to

skewed/overemphasized in vitro drug sensitivity when

exogenous molecules are used naively for sole cell survival/

proliferation purposes.

As medium supplementation modulates spontaneous cell

death, cell proliferation, and cell differentiation, it is also

expected to mitigate the drug response profile of mature

malignant primary B cells. Therefore, partial supplementation

can, albeit in its own limited way, recreate the protective haven

encountered in vivo (70, 115, 163–165) or even reveal drug-

permissive synergies that are worth exploring (65, 163, 166).
Additional considerations

As bystander cell-secreted molecules seem crucial to

improving malignant mature B cell survival and proliferation,

culturing malignant B cells as unfractionated/unpurified portions

among autologous cells is a well-grounded practice whenever

allowed by downstream analysis. Hence, autologous T cells have

been shown to increase CLL cell survival (74, 111), although not

consistently (35). Interestingly, CCL2 and CXCL2 pro-survival

effects are restricted to unpurified CLL samples, highlighting the

inter-dependence of cell populations in terms of survival (111).

The medium change frequency significantly affects cell

survival, as it can deplete molecular talks. Hence, Burgess et al.
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found that enhanced cell survival was obtained with only a

weekly or biweekly medium refresh (111). Higher cell densities

that enable closer cell-to-cell contact also greatly impact cell

survival, and while some authors have shown that a density of

2.5 million cells per mL already displays remarkable added value

compared to a lower density (167), others have found that only

densities from 40 million cells per mL induced marked enhanced

survival (111).

Commercial serum-free AIM-V and Hybridoma media

(Thermo Fisher Scientific) can enhance CLL cell survival due

to undetermined factors (168, 169). Aside from quelling ethical

concerns, removing the need for serum from the culture

medium decreases biological interference, improves result

consistency, and facilitates analysis, thanks to a refined

medium composition (170). Of importance, autologous patient

serum promotes better CLL cell survival compared to

heterologous serum or a complete medium (80), albeit

inconsistently (35).

Although inconsistently beneficial (168), the exogenous

addition of glutathione or its precursor N-acetylcysteine in the

culture medium can promote CLL cell survival, as it thwarts the

limited ability of malignant cells to uptake cystine for cysteine

production, which would subsequently impair the glutathione-

dependent redox balance (171). The presence of the reducing

agent b-mercaptoethanol in a cystine-containing culture

medium also provides similar protective effect (171).

It may be important to assess the relevancy of IL-9 (172) and

IL-27A (173) as culture supplements for the growth of primary

DLBCL cells, as they both promote DLBCL-derived cell line

proliferation, counter drug-induced apoptosis, and seem

prognostically meaningful with regard to patient serum levels.

Similarly, IL-22 supports the growth of MCL cell lines (174).

Overall, the biological limitations of 2D monocultures are

proportional to the technical advantages offered. Incorporating a

relevant secondary cell type into the culture is a technically

accessible way to enhance cell survival and/or proliferation while

better mitigating putative exogenous supplementation-induced

phenotypical shifts.
2.5D culture

2D coculture (2.5D) models from
the literature

2.5D models implemented for the ex vivo culture of diverse

mature B neoplasms are presented in Table 1.

As demonstrated using IL-21 (63), attempts at partial

supplementations can induce unsought cell growth behaviors

otherwise not observed in the additional presence of (in vivo)

ancillary co-stimulations. Hence, although CLL cells display

decreased survival in response to a single IL-10 treatment

(141), they exhibit enhanced survival when directly cocultured
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with IL-10-secreting Bone Marrow Stromal Cells (BMSCs)

(175). The overall cytoprotective effect of lymphoid tissue-

derived stromal cells on diverse malignant B cells has been

reported with either primary cells or cell lines of human or

murine origin (Table 1). Notably, primary BMSCs with a

pathological origin display increased efficacy in maintaining

malignant B cells ex vivo (74, 180, 182). Furthermore,

supplementing the BMSC-based coculture model with

additional co-stimulators further enhances cell proliferation

(127, 135, 192). FL cell survival is supported by Resto cells

(lymph node-derived FRCs that can be differentiated in vitro

from tonsil and bone marrow mesenchymal stem cells) (177).

Similarly, the human tonsil dendritic follicular HK cell line

supports CLL cell survival (188).

Monocytes also constitute crucial growth assistants, as

coculture sometimes appears indispensable to DLBCL and
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MZL cells’ ex vivo persistence otherwise lacking in plain

medium or in the simple presence of BAFF and IL-2, which,

however, further potentiate the monocyte-driven effect (185).

Moreover, monocytes favor FL cell growth, especially through

IL-15 trans-presentation and concomitant CD40 activation (67).

Along those lines, CLL cell survival is sustained by patient blood-

derived cells called nurse-like cells, which differentiate in vitro

from CD14+ mononuclear cells in a CLL cell-driven manner and

are considered tumor associated macrophages (52, 107, 183, 184,

194). This cytoprotective effect is partially mediated by CXCL12

(52), BAFF, and APRIL (107). On the same note, primary

macrophages promote FL cells’ ex vivo maintenance (182), and

the (M2) macrophage-differentiated leukemic cell line THP-1

supports CLL cell survival (183).

CLL and CD3-activated CD4+ T cells direct coculture

drastically enhances CLL cell proliferative capacity, which is
TABLE 1 Summary of the scientific literature on the 2.5D culture models implemented for the ex vivo maintenance of mature malignant primary
B cells.

Organism Type Origin Denomination Malignancy subtype

Human Primary cells Healthy bone marrow stroma BMSCs CLL (90, 135, 175, 176)
MCL (109)
FL (127, 177)
MM (178)

Bone marrow stroma from MM-suffering patient MM-BMSCs CLL (74) MM (179)

Bone marrow stroma from CLL-suffering patient CLL-BMSCs CLL (74, 180, 181)

Bone marrow stroma from FL-suffering patient FL-BMSCs FL (182)

Healthy tonsil stroma T-MSCs FL (177)

Healthy lymph node stroma Resto FL (177)

CLL-suffering patient blood NLCs CLL (52, 107, 183, 184)

Healthy or CLL-suffering patient blood Act. CD4+ T CLL (151)

Healthy spleen endothelium SMVEC CLL (85)

Healthy Blood Monocytes DLBCL MZL (185)

FL (67)

In vitro monocyte-differentiated Macrophages FL (182)

MM-suffering or healthy patient PBMCs Osteoclasts MM (186, 187)

Cell lines Acute monocytic leukemia PMA-treated THP-1 CLL (183)

Umbilical cord blood UCB408E6E7TERT-33 CLL (181)

Tonsil stroma HK CLL (188)

Endothelium HMEC-1 CLL (189, 190)

Bone marrow stroma StromaNKtert CLL (171, 181, 191)

UE6E7T-2 CLL (181, 192)

HS-5 CLL (114, 171, 180)

Mouse M2-10B4 CLL (52, 74, 181)

KUM4 CLL (181)

KUSA-H1 CLL (171, 181)

ST2 CLL (181)

MS-5 MCL (109)

R-15C HCL (193)

OP9 CLL (191)
Chronic Lymphocytic Leukemia (CLL), Follicular Lymphoma (FL), Marginal Zone Lymphoma (MZL), Hairy Cell Leukemia (HCL), Mantle Cell Lymphoma (MCL), Diffuse Large B-Cell
Lymphoma (DLBCL), Multiple Myeloma (MM), Bone Marrow Stromal Cells (BMSCs), Peripheral Blood Mononuclear Cells (PBMCs), Tonsil-Mesenchymal Stem Cells (T-MSCs), Nurse
Like Cells (NLCs).
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further heightened by IL-2 (151). Coculture with endothelial

cells also guards CLL cells against spontaneous apoptosis (85,

189, 190). Finally, primary MM cell survival is supported by

osteoclasts (186, 187).
Biological and technical considerations

Although coculture systems are no exception to the “patient-

dependent outcome” rule (127), they generally benefit from a higher

potential for long-term ex vivo cell maintenance thanks to the

incorporation of cellular support, which provides both biological

and physical assistance. On that account, cocultured CLL cells

spontaneously migrate beneath the sessile BMSC feeder layer, a

phenomenon termed “pseudoemperipolesis” (195). This adherence

to the nurturing layer also occurs with cocultured MCL cells and

manifests itself in cobblestone areas seemingly enriched in tumor-

initiating cells (196). In harmony with this idea, direct cell contact

between malignant cells and the feeder layer either dictates (52, 109,

151, 175, 176, 181, 188) or enhances (85, 90, 180) the pro-survival

effect, highlighting the extracellular matrix and/or cell membrane as

crucial interactive structures. Indeed, concerning the latter, some

aforementioned molecular actors present functionally relevant

membrane-bound forms, as exemplified by BAFF (197) and

CXCL12 (198). As overall upgraded biomimetic models that

better recapitulate the protective effect of the in vivo niche,

coculture systems appear more suitable for drug efficacy

assessment (165, 171, 181, 183, 184, 199).

The choice of a feeder layer depends realistically on financial,

technical, and logistic factors. Indeed, while unmodified primary

feeder cells inevitably recapitulate the in vivo niche more

genuinely than cell lines, they offer a less consistent and

reproducible set-up, and their use can be hampered by a lack of

a regular supply and/or production tediousness (183). However,

inter-lab standardization of coculture systems resorting to

characterized cell lines can also be hindered by a selective lack

of access. For instance, the ATCC cell line HS-5 is no longer

available in European countries due to more rigid regulations.

Because cell lines often lack contact inhibition, the feeder

layer must be disabled in terms of proliferation to prevent

overgrowth-induced (patient) cell death and medium growth

factor depletion during long-term cocultures. The two major

approaches used to do so are g-irradiation or cytotoxic drugs,

such as mitomycin C. While the former induces DNA breakage,

the latter acts as a DNA crosslinker (200). However, both have

downsides, as they have been associated with metabolic

disturbances (200, 201). Moreover, g-irradiation necessitates

expensive ad hoc equipment. Mitomycin C can be a more

accessible and budget-effective approach, but dose

optimization according to the cell line used, as well as

thorough subsequent washing to prevent the deleterious effect

of mitomycin C leftover on the patient cells, are required (202).
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3D culture

Although they bolster efforts to reconstitute the tumor-

residing microenvironment, 2.5D cultures are still far from

being capable of offering accurate representations of the

complexity and authenticity of a niche. In a bid to better

decipher spatiotemporal aspects of lymphoma/leukemia

pathophysiology, and to obtain improved concordance

between pre-clinical and clinical studies, 3D models have

increasingly drawn the interest of researchers, as they help to

better capture heterogeneous multicellular interactions (and

overall biological and chemical cues). Furthermore, they are

also more capable of reconstructing structural, mechanical, and

temporal organization/constraints that greatly influence cell

behavior, as well as drug response and delivery (203–205).

Although they have been increasingly researched, 3D culture

models are still difficult to construct because the degree of

sophistication/complexity of the platform is proportional to its

cost, labor intensity, and applicability in terms of throughput

series. Nevertheless, biologically relevant 3D platforms focus on

mechanical/structural, cellular, and dynamic aspects that

together shape a disease in vivo, enabling it to thrive into a

hijacked pro-tumor sanctuary (Figure 4).
Mechanical/structural component

The ExtraCellular Matrix (ECM) is an extensive non-cellular

network composed of fibrous proteins (e.g., collagen),

glycoproteins (e.g., laminin), and glycosaminoglycans (e.g.,

heparan sulfate). It provides both structural and functional cell

support (206). Indeed, (malignant) cell interactions with the

ECM directly drive cell organization, survival, proliferation, and

migration (211). Scaffold-based 3D models imitate the ECM

biostructure using either biological (e.g., collagen) or synthetic

(e.g., polyethylene glycol) materials. While the latter type offers

cost-efficiency and reproducibility, the former is intrinsically

bioactive and is a natural reservoir for various growth-related

actors (206).

Moreover, as exemplified by the work of De la Puente et al.

who developed 3D tissue-engineered bone marrow supporting

the proliferation of primary MM cells, ECM-anchored 3D

models mimic physiological gradients (e.g., oxygen and drug),

and therefore permit relevant investigations of drug delivery and

response (9). Following this idea, ECM stiffness in 3D models

has been shown to affect drug diffusion (36, 204).

Tumors evolve in a mechanically constrained setting, where

tensile forces are determined not only by an organ’s external

borders but also by the internal meshwork of proliferating cells

and dynamic ECM. Since mechano-sensing affects biological

processes (212), it is relevant to focus efforts on generating

platforms possessing mechanical properties, as exemplified by
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the work of Lamaison et al. who generated elastic spheroids

using alginate-based microfluidic-generated encapsulation. They

could reproduce lymph node/tumor-mediated compressive

forces and possibly associated cues. In this model, co-

encapsulation with primary tonsil stromal cells maintained FL

patient cell viability (204).

At the microscale, on-chip 3D devices can assist in mirroring

an organ microarchitecture, such as its internal multi-

compartmentalization, as exemplified by lymph nodes-on-chip

models (208). At the nanoscale, 3D bioprinting technology

allows for the precisely controlled spatial deposition of cellular

and molecular constituents in a computer-generated construct.

While constituting an under-explored avenue in hematological

malignancies, this technique is permissive to primary CLL cells’

long-term maintenance (12).
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Cellular component

The TME also comprises a heterogeneous population of

normal cells, such as immune and stromal cells, that are not

mere bystanders but rather key effectors in tumor persistence

and therapy resistance (213). 3D models attempting to

reconstruct the initial cellular diversity display different

degrees of complexity (and therefore translational values) with

the concomitant use of one or two additional cell types

originating from cell lines or primary cells. For instance,

thanks to a conical agarose microwell allowing both the

formation of cancer cell aggregates and the diffusion of

biomolecules originating from a bone marrow stromal cell

line, Waldschmidt et al. were able to propagate primary MM

cells in a cytoprotective environment (210). Furthermore, Foxall
FIGURE 4

3D culture strategies that biomimicry crucial in vivo microenvironment features and ultimately enable improved predictive value for clinical
success. Pathophysiologically relevant 3D models demand a faithful representation of the tumor architecture and microenvironment. Tumor
structural support and organization are encouraged by the biomimetic reconstitution of the ExtraCellular Matrix (ECM) using natural or synthetic
scaffolds (206). At a larger scale, tissue rigidity/plasticity and associated compressive forces in the tumor-residing organ are reproduced using ad
hoc material, such as hard porous scaffolds with high compressive strength for the bone (207). Further spatial refinements are enabled by on-
chip 3D platforms that can recreate tissue/organ intra-compartmentalization (208). Additionally, a dynamic condition is achieved thanks to the
perfused nature of the devices (209). 3D bioprinting is a computer-aided technology that allows a defined object geometry and precise cell
spatial distribution, thanks to a layer-wise deposition approach (12). Bioreactors can account for the circulating nature of a malignancy and
allow the study of cell homing and retention in tissues (13). Finally, yet importantly, the tumor microenvironment comprises an intricate
ecosystem of normal cells that can be simulated using several cell lines (210), primary cells (179), or, as exemplified with the bone marrow,
recreated via organoid technology (10). This last one also allows for the partial recreation of cellular structural units, such as the vasculature (10).
Created with BioRender.com.
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et al. developed collagen-scaffolded spheroids comprising

fibroblasts (differentiated from commercial adipose-derived

stem cells) and primary monocyte-derived macrophages,

ultimately creating a culture system that altogether favors

primary DLBCL cell survival. This model also seems to exert

opposing action against rituximab-induced antibody-dependent

cell phagocytosis, therefore putatively partially mimicking in

vivo drug resistance (36). Jakubikova et al. created a 3D hydrogel

model wherein patient-derived BMSCs induced niche-like

structures that enabled primary MM cell proliferation. The 3D

platform showed potential to serve as a testbed for the study of

niche-mediated MM survival/drug resistance (179).

While the above-mentioned systems are conducive to the ex

vivo maintenance of malignant B cells, they remain minimalistic

views of the gamut of cell lineages (and associated structures)

harbored in the initial ecosystem. In particular, the presence of a

bone-like niche is relevant in 3Dmodels investigating MM, since

osteolytic disease is a hallmark of this pathology that researchers

have attempted to phenocopy, notably by exploiting 3D

mineralized bone models (207). Moreover, although the use of

primary (bone marrow) mesenchymal stem/stromal cells rather

than cell lines can more accurately model the original TME, their

current shaky definition and the variations in associated

isolation and culture methods seem antagonistic to the

development of a defined and reproducible 3D model (214,

215). The generation of (bone marrow) organoids, which are

self-organizing and self-renewing microstructures, is a way to

partially address these issues (216). However, the literature on

bone marrow organoids is scarce due to the technical and

technological challenges associated with reproducing the fully

mature, diverse, and functional units of the bone marrow (e.g.,

the bone, and hemopoietic, and vascular niches), originating

from a multidirectional differentiation of stem cells (215).

Although still imperfect, the self-generation of bone marrow

organoids presenting a vessel-like network and able to support

the engraftment of leukemic blasts is a step forward toward the

generation of promising organoid systems amenable to

hematological preclinical applications (10).

Another prime consideration regarding the accuracy of the

cellular landscape in 3D models is the representativeness of all

the malignant subclones, notably cancer stem cells, that drive

disease relapse and resistance (217). Kirshner et al. established a

patient-derived, self-stratified bone marrow 3D model, allowing

not only the proliferation of MM cells but also the persistence of

putative dormant stem-like malignant cells, thereby permitting

the preclinical assessment of the MM clone as a whole (218).
Dynamic component

One of the shortcomings of most actual 3D models is their

static nature. Nonetheless, authors are increasingly striving to

reproduce the dynamic flows that occur physiologically through
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the vascular network and regulate nutrient supply and waste

disposal. Hence, although it has not yet been assessed in the

context of B lymphoma/leukemia studies, Chou et al. developed

an on-chip model comprising a dynamic vascular channel that

supports the generation of a multi-lineage bone marrow-like

proxy. This model allows the incorporation of a relevant

pharmacokinetic aspect and the study of the post-treatment

recovery of the generated tissue-like structure (209). In a more

accessible and economical set-up, Mannino et al. generated a

DLBCL-on-chip model where the blood vessel directly traverses

the artificial tumor niche, closely resembling what occurs in

vivo (11).

Moreover, mature B malignancies are dynamic neoplasms, as

exemplified by CLL, for which lymph nodes constitute active

proliferation sites (in areas called pseudofollicles) that feed the

quiescent circulating compartment (44). Therefore, peripheral

blood, lymph node, and bone marrow-originating malignant B

cells are expected to display differential signaling/behavioral

signatures due, in most part, to the influence of these distinct

specialized microenvironments (13). Hence, the addition of

lymph node-enriched IL-4 restores the BCR component balance

of primary CLL cells by upregulating the surface expressions of

IgM and CD79b, thus enhancing BCR responsiveness, a feature

that is not shared by resting (anergic) CLL cells in peripheral

blood (219, 220). To account for the circulating nature of the

disease, a bioreactor model has been customized for the study of

CLL cell retention and egress into/from a reconstructed bone

marrow niche (13). Moreover, Walsby et al. developed a

circulating model system allowing for the study of primary CLL

cell behavior and signature under shear forces reflective of what

they (along with endothelial cells) are subjected to in the

peripheral vasculature, thereby further clarifying what occurs

during transendothelial cell migration (221).
Discussion: literature-to-bench
translation

The choice of an ex vivo culture model (Figure 5) is

realistically contingent on both the research objectives and

financial/technical feasibility. Although 3D ex vivo culture

models are undeniably best suited for preclinical investigations,

considering their elaborate design and subsequent upgraded

translational value (223), the development of 3D platforms for

the ex vivo maintenance of mature malignant B cells is still in its

infancy and remains challenging and expensive, both in its

elaboration and application. This is especially the case as models

become progressively more complex to enhance their ability to

recapitulate the native niche.

As a second-best option, 2.5D coculture system allow for the

integration of interpopulation interactions while enabling higher

throughput experiments. Despite the absence of standardization,
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successful attempts to coculture malignant primary B cells have

been achieved with stromal cells of relevant origins and with

various immune cells, preferably in direct cell–cell contact.

Notably, the conceptual significance of cocultures is not just to

improve cancer cell survival/proliferation but also to better

adjust culture techniques to develop therapeutic strategies that

are more and more microenvironment-centric, rather than

focused on the cancer cells themselves (224).

Although completely incapable of replicating the in vivo

complexity, 2D monoculture remains an easy, fast, and low-cost

alternative offering reproducible and easy-to-interpret results,

especially for experiments that do not require prolonged

cultures. Experimental ease, however, is hindered by patient-

dependent cell behaviors in response to partial supplementation.

While the effort to standardize and improve cost/time efficiency

are salient considerations to perform achievable science, we

advocate that researchers, whenever feasible, address the

culture needs specific to a pathological subtype and subset

more congruously. Along those lines, we suggest that the

research community systematically shares the differential

growth behaviors of the primary samples used in their studies

for the implemented culture conditions, along with, if known,

the patient’s genetic/molecular characteristics to help in
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establishing the interconnections as those mentioned earlier.

We feel that seemingly experimental failures that constitute the

most invaluable data are often not exploited and/or

communicated enough.

On a side-but-related note, the limitations encountered by

researchers regarding the ex vivo culture of patient cells induce

an initial selection bias in favor of patient samples displaying a

high percentage of cancer cells and, in the context of

retrospective use, toward patients for whom significant

biomaterial was retrieved and cryopreserved, thereby enabling

both culture condition optimization and actual experimental

replicates. Biobanks can indeed be challenged with scant

biomaterial to process, as the accelerating in-depth

characterization of patient samples implies the decreased

availability of biomaterial, which is dispatched between diverse

diagnostic services and clinical studies. This is especially true for

the biomaterial retrieved from bone marrow biopsies, whose

invasive and painful nature precludes ad libitum supply.

Although not devoid of liabilities, an approach worth

considering involves the transitory use of Patient Derived

Xenografts (PDXs), which enable the expansion of valuable

primary cells for high-throughput studies, such as drug

screening (225).
FIGURE 5

Different culture models implemented for the ex vivo propagation of mature malignant B cells. The ex vivo culture of mature B neoplasm-
derived primary cells can be implemented as a 2D monoculture, 2D coculture (2.5D), or 3D culture which, in this order, offers an increase in cell
survival/proliferation, as well as a higher translational value to the experimental results. Although they are characterized by different degrees of
investigation/development by researchers, none of these models have been experimentally standardized. 2D monocultures, which are more
adapted for short-term experiments, are often partially supplemented with exogenous growth factors, most commonly CD40 agonists and/or
InterLeukin (IL)-4, allowing improved cell survival and proliferation. Furthermore, Toll-Like Receptor 9 activation combined with IL-2 treatment
is widely used to trigger B cell proliferation for subsequent cytogenetic analysis (222). 2D cocultures (2.5D) of malignant B cells in direct contact
with various ancillary cell populations, such as stromal cells derived from lymphoid organs, improve ex vivo cell maintenance and can be
achieved with primary cells or cell lines. Finally, interest is growing in the development of 3D models for hematological malignancies, ranging
from scaffolded spheroids to more intricate bioreactors and microfluidic devices (213). Created with BioRender.com.
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To conclude, we feel, like many others, that 3D culture

models have a bright future for studies related to drug

development and disease mechanisms. Technology-based

attempts to recreate multifaceted microenvironments are

sharpening and striving to incorporate additional critical

physiological aspects. Accumulating evidence seems to indicate

that researchers should focus on the establishment of a

customizable/personalized set-up, as patient-derived material

(e.g., ECM) unsurprisingly offers added value in terms of

primary cell maintenance (9). Although increasing the

arduousness of the task, the use of autologous TME would

allow the faithful recreation of the in vivo niche, a process

mostly undertaken using cell lines or allogenic cells from

healthy individuals. This approach, however, neglects a prime

characteristic of the TME co-inhabiting with malignant cells,

which is the fact that it is re-educated (FL), effaced (BL), or

recruited. For example, cells resembling FRCs and FDCs have

been spotted in FL-infiltrated bone marrow, although they are

not detected under healthy conditions. Whether they originate

from MSCs or are recruited to the bone marrow is still unclear

(226). Furthermore non-malignant stromal cells display specific

gene signatures among DLBCL patients, which are predictive of

treatment outcomes (227). Overall, such an approach is in

congruity with the growing trend of personalized medicine.

We anticipate that the increasing efforts invested by the

research community will lead to the establishment of

sophisticated but accessible models that attempt a difficult

balance between disease/patient specifics, standardization, and
Frontiers in Hematology 14
translational value. Therefore, we propose this review as a

modest contribution to the collective effort.
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127. Hajjami HMEl, Amé-Thomas P, Pangault C, Tribut O, DeVos J, Jean R,
et al. Functional alteration of the lymphoma stromal cell niche by the cytokine
context: Role of indoleamine-2,3 dioxygenase. Cancer Res (2009) 69(7):3228–37.
doi: 10.1158/0008-5472.CAN-08-3000

128. Hivroz C, Grillot-Courvalin C, Brouet J -C, Seligmann M. Heterogeneity of
responsiveness of chronic lymphocytic leukemic b cells to b cell growth factor or
interleukin 2. Eur J Immunol (1986) 16(8):1001–4. doi: 10.1002/eji.1830160821

129. Luo H, Rubio M, Biron G, Delespesse G, Sarfati M. Antiproliferative effect
of interleukin-4 in b chronic lymphocytic leukemia. J Immunother (1991) 10
(6):418–25. doi: 10.1097/00002371-199112000-00005

130. Lu X, Nechushtan H, Ding F, Rosado MF, Singal R, Alizadeh AA, et al.
Distinct IL-4-induced gene expression, proliferation, and intracellular signaling in
germinal center b-cell-like and activated b-cell-like diffuse large-cell lymphomas.
Blood (2005) 105(7):2924–32. doi: 10.1182/blood-2004-10-3820

131. Kato H, Kagami Y, Nakagawa M, Karnan S, Yatabe Y, Nakamura S, et al.
IL-4 / CD 40 l Co-stimulation induces long-term proliferation for CD 10-positive
germinal center b cell-like diffuse Large b-cell lymphoma. The Open Leukemia
Journal (2010) 3:60–8. doi: 10.2174/1876816401003010060

132. Wang Y, Wang C, Cai X, Mou C, Cui X, Zhang Y, et al. IL-21 stimulates the
expression and activation of cell cycle regulators and promotes cell proliferation in
EBV-positive diffuse large b cell lymphoma. Sci Rep (2020) 10(1):12326. doi:
10.1038/s41598-020-69227-0

133. Akamatsu N, Yamada Y, Hasegawa H, Makabe K, Asano R, Kumagai I,
et al. High IL-21 receptor expression and apoptosis induction by IL-21 in follicular
lymphoma. Cancer Lett (2007) 256(2):196–206. doi: 10.1016/j.canlet.2007.06.001

134. Damle RN, Temburni S, Banapour T, Paul S, Mongini PKA, Allen SL, et al.
T-Cell independent, b-cell receptor-mediated induction of telomerase activity
differs among IGHV mutation-based subgroups of chronic lymphocytic
leukemia patients. Blood (2012) 120(12):2438–49. doi: 10.1182/blood-2012-02-
409110

135. Plander M, Seegers S, Ugocsai P, Diermeier-Daucher S, Iványi J, Schmitz
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177. Amé-Thomas P, Hajjami HMEl, Monvoisin C, Jean R, Monnier D, Caulet-
Maugendre S, et al. Human mesenchymal stem cells isolated from bone marrow and
lymphoid organs support tumor b-cell growth: role of stromal cells in follicular lymphoma
pathogenesis. Blood (2007) 109(2):693–702. doi: 10.1182/blood-2006-05-020800

178. Zlei M, Egert S, Wider D, Ihorst G, Wäsch R, Engelhardt M.
Characterization of in vitro growth of multiple myeloma cells. Exp Hematol
(2007) 35(10):1550–61. doi: 10.1016/j.exphem.2007.06.016

179. Jakubikova J, Cholujova D, Hideshima T, Gronesova P, Soltysova A,
Harada T, et al. A novel 3D mesenchymal stem cell model of the multiple
myeloma bone marrow niche: biologic and clinical applications. Oncotarget
(2016) 7(47):77326–41. doi: 10.18632/oncotarget.12643

180. Trimarco V, Ave E, Facco M, Chiodin G, Frezzato F, Martini V, et al.
Cross-talk between chronic lymphocytic leukemia (CLL) tumor b cells and
mesenchymal stromal cells (MSCs): implications for neoplastic cell survival.
Oncotarget (2015) 6(39):42130–49. doi: 10.18632/oncotarget.6239

181. Kurtova AV, Balakrishnan K, Chen R, Ding W, Schnabl S, Quiroga MP,
et al. Diverse marrow stromal cells protect CLL cells from spontaneous and drug-
induced apoptosis: development of a reliable and reproducible system to assess
stromal cell adhesion-mediated drug resistance. Blood (2009) 114(20):4441–50. doi:
10.1182/blood-2009-07-233718

182. Guilloton F, Caron G, Ménard C, Pangault C, Amé-Thomas P, Dulong J,
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