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Use of artificial intelligence for
gestational age estimation: a
systematic review and
meta-analysis
Sabahat Naz1, Sahir Noorani1, Syed Ali Jaffar Zaidi1,
Abdu R. Rahman2, Saima Sattar1, Jai K. Das1,2 and
Zahra Hoodbhoy1*
1Department of Pediatrics and Child Health, The Aga Khan University, Karachi, Pakistan, 2Institute for
Global Health and Development, The Aga Khan University, Karachi, Pakistan
Introduction: Estimating a reliable gestational age (GA) is essential in providing
appropriate care during pregnancy. With advancements in data science, there
are several publications on the use of artificial intelligence (AI) models to
estimate GA using ultrasound (US) images. The aim of this meta-analysis is to
assess the accuracy of AI models in assessing GA against US as the gold standard.
Methods: A literature search was performed in PubMed, CINAHL, Wiley
Cochrane Library, Scopus, and Web of Science databases. Studies that
reported use of AI models for GA estimation with US as the reference
standard were included. Risk of bias assessment was performed using Quality
Assessment for Diagnostic Accuracy Studies-2 (QUADAS-2) tool. Mean error in
GA was estimated using STATA version-17 and subgroup analysis on trimester
of GA assessment, AI models, study design, and external validation
was performed.
Results: Out of the 1,039 studies screened, 17 were included in the review, and of
these 10 studies were included in the meta-analysis. Five (29%) studies were from
high-income countries (HICs), four (24%) from upper-middle-income countries
(UMICs), one (6%) from low-and middle-income countries (LMIC), and the
remaining seven studies (41%) used data across different income regions. The
pooled mean error in GA estimation based on 2D images (n=6) and blind
sweep videos (n=4) was 4.32 days (95% CI: 2.82, 5.83; l2: 97.95%) and 2.55
days (95% CI: −0.13, 5.23; l2: 100%), respectively. On subgroup analysis based
on 2D images, the mean error in GA estimation in the first trimester was 7.00
days (95% CI: 6.08, 7.92), 2.35 days (95% CI: 1.03, 3.67) in the second, and 4.30
days (95% CI: 4.10, 4.50) in the third trimester. In studies using deep learning
for 2D images, those employing CNN reported a mean error of 5.11 days (95%
CI: 1.85, 8.37) in gestational age estimation, while one using DNN indicated a
mean error of 5.39 days (95% CI: 5.10, 5.68). Most studies exhibited an unclear
or low risk of bias in various domains, including patient selection, index test,
reference standard, flow and timings and applicability domain.
Conclusion: Preliminary experience with AI models shows good accuracy in
estimating GA. This holds tremendous potential for pregnancy dating,
especially in resource-poor settings where trained interpreters may be limited.
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1 Introduction

Optimal prenatal care relies on accurate gestational age (GA)

estimation for appropriate care of mother and child during

pregnancy and beyond (1). The precise dating of pregnancy is also

necessary to assess viability in premature labor and post-date

deliveries (1). The most common methods used to estimate GA

during pregnancy are based on the last menstrual period (LMP)

and ultrasonographic findings. Campbell et al. have reported that

45% of pregnant women are unsure of their LMP due to poor

recall, irregular cycles, bleeding in early pregnancy, or oral

contraceptive use within two months of conception (2).

Appropriately performed prenatal ultrasound (US) has been shown

to precisely estimate GA and is considered a gold standard (3, 4).

According to the American College of Obstetricians and

Gynecologists (ACOG), obstetric US in the first trimester is the

most accurate method to confirm GA (5). For US, GA estimation

requires the measurement of fetal parameters such as crown-rump

length (CRL), head circumference (HC), abdominal circumference

(AC), biparietal diameter (BPD), and femur length (FL) (5, 6). The

error range in GA estimation in the first trimester is within one

week, increasing to one to two weeks in the second trimester (5).

US also provides real-time capability for the diagnosis of several

conditions, such as multiple gestation, congenital anomalies, fetal

growth restriction, and placental abnormalities (7, 8), and hence is

recommended by the World Health Organization (WHO) at least

once before the 24th week of gestation (9). Despite its advantages,

access to the US is very poor in low-and middle-income countries

(LMICs), mainly due to delays in access to prenatal care and lack of

access to ultrasonographic machines and trained sonographers (10).

Over the past few years, increasing evidence has highlighted the

use of artificial intelligence (AI) models in accurately analyzing

image-based data in healthcare. AI in medicine aims to deal with

disease prevention, diagnosis, and management in various fields,

including pathology, oncology, radiology, etc. These models thus

have the potential to meet the demand-supply issue by

automating many image recognition tasks in medicine, thus

reducing the required skill and resources (11).

Similar to other fields in medicine, which heavily rely on imaging,

AI models have been used in multiple studies to measure major

anatomical structures in the fetal US with reasonable accuracy (8,

12). It is thus important to synthesize the existing literature on the

diagnostic accuracy of AI models for GA estimation to suggest the

wide use of this technology, especially in resource-constrained settings.
ultrasound; CRL, crown-rump
anization; LMICs, low-and m
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2 Methods

This systematic review included studies that compared AI

models against standard US measures. The systematic review

protocol was registered on PROSPERO (CRD42022319966), and

we followed the Preferred Reporting Items for Systematic

Reviews and Meta-Analyses guidelines for reporting this

publication (13).
2.1 Search strategy and data sources

A literature search was conducted on June 5, 2023, in

PubMed Medline, the Cochrane Library, Scopus, and

CINAHL. The search strategy used in PubMed was

((((“Artificial Intelligence”[Mesh] OR Artificial intelligence

[tiab] OR AI OR “machine learning”[tiab] OR “deep

learning”[tiab] OR “supervised learning”[tiab] OR

“unsupervised learning”[tiab] OR “image recognition”

OR “computer vision”)) AND ((“Ultrasonography”[Mesh] OR

“Diagnostic Imaging”[Mesh] OR “Ultrasonography

Doppler”[Mesh] OR Ultrasound OR doppler ultrasound)))

AND ((“Pregnancy”[Mesh] OR pregnancy OR pregnant OR

“pregnant women”[Mesh] OR “prenatal diagnosis”[Mesh] OR

gestational age OR “fetal age” OR “Fetal Development”[Mesh]

OR fetal assessment))) AND ((Accuracy OR diagnostic

accuracy OR determination OR prediction OR estimation OR

recall OR bias OR absolute error OR precision OR sensitivity

OR specificity OR true positive OR false positive OR positive

predictive value OR negative predictive value)). We manually

searched bibliographies and citations of the included studies

for cross-referencing that might have been overlooked during

the literature search.
2.2 Eligibility criteria

We included all studies that reported the accuracy of an AI

algorithm for the estimation of GA compared to the US as a

reference standard. We included retrospective and prospective studies

without any restriction on the trimester of enrolled pregnant women.

Literature such as letters, opinions, commentaries, and narrative

reviews were excluded. Also, those studies that used reference

standards other than the US and published in a language besides

English were excluded.
length; HC, head circumference; AC, abdominal circumference; BPD, biparietal
iddle-income countries; HICs, high-income countries; UMICs, upper-middle-
iagnostic accuracy studies-2; SD, standard deviation; CI, confidence intervals;
; TCD, trans cerebellar diameter; ML, machine learning; CNN, convolutional
OG, American college of obstetricians and gynecologists.
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2.3 Data extraction

Two authors (ZH and SN) independently performed the

screening of the titles and abstracts to determine potential eligibility.

Two independent reviewers (SN and SNO) performed the full-text

review and final decision on the studies to be included. Data was

extracted in duplicate (SN and SNO) on pre-defined variables in an

Excel sheet and extracted for baseline characteristics, year of

publication, journal, title, aim/objectives, income region/setting,

number of participants, study design, AI model used (refer to

Supplementary Table S1), reference test, GA range for inclusion of

participants, input measures, size of training and test set, validation

method and study limitations. Any disagreements in inclusion or

extraction were resolved by mutual discussion between the two

reviewers (SN and SNO) or by contacting a third reviewer (ZH or

JKD), and a decision was taken unanimously.
2.4 Risk of bias assessment

The risk of bias in the included studies was assessed by two

independent authors (SN and SNO) using the Quality Assessment

of Diagnostic Accuracy Studies-2 (QUADAS-2) tool (14). The

risk of bias was assessed on four domains, i.e., patient selection,

index test, reference standard, and flow and timing, with each of

the domains included 3–4 specific questions. All studies included

in this review were evaluated against these questions, and the

responses were recorded as low-risk, high-risk, or unclear-risk for

each question. If any question within a domain received a high-

risk rating, the overall bias for that domain was deemed high.

In addition, the first three domains (patient selection, index test,

and reference standard) were used to assess applicability concerns.

For example, the patients included in the study did not match the

review question, the conduct or interpretation of the index test was

different from the review question, and the target condition defined

by the reference standard did not match the review question.
2.5 Data analysis

The information from the studies was summarized in Table 1

based on study designs, sample size, size of the training and

testing sets, and number of images used. The country where the

study was performed was summarized according to their income

regions by the World Bank (30). The performance metrics were

summarized as mean errors in days, standard deviation (SD), 95%

confidence intervals (CIs), accuracy, coefficient of determination

(R2), and correlations (r). We performed meta-analysis (where

possible) using mean absolute error (MAE) and conducted two

different comparisons based on 2 dimensional (i.e., fetal head, fetal

abdomen, femur) and blind sweep images. We also performed a

sensitivity analysis of blind sweep videos after excluding one study

with a high risk of bias. To standardize the reporting, we

converted root-mean-squared error (RSME) into MAE (31). We

also calculated SDs where CIs were available, and the SDs were

then converted into standard errors (SEs) (32, 33).
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Data was analyzed using STATA version 17 (34), where the

pooled means with CIs were presented as forest plots. We

assessed the heterogeneity using the l2 statistic, where the l2

value of >75% was considered higher heterogeneity. We reported

random effect models in our review due to higher heterogeneity

between studies. In addition, we conducted subgroup analyses for

the comparison of 2D images only based on the study design

(prospective/retrospective), pregnancy trimester, AI models, and

external validation using the meta set command.
3 Results

The database search identified 1,039 studies after de-

duplication; 17 met the eligibility criteria (8, 12, 15–29), and 10

studies were included in the meta-analysis (12, 15–18, 20–23,

27). The remaining seven studies (8, 19, 24–26, 28, 29) were not

included as we were unable to get the information on mean

errors in GA estimation, their standard deviation (SD) and/or

confidence interval (CI) (Figure 1).
3.1 Characteristics of included studies

Among the 17 studies included in this review, five (29%) were

conducted in high-income countries (HICs), four (24%) in upper-

middle-income countries (UMICs), and one (6%) in low-and

middle-income countries (LMIC). The remaining seven studies

(41%) used data across different income regions, including HICs,

UMICs, and LMICs (Figure 2).

The most common model used was neural network (n = 14) (8,

12, 15–23, 25, 28, 29), followed by regression forest model (27),

geometric ML algorithm (24), and a genetic algorithm used by

one study each (26). Thirteen studies (77%) (8, 15–21, 23–26,

29) were prospective cohorts, and four (23%) (12, 22, 27, 28)

were retrospective studies. Most studies mentioned the number

of participants ranging from 58 to 7,113 (8, 15–27, 29), while

one study mentioned the number of images (5,000) (12), and

one did not mention either (28). The size of training and test

sets was described in 13 studies (8, 12, 15–21, 23, 25, 27, 29).

Eleven studies used 2D images (12, 16, 17, 19, 22–24, 26–29),

while six used blind sweeps video (8, 15, 18, 20, 21, 25). While

comparing the validation of the study findings, only six studies

(35%) used external datasets to validate their results (8, 12, 16,

17, 24, 27) (Table 1).
3.2 Risk of bias assessment

The risk of bias assessment for these studies has been presented in

Figure 3. The bias on patient selection domain was low in nine studies

(53%) (8, 12, 15–17, 21, 23, 24, 26), unclear in seven studies (43%) (19,

20, 22, 25, 27–29), whereas it was high in only one study (6%) (18).

In the majority of studies (n = 16; 94%) (12, 15–29), the risk of

bias within the index domain was reported as unclear, with only

one study showing low bias (n = 1; 6%) (8). Similarly, when
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TABLE 1 Summary of included studies.

Author &
year

Country Income
region

Study
design

Sample size Input
measures
(2D images
vs. blind
sweeps)

Input
measures
(Video vs.

Still)

Size of
training &
test set

GA range
by gold
standard
(in weeks)

AI model
used

Performance
metrics (AI
algorithm)

Validation
method

External
validation

Lee et al. (15) USA, Zambia HIC, MIC Prospective
cohort

3,842 Blind sweeps Video 60% train &
20% test

CRL: 44–97
days, HC, AC,
& FL: 98–195
days & 196–258
days

DNN MAE (SD):
Standard fetal biometry:
5.11 (4.7)
Ensemble method: 3.6
(3.2)
Video model: 3.63 (3.2)
Image model: 3.97 (3.5)

60% train, 20%
tune, and 20%
test

No

Lee et al. (16) Brazil, China,
India, Italy,
Kenya, Oman,
UK USA,
Pakistan,
South Africa,
Thailand

HIC, LMIC,
UMIC

Prospective
cohort

INTERGROWTH-
21st (n = 4,233)
INTERBIO-21st
(n = 2,433)

HC, AC, & FL
2D images

Still 75% for
training: 3,809
(219,974
images) & 10%
for testing:
29,664 images

13 to 42 weeks CNN MAE
Internal validation set:
GA 13+0–42+0 weeks:
+/− 3.5
GA 18+0–27+6 weeks:
+/− 3.0
GA 28 +0–42 +0 weeks:
+/− 4.3
External validation set:
GA 13 +0–42 +0 weeks:
+/− 4.1
GA 18 +0–27 +6 weeks:
+/− 3.7
GA 28 +0–42 +0 weeks:
+/− 5.0

1 dataset for
training and
internal
validation, and 1
for external
validation

Yes

Danet al. (17) China UMIC Prospective
cohort

7,113 women
(10,413 images)

BPD, HC, AC, &
FL 2D images

Still Training set:
7,542
Test set: 1,832

2nd
and 3rd
trimesters

DNN
(RESNET)

MAE (SD): 5.39 (4.01) Internal
validation: 134
and 74
External
validation: 90

Yes

Arroyo et al. (18) Peru UMIC Prospective
pilot cohort
study

58 Blind sweeps Video Training
dataset: 30 &
Hold-out Test
Set: 28

3rd Trimester DNN
(U Net)

Mean (SD)

U-Net: 225 (16.5)
Standard of care: 223
(19.9)

80% training and
20% validatio

No

Alzubaidi et al.
(19)

Netherlands HIC Prospective
cohort

551 HC 2D images Still Training: 999
images
Test: 335
images

14 to 40 DNN MSE (r): 0.00072 (0.99) 80% training and
20% validation

No

Płotka et al. (20) Poland HIC Prospective
cohort

Dataset 1: 700
Dataset 2: 50 videos

HC, BPD, AC, &
FL blind sweeps

Video 1st data set
(80% training,
20% testing)

1st dataset: 15
to 38 weeks
2nd dataset: 19
to 38 weeks

CNN MAE: 0.05 ± 0.01 week Algorithm
evaluated on 50
freehand fetal US
video scans.

No

(Continued)

N
az

e
t
al.

10
.3
3
8
9
/fg

w
h
.2
0
2
5
.14

4
75

79

Fro
n
tie

rs
in

G
lo
b
al

W
o
m
e
n
’s

H
e
alth

0
4

fro
n
tie

rsin
.o
rg

https://doi.org/10.3389/fgwh.2025.1447579
https://www.frontiersin.org/journals/global-womens-health
https://www.frontiersin.org/


TABLE 1 Continued

Author &
year

Country Income
region

Study
design

Sample size Input
measures
(2D images
vs. blind
sweeps)

Input
measures
(Video vs.

Still)

Size of
training &
test set

GA range
by gold
standard
(in weeks)

AI model
used

Performance
metrics (AI
algorithm)

Validation
method

External
validation

Pokaprakarn et al.
(21)

USA & Zambia HIC, MIC Prospective
cohort

4,521 Blind sweeps Video Training set:
3,509
(Training:
2,807, Tuning:
702)
Test set: 1,012

9 to 37 weeks DNN MAE (+/−SE)
1st trimester:
2.1 +/− 0.19 days
2nd trimester:
3.1 +/− 0.16 days
3rd trimester
4.7 +/− 0.18 days

80% training, 20%
tuning Test
dataset: 1,012

No

Pei et al. (22) China UMIC Retrospective 191 videos
(29,829 2D images)

Gestational Sac
2D images

Still NA 4·6–11 CNN MAE: 1 +/− 0·76 weeks;
95% CI: 0·88, 1·12

NA No

Prieto et al. (8) Zambia, USA HIC
LMIC

Prospective
Cohort

ZAPPS: 3,369
studies (23,209
images)
UNC: 2,983 studies
(124,646 images)
FAMLI: 2,491
studies (7,233
images)
Blind sweep

Blind Sweeps Video ZAPPS: 3,369
UNC: 2,983 &
FAMLI: 2,491

ZAPPS: 13–18 DNN MAE: 1·4 days 2 Sets for training
& 1 for testing

Yes

Burgos-Artizzu
et al. (23)

Spain HIC Prospective
Cohort

3,386 Fetal brain (BPD
& HC)
AC & FL 2D
images

Still 1,394 & 1,992 18–28
28–42
16–42

CNN Avg error (CI error) (R2)
2·44 (6·7) (0·9)
5·49 (14·3) (0·91)
3·74 (11·0) (0·99)

41% data for
training & 59%
for testing

No

Fung et al. (24) Brazil, China,
India, Italy,
Kenya, Oman,
UK, USA

HIC
LMIC
UMIC

Prospective
Cohort

Dataset 1: 4,607
Dataset 2: 3,067

HC, AC, & FL
2D images

Still NA 20–30 Geometric
ML
Algorithm

Within 3 days 3 Groups for
training & 1 for
testing

Yes

Maraci et al. (12) UK HIC Retrospective Dataset A: 5,000
images
Dataset B: 3,736
images

TCD 2D images Still Dataset A:
3,000
Dataset B: 500
& 3,236

16–26 CNN & FCN Mean manual: 19·7 +/−
0·9 weeks
Mean automated: 19·5
+/− 2·1 weeks

Dataset A: 3,000
images for
training & 1,000
for validation
Dataset B: 500
images for
training & 3,236
for testing

Yes

van den Heuvel
et al. (25)

Ethiopia LMIC Prospective
Cohort

183 Blind Sweeps Video 109 & 31 28–40 U-Net
Architecture

MD: −3·6 days +/− 9·8 60% data for
training, 20% for
validation & 20%
for testing

No
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TABLE 1 Continued

Author &
year

Country Income
region

Study
design

Sample size Input
measures
(2D images
vs. blind
sweeps)

Input
measures
(Video vs.

Still)

Size of
training &
test set

GA range
by gold
standard
(in weeks)

AI model
used

Performance
metrics (AI
algorithm)

Validation
method

External
validation

Papageorghiou
et al. (26)

Brazil, China,
India, Italy,
Kenya, Oman,
UK, USA

HIC
LMIC
UMIC

Prospective
Cohort

4,229 HC, BPD, OFD,
AC, & FL 2D
images

Video NA 14
26
>28

Genetic

Algorithm

Mean Error (either
direction): 6–7 days
12–14 days
>14 days
Adding FL improved
model by 1–6 days
across all trimesters
whereas no
improvement was
reported by adding AC,
BPD, OFD

NA No

Namburete et al.
(27)

Brazil, China,
India, Italy,
Kenya, Oman,
UK, USA

HIC
LMIC
UMIC

Retrospective 157 Fetal brain (HC)
2D images

Still 447 & 187 18–27 +6

28–33 +6

18–33 +6

Regression
forest
Model

RMSE (CI) (r)
5·18 (10·10) (0·97)
7·77 (14·01) (0·83)
6·10 (11·64) (0·98)

NA Yes

Fernández-
Caballero et al.
(28)

Spain HIC Retrospective NA BPD, AC, FL, &
CRL 2D images

Still NA 18 CNN
(Region &
Gradient-
Based)

Mean = 17·6 weeks
(using BPD)
Mean = 18·2 weeks
(using FL)

NA No

Beksac et al. (29) Turkey UMIC Prospective
Cohort

143 (613 images) HC & BPD 2D
images

Still 552 & 61 14–38 ANN In 98% of the cases, GA
was estimated correctly

1 Set for training
& 1 for testing

No

USA, United States of America; UK, United Kingdom; LMIC, low-and middle-income country; HIC, high-income country; UMIC, upper-middle income country; CNN, convolutional neural network; DNN, deep neural network; FCN, fully convolutional network; ML,
machine learning; ANN, artificial neural network; ZAPPS, Zambian preterm birth prevention study; UNC, university of carolina maternal-fetal medicine group; FAMLI, fetal age machine learning initiative; HC, head circumference; BPD, biparietal diameter; AC,

abdominal circumference; FL, femur length; CRL, crown-rump length; OFD, occipitofrontal diameter; TCD, trans cerebellar diameter; NA, not available; MRE, mean relative error; MAE, mean absolute error; CI, confidence interval; MD, mean difference;

NICHD, national institute of child health and human development; RSME, root-mean-squared error.

N
az

e
t
al.

10
.3
3
8
9
/fg

w
h
.2
0
2
5
.14

4
75

79

Fro
n
tie

rs
in

G
lo
b
al

W
o
m
e
n
’s

H
e
alth

0
6

fro
n
tie

rsin
.o
rg

https://doi.org/10.3389/fgwh.2025.1447579
https://www.frontiersin.org/journals/global-womens-health
https://www.frontiersin.org/


FIGURE 1

Search flow diagram.

Naz et al. 10.3389/fgwh.2025.1447579
assessing bias in the reference test, the majority of studies had

unclear bias (n = 14; 82%) (12, 15–17, 19, 20, 22–24, 25–29),

with the remaining three indicating low bias (n = 3; 18%) (8, 18,

21). This lack of clarity primarily stemmed from the absence of

pre-specified thresholds in both the index and reference tests, as

well as uncertain blinding statuses. The risk of bias for the flow

and timing domain was low in 14 studies (82%) (8, 15, 16,

18–24, 26, 27, 29) and unclear in three studies (18%) (17, 25,

28). The risk of bias within the applicability domain,

encompassing patient selection, the index test, and the reference

standard, was consistently low in all the studies.
3.3 Outcome estimates

The GA range described in the included studies varied between

four weeks and six days to 42 weeks. One study exclusively

included scans from the first trimester (22), one from the second

(12), and one from the third trimester (18). One study
Frontiers in Global Women’s Health 07
conducted separate analyses for the first, second, and third

trimesters and combined these trimesters for the analysis (21).

Three studies analyzed scans separately for the second and third

trimesters and reported combined analysis for these (23, 27)

while one study reported a combined analysis of all three

trimesters (16). Two studies combined scans from the second

and third trimesters (17, 20), and one reported results from all

three combined (15).

The mean error in days in individual studies for GA estimation

using AI models ranged between 0.005 (during the second and

third trimesters combined) to 15 days (during the third

trimester) throughout the trimesters across sixteen studies; one

study did not mention mean errors (29) (Figure 4).
3.4 Overall estimates

The results of the meta-analysis based on 2D images (n = 6)

(Figure 5) and blind sweep videos (n = 4) (Figure 6) suggested a
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FIGURE 3

Risk of bias assessment and applicability concerns for included studies.

FIGURE 2

Distribution of countries according to income region contributed to the literature.
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pooled mean error of 4.32 days (95% CI: 2.82, 5.83; l2: 97.95%) and

2.55 days (95% CI: −0.13, 5.23; l2: 100%), respectively, in GA

estimation across trimesters. The sensitivity analysis of blind

sweep videos (n = 3) after excluding one study with a high risk of

bias revealed a pooled mean error of 2.62 days (95% CI: −0.22,
5.45; l2: 100%) (Supplementary Figure S1).
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3.5 Subgroup analyses based on trimesters
(2D images)

The mean error in GA estimation during the first trimester was

7.00 days (95% CI: 6.08 7.92), 2.35 days (95% CI: 1.03, 3.67; l2:

87.97%) during the second, and 4.30 days (95% CI: 4.10, 4.50; l2:
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FIGURE 4

Mean errors in estimating gestational age across studies using AI.

FIGURE 5

Forest plot of mean errors for overall GA estimation based on 2D images.
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FIGURE 6

Forest plot of mean errors for overall GA estimation based on blind sweep videos.
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0.00%) during the third trimester. The mean error in GA

estimation was 5.39 days (95% CI: 5.10, 5.67; l2: 0.00%) during

the second and third trimesters combined and 3.50 days (95%

CI: 3.35, 3.65) during the first, second, and third trimesters

combined (Supplementary Figure S2).
3.6 Subgroup analyses based on AI models
(2D images)

Among the studies employing deep learning techniques, three

of them with CNN found a mean error of 5.11 days (95% CI:

1.85, 8.37; l2: 96.31%) in GA estimation, while in one study used

DNN, the reported mean error was 5.39 days (95% CI: 5.10,

5.68). In the remaining two studies, one study incorporated both

CNN and FCN, resulting in a mean error of 1.54 days (95% CI:

0.99, 2.09), while the other study utilized a regression forest

model and reported a mean error of 4.87 days (95% CI: −4.42,
14.16) in GA estimation (Supplementary Figure S3).
3.7 Subgroup analyses based on dataset
validation (2D images)

The results of the meta-analysis based on external validation

revealed that studies (n = 4) that used external datasets to validate

their findings had a mean error of 3.73 days (CI: 2.36, 5.10; l2:

98.10%) in estimating GA as compared to those who internally

validated their findings (5.11 days, CI: 1.85, 8.37; l2: 96.31%)

(Supplementary Figure S4).
3.8 Subgroup analyses based on study
designs (2D images)

Based on the study design used, three prospective studies

reported a pooled mean error of 4.42 days (95% CI: 2.60, 6.24;

l2: 98.48%), whereas the remaining three retrospective studies
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reported a pooled mean error of 4.36 days (95% CI: −0.48, 9.20;
l2: 97.99%) in GA estimation (Supplementary Figure S5).
4 Discussion

This meta-analysis highlights the accuracy of AI models (mean

difference of 4.32 days based on 2D images and 2.55 days based on

blind sweep videos) in GA estimation using the US as the reference

standard. It also highlights the accuracy of the various fetal

biometric measures used to estimate GA in isolation and

combination across the three trimesters.

Fetal US is a widely used modality for providing detailed

information on fetal biometry to estimate accurate gestational

age, improve diagnostic accuracy, and provide timely

management (35). However, in LMICs, access to timely US,

especially during the first trimester, is often challenging (10). In

addition, the lack of skilled operators further compounds the

issue, putting women and their newborns at risk of being

undiagnosed and delivered without any opportunity to intervene

(10). Similar to other radiological assessments where AI has

helped bypass the need for a trained interpreter (36, 37), the

current review demonstrates the promise offered by this

technique in GA estimation, as evident from the findings of the

meta-analysis. This review also demonstrates that using blind

sweep images of the pregnant women’s abdomen complemented

by AI can be highly accurate in estimating GA. Although the

number of studies with this technique is currently small (n = 4),

this technology has immense potential to increase the reach of

quality ultrasound to many marginalized communities. Blind

sweeps also minimize the need for high quality images which

may be difficult to obtain in communities where skilled

personnel and high-end equipment are limited.

While comparing the sub-group analysis based on the GA, the

estimates are more precise during the second (mean error: 2.35 days)

compared to the first (mean error: 7.00 days) and third trimesters

(mean error: 4.30 days). This variation in GA is very similar to when

US-based GA is compared with pregnancies conceived through in
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vitro fertilization as a gold standard (approximately 1–3 days in the first

and second trimester) (1). In addition, this variation is clinically

acceptable as the impact of a small difference in GA (<7 days), may

not have a sizeable impact on the estimation of preterm pregnancies.

However, in the current study, there is only one study reported from

the first trimester and hence precludes any further interpretation.

This area is a gap in the literature as the ACOG guidelines suggest

performing obstetric US during the first trimester as the most

accurate method for GA estimation (5). Even though the second-

trimester scans accurately estimate GA using AI models, we were

unable to extract when the scan was performed. This would be

important as scans done in the earlier half of the second trimester

are more accurate than in the later half (5).

Various fetal biometric measurements used as 2D images (BPD,

HC, AC, and FL) have been used manually in different combinations

to estimate GA through various formulas (38). We found precise

estimates (mean error: 2.98 days) in GA estimation, while all fetal

biometrics (BPD, HC, FL, and AC) were included in the model.

We also found good estimates for TCD (mean error: 1.54 days)

and BPD and HC combined (mean error: 2.00 days); however,

these were only reported by one study each.

Based on the AI models used, deep learning techniques such as

CNN and DNN performed better than the regression model which

was reported by only one study. Deep learning algorithms have

been shown to perform on large image-based datasets (39).

These algorithms are known to perform superior to conventional

machine learning (ML) methods, especially when interacting with

complex data (40). The current review has shown that using

these algorithms, the GA variation is approximately 4 days, while

that shown by actual ultrasound measurements ranges from 6 to

14 days across the trimesters (25). In the current use case of GA

estimation, a number of fetal biometric parameters are measured,

thus making the data set multi-dimensional and explaining the

better performance of deep learning algorithms in estimating GA.

This review also highlights the need for standardized reporting

of studies using AI on healthcare data. As shown in this review,

there was significant heterogeneity in the performance metrics

used to report GA along with other study parameters such as

sample size, GA range, and input parameters. Furthermore, most

of the studies in this review had unclear risk of bias for patient

selection as information on the random selection of patients was

not provided, as well as on the domain for index and reference

tests due to unclarity of pre-defined thresholds or the blinding

status of the interpreters/operators.

The existing literature on estimating GA using AI is mainly

based on studies conducted in HICs and UMICs, whereas the

evidence from LMICs is sparse. With preterm birth and its

associated morbidities being the leading cause of neonatal deaths

worldwide with a disproportionately high burden in LMICs (41),

timely estimation of GA in pregnancy is important so that care

pathways for women at high risk of preterm birth can be

prioritized. Lack of a specialized health workforce and diagnostic

infrastructure curtail the large-scale use of the US; however,

technologies such as blind sweep images coupled with AI can

help address the inequity in health services in these regions (42).

To overcome these disparities between regions, establishing
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global collaborations may be a good approach to utilize the skills

available in the Global North on datasets from the Global South

thus reducing the equity gap. However, understanding the

limitations of AI specifically in terms of its applicability in

healthcare as these models rely on the availability of high-quality

imaging, which may be challenging in resource-constraint

settings. In addition, there is a significant demand for diverse

and representative training datasets to ensure the models perform

equitably across various demographic conditions. Moreover,

ethical concerns, particularly issues related to data privacy,

further complicate the integration of AI in healthcare.

To the best of our knowledge, this is the first meta-analysis on

the use of AI in estimating GA. Furthermore, this review informs

the need for further research in this area, especially from LMICs,

along with the need for standardized reporting of the evaluation

and external validation of the AI models. However, this study has

several limitations. Out of the 17 studies included in this review,

we could perform a meta-analysis only on ten studies due to the

variability in the performance metrics reported across studies. In

addition, the high heterogeneity observed between the included

studies necessitates a cautious interpretation of the pooled

estimates, even with the application of random-effects models.

Even though there is a growing body of AI literature across the

globe, we only included studies from the published literature in

English, which could increase the risk of publication bias.
5 Conclusion

This review provides evidence on the performance of AI models

to estimate GA using US as a gold standard. The findings from this

review may be particularly relevant in LMICs, where there is a

dearth of trained care providers and access to these is limited.

Future research requires a standardized approach for assessing

and reporting AI accuracy in GA estimation and inclusion of

studies conducted in LMICs. Widescale implementation of AI

algorithms in these regions would empower frontline care

providers such as midwives for better decision-making during

pregnancy, thus improving pregnancy outcomes.
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