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Imaging phenotypic differences in
multiple sclerosis: at the crossroads
of aging, sex, race, and ethnicity
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Burcu Zeydan1,2,3,4*
1Department of Neurology, Mayo Clinic, Rochester, MN, United States, 2Center for Multiple Sclerosis
and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States, 3Department of Radiology,
Mayo Clinic, Rochester, MN, United States, 4Women’s Health Research Center, Mayo Clinic, Rochester,
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Clear sex differences are observed in clinical and imaging phenotypes of
multiple sclerosis (MS), which evolve significantly over the age spectrum, and
more specifically, during reproductive milestones such as pregnancy and
menopause. With neuroimaging being an outcome measure and also a key
subclinical biomarker of subsequent clinical phenotype in MS, this
comprehensive review aims to provide an overview of sex and hormone
differences in structural and functional imaging biomarkers of MS, including
lesion burden and location, atrophy, white matter integrity, functional
connectivity, and iron distribution. Furthermore, how therapies aimed at
altering sex hormones can impact imaging of women and men with MS over
the lifespan is discussed. This review also explores the key intersection
between age, sex, and race/ethnicity in MS, and how this intersection may
affect imaging biomarkers of MS.
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1 Introduction

There are clinical sex differences affecting aspects of multiple sclerosis (MS) from

susceptibility to disease course, and from relapse recovery to progression. MS is more

common in women (1) and women often have an earlier disease onset than men (2).

Women have more frequent relapses early in the disease course (3), but with better

relapse recovery potential than men (4). Although men have fewer relapses (3), they

usually have faster disability worsening early on (5) due to lower relapse recovery

potential with higher likelihood of entering the progressive phase earlier (6), possibly

partly associated with age-related decline of androgens in men (7). However, once

women enter the progressive phase (around the fifth decade), they accumulate disability

faster and consequently can catch up to men (8). Along with aging, menopause results

in a more dramatic sex hormone drop compared to men and thus likely contributes to

this alteration in the MS disease course.

In addition to sex, race/ethnicity is also closely related to MS susceptibility, course, and

progression. There is a similar prevalence of African Americans to White Americans with

MS in California (9). African American women have a higher risk of MS than White

American women (9). African Americans have more aggressive clinical disease than

White Americans (10) and African American men are more likely to have primary

progressive MS (PPMS) than White American men (11). Little to no work has been
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conducted looking at how sex and race/ethnicity impact imaging

findings, individually or together, in MS.

It is imperative to incorporate the role of aging into sex and

racial/ethnic differences in MS imaging as aging is a key

determinant of the phenotypic and radiological variability in MS

(12, 13). Central nervous system (CNS) reserve decreases with

aging, not only in the general population, but also in MS (14).

With aging, inflammatory activity and therefore new relapse and

lesion formation frequency tend to decrease in MS, but the

recovery potential from relapses decreases with aging as well

(15). Most importantly, transition to the progressive phase of MS

increases with aging (16), which often overlaps with changes in

age-related sex hormone levels during menopause and andropause.

Imaging biomarkers in those of diverse races/ethnicities differ

from those in White persons. African Americans have earlier

brain atrophy, lower cortical thickness, and higher WM lesion

load than White Americans (17, 18). Latin Americans with MS

have higher T2 lesion volume, and lower brain volume, white

matter volume, and cortex volume than non-Latin American

White persons with MS (19). Japanese persons with MS have

greater T2 lesion volume per lesion, and lower total brain

volume, white matter volume, thalamic volume, and deep grey

matter volume compared to White persons with MS (20).

Magnetic resonance imaging (MRI) differences between diverse

racial/ethnic groups worldwide with MS has been

comprehensively reviewed (21). Less is known about sex

differences in diverse populations. However, men generally have

greater brain atrophy than women (22) with a higher rate of

decreasing cortical thickness (23).

Similarly, there are sex and racial/ethnic differences in

laboratory biomarkers of MS such as vitamin D, cerebrospinal

fluid (CSF) kappa free light chain, oligoclonal bands, and

neurofilament light chain (NfL). Vitamin D supplementation

seems to be more effective at reducing CD4+ T-cell proliferation

in women than in men with MS (24). With respect to diverse

racial/ethnic groups, African Americans have lower vitamin D

levels than non-Latin American White Americans and Mexican

Americans in the general population (25). In persons with MS,

vitamin D levels were found to be higher in White Americans

compared to Black Americans and Hispanic Americans, with the

association of higher vitamin D levels with reduced risk of MS

being significant only in White Americans (26). On the other

hand, the CSF biomarkers of kappa free light chain (27) and

oligoclonal bands (28) do not appear to differ between the sexes,

while some studies have shown that men are more likely to have

negative CSF oligoclonal bands (29–31). Moreover, CSF

neurofilament light chain levels are higher in men than women

(29, 32, 33). Regarding biomarkers in diverse racial/ethnic

groups, Black persons with MS are more likely to have CSF

oligoclonal bands than White persons with MS (34). However,

overall, knowledge of the interaction of sex and race in

laboratory biomarkers remains limited, similar to what has been

observed in imaging metrics of MS.

As the focus of this review, imaging metrics can serve both as

an outcome and a biomarker. To better understand and explain sex

and racial/ethnic differences in MS clinical findings, identification
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of sex and racial/ethnic differences in imaging biomarkers of MS

in the age spectrum is essential. As many of the differences on

imaging are expected to precede differences observed clinically,

evaluating the impact of sex and race/ethnicity on imaging

phenotypes provides an opportunity to intervene and optimize

MS management in a timely manner. Investigating the

interaction of sex with race/ethnicity in imaging in MS is

important to target and reduce disparities.

This comprehensive review provides an overview of sex and

hormone differences in imaging biomarkers of MS, and

highlights how reproductive milestones (pregnancy, menopause)

along with hormone therapy (HT) may impact MS imaging

differences in the age spectrum. The review also focuses on the

key interactions of age, sex, and race/ethnicity in MS and how

this intersection may affect imaging biomarkers of MS.
2 How do sex and hormones impact
lesion load and location in MS?

Women generally have a greater number of gadolinium-

enhancing lesions compared to men (35–37), though a few

studies have not found a significant sex difference (38, 39). More

gadolinium-enhancing lesions in women is indicative of a more

inflammatory phenotype, related either to abnormally low

testosterone levels in women (36) or due to high estradiol and

low progesterone levels (40). A small study of eight women

showed that the ratio of progesterone/17-beta-estradiol during

the luteal phase was associated with the number and volume of

gadolinium-enhancing lesions (41). These MRI results align with

a large study including over 6,000 women and 3,000 men with

MS, demonstrating that women have more relapses up to

menopause than men, indicative of more inflammatory disease in

premenopausal women than men (42), likely related to changes

associated with sex hormone levels and aging. Aging in MS is

generally associated with decreased inflammatory activity

regarding relapses (8) and new enhancing and/or T2 lesions on

MRI (43), and thus, interactions between sex and age warrant

further investigation to determine the relative contribution of

each variable to inflammatory activity in MS.

With respect to T1 hypointense lesions related to more severe

axonal/neuronal damage, men with progressive MS have higher T1

lesion volume and higher T1/T2 ratio compared to women (44),

which has been replicated in another study showing higher

T1/T2 ratio in men compared with women in both relapsing-

remitting MS (RRMS) and secondary progressive MS (SPMS)

(35). T2 hyperintense lesion area was increased in women

compared to men with MS as well (45).

Regarding lesion location, men with RRMS had a much greater

likelihood of having exclusively infratentorial lesions than women,

a relationship that did not hold in progressive MS (39). This study

did not find any difference between sexes regarding spinal cord

lesions (39), though another study showed that men have more

spinal cord lesions than women (46). Men also have more

cortical GM lesions than women (47) which has been confirmed

by a neuropathological study (48).
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3 How do sex and hormones impact
atrophy in MS?

Brain atrophy occurs with aging in the general population, but the

atrophy rate is faster in those with MS (14). Sex differences contribute

to clinical phenotypic variability in MS, both independently and in

association with aging (49). Sex differences also impact imaging

biomarkers of atrophy in MS across the lifespan.

Although CNS atrophy occurs in both sexes in MS, men show

more significant whole brain and GM atrophy compared to

women, especially during the early and midlife periods of the

disease. Regional GM atrophy, including localized cortical thinning

and deep GM atrophy, independent of age and disease duration,

occurs more extensively in men (50–52). In parallel, higher

bifrontal GM atrophy in men compared to women with MS

persisted even after the groups were matched for IQ, education

level, cognitive performance and physical disability in addition to

age and disease duration (53). Moreover, men showed more

prominent central atrophy, with larger third and lateral ventricle

volumes than age-matched women, indirectly reflecting deep GM

damage (38, 50). There is also a stronger association between

thalamic atrophy and clinical metrics such as 9-hole peg test (52)

and cognitive function (51) in men than women with MS.

Data on sex differences in spinal cord atrophy in MS is limited.

In a study of early RRMS patients, although not statistically

significant, women exhibited a smaller cervical spinal cord cross-

sectional area than men (54). In another study, women had

smaller cervical spinal cord areas compared to men in the

control group, whereas cervical spinal cord areas were similar

between women and men in the MS group (55). In parallel, a

postmortem pathology study found similar lateral column cross-

sectional areas at C3 and T2 between the sexes, but that the

nerve fiber layer density was significantly lower in men,

suggesting greater axonal damage in men than women (56).

In contrast to multiple unfavorable structural imaging findings

in men, one study found that women had more advanced WM

atrophy in the brain compared to men with MS (38). This could

relate to higher inflammatory activity with a higher number of

WM lesions in women, discussed in the previous section, leading

to more accelerated WM loss.
4 How do sex and hormones
impact non-conventional imaging
metrics in MS?

Sex differences in WM integrity, functional connectivity,

microglia, and iron deposition warrant attention since these

advanced imaging techniques could enlighten the underlying

mechanisms better and may correlate more strongly with

clinical outcomes.

A diffusion tensor imaging (DTI) study showed that diffuse and

regional WM damage was significantly higher in men, while disease

duration, disability, and WM lesion load were similar between sexes

with MS (57). The normal appearing WM was the main driver of
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more extensive and severe WM integrity loss in men. The region-

wise WM integrity loss was specifically more severe in the thalamus,

which was associated with faster deterioration in cognition in men

(57). Another DTI study found a significant difference in the

microstructural change rate of chronic stable demyelinating WM

lesions, with men having a faster rate of ongoing inflammation,

demyelination, and axonal loss in lesions compared to women,

which was associated with progressive brain atrophy (58).

In a resting-state functional MRI (fMRI) study on early-stage

MS, men exhibited greater GM atrophy but also increased

functional connectivity compared to women (53). However, in a

similar group of patients with MS, in the caudate, men had

lower functional connectivity to the posterior cingulate cortex

compared to women (59). In another fMRI study, MS patients

had impaired functional connectivity within the male group,

whereas no difference was found between MS patients and

controls in the female group (60). Additionally, a decline in

functional connectivity and network efficiency was associated

with a decline in visuospatial memory only in men with MS (60).

Women with MS have a more clustered hippocampal network

organization with an increase in hippocampal connectivity, despite

more widespread hippocampal atrophy than men with MS (61). It

is hypothesized that in men, increased functional connectivity seen

earlier in the disease course may be due to a compensatory

mechanism aiming to overcome increased structural tissue

damage, but it seems to evolve into a more maladaptive

mechanism as the disease progresses. In contrast, women start to

demonstrate greater functional connectivity and re-organization as

the disease continues since women may have better functional

preservation and reserve, resulting in lower rates of disability

worsening (29, 53). However, how this relates to aging and

menopause remains unknown.

Quantitative susceptibility mapping (QSM) has been used to

identify chronic active lesions in MS with one study determining

that men are more likely to have QSM-visible lesions with rims,

indicative of chronic active inflammation compared to women

(62). This finding has been replicated in neuropathology studies

that showed an increase in smoldering lesions (63) and more

mixed active/inactive lesions in men than women with MS (48).

Positron emission tomography (PET) is an emerging advanced

imaging technique in MS targeting various underlying mechanisms

such as demyelination and neuroinflammation, based on which

radioligand is used (64, 65). For example, microglia can be

evaluated using radioligands that bind to 18kDA translocator

protein (TSPO). In a recent study, men showed higher TSPO

binding on PET compared to women, both in MS and healthy

individuals, and this sex difference in TSPO-expressing microglia

was suggested to contribute to the higher likelihood of

progression in men with MS (66).
5 How do reproductive milestones
affect imaging biomarkers in MS?

With respect to reproductive milestones for women, studies in

MS using MRI have been conducted during pregnancy, in the
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postpartum period, and with the transition to menopause. The

impact of pregnancy on new MRI activity has been demonstrated

even at the earliest phase of MS, radiologically isolated syndrome

(RIS), a form of asymptomatic MS, where a significant increase

in the number of T2 lesions and T2 lesion volume was seen in

individuals with RIS who became pregnant compared to those

who did not (67).

In the same vein, a study conducted on women with MS with 2

MRIs completed before pregnancy and 2 MRIs completed after

delivery demonstrated higher T2 lesion volume and greater

annualized T2 lesion volume increase as compared to the pre-

pregnancy period (68). Of note, in this study, MS was deemed to

be mild, with only 6% of participants on moderate to high

efficacy DMTs and 81% on low efficacy DMT (68). This study

paradigm was interesting in that each MS patient served as their

own internal control with multiple scans, enabling for

comparisons within a single individual over 4 MRIs. An increase

in brain T2 lesion volume postpartum has been replicated by

other studies (69), with one of these studies also finding an

increase in brain T1 lesion volume (69).

Other studies have compared MRI gadolinium-enhancing

lesions before and after pregnancy, which have shown a

significant increase in the number of gadolinium-enhancing

lesions on brain MRI postpartum compared to pre-pregnancy

(70, 71), even in the absence of clinical attacks (70, 71).

Regarding breastfeeding, one study noted a protective effect of

breastfeeding on MRI activity (70), while another did not (71).

Most of the aforementioned studies did not include spinal cord

MRIs, or if they did, did not provide separate analyses for spinal

cord. This is noteworthy, as the development of new spinal cord

lesions are more likely to be symptomatic than new brain lesions

and thus to contribute to disability worsening (72). Interestingly,

in the postpartum period, breastfeeding duration of >6 months

was associated with lower WM volume, though this could

be linked to increased inflammatory disease activity in the

postpartum period rather than the independent effect of

breastfeeding (73). The postpartum inflammatory activity was

also associated with shorter breastfeeding duration (73).

Upon entering menopause, the MS disease course and MRI

features change for women into a less inflammatory form.

Menopausal women have lower annualized relapse rate and MRI

activity than women not in menopause (74). Although women

have more benign volumetric outcomes and men have faster

atrophy rates early in the MS disease course, this trend starts to

change with aging and possibly with menopause.

In an MS cohort with a mean age of 30 years, while the initial

normalized deep GM volumes were greater in men, the follow-up

volumes became similar between two sexes after 5 years (75).

Moreover, compared to men, greater total brain, cortical and

brainstem volumes were observed in women with MS onset before

menopause, whereas no difference was found in women with MS

onset after menopause (76). In parallel, another study found greater

GM and central atrophy rates in men compared to age-matched

women in earlier decades of life, but this difference was nullified

after age 60 (50). This suggests a potential role of menopause and

change in sex hormone levels contributing to increased atrophy
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rates in women, resulting in women catching up to men. This

aligns with what is observed clinically; after progressive MS onset,

disability worsening rate increases in women, catching up to men

(8). Additionally, women with an earlier age at menopause onset

tend to transition to the progressive phase earlier (77) and disability

worsening increases after menopause (78).

Anti-Mullerian hormone (AMH) can be used as a biomarker of

ovarian aging, as plasma AMH levels associate with oocyte and

leukocyte telomere lengths as well as antral follicle counts and

start to decrease with ovarian aging (79). In contrast, the levels

of gonadal sex hormones such as estrogen and progesterone

often start to drop later on during the perimenopausal transition.

Although AMH may not necessarily have similar pleiotropic

effects on the brain like gonadal sex hormones, in a study on

women with MS, lower AMT levels correlated with greater GM

atrophy and disability independent of age and disease duration

in women with MS (80). The impact of this decline in

reproductive hormone levels on brain atrophy is also seen in the

general population. Premenopausal women who underwent

bilateral salpingo-oophorectomy had smaller amygdala volumes,

thinner parahippocampal-entorhinal cortex, and lower entorhinal

WM integrity compared to controls (81). Whether abrupt or

relatively gradual, reproductive hormone changes may lead to

regional structural abnormalities in the brain, possibly preceding

cognitive decline in cognitively unimpaired women (81) and

disability worsening in women with MS (80).
6 How does hormone therapy affect
imaging biomarkers in MS?

The above arguments point to clear sex differences in MS,

suggesting a potential for reversal of these trends with HT in

both men and women. As deficiency in sex hormones is

associated with deterioration of imaging metrics in MS, patients

may benefit from HT.

In a pilot study, the effect of testosterone supplementation was

evaluated in 10 men with relapsing-remitting MS (82). Patients first

had a 6-month pretreatment period, followed by a 12-month period

of 100 mg daily testosterone gel treatment. After one year of

treatment, participants showed an increase in lean body mass

without any significant adverse effects, as well as a significant

improvement in Paced Auditory Serial Addition Task (PASAT)

scores. There was no significant change in the number or volume of

gadolinium-enhancing lesions with treatment. However, compared

to the first half of the study (6 months of pretreatment, 3 months of

testosterone treatment), in the second half of the study (9 more

months of testosterone treatment), the annualized rate of brain

volume loss was reduced by 67%. Therefore, in addition to the

improvement in cognition, men with MS experienced a slowing in

brain atrophy after using testosterone treatment for 12 months.

Although a potential anti-inflammatory effect of testosterone was

not detected in this group of patients with low level of baseline

inflammatory activity, the findings of this small study suggested a

potential neuroprotective impact of testosterone supplementation in

men with MS, which would merit further exploration (82).
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In women with MS <50 years, after 24-months of estriol

treatment (along with glatiramer acetate), the voxel-based

morphometry showed localized GM sparing, particularly in the

frontal cortex, correlating with cognitive improvement (83). This

is supported by animal studies demonstrating an increase in

remyelination and decrease in microglial activation with estrogen

treatment (84). This is also consistent with HT study findings in

healthy women, such as the Kronos Early Estrogen Prevention

Study (KEEPS) (85). In recently menopausal women treated with

transdermal estradiol or oral conjugated equine estrogen (CEE),

the WM hyperintensity volume increased in both groups, which

was different from the rate of WM hyperintensity increase in the

placebo group in the oral CEE group, but not in the transdermal

estradiol group. Furthermore, the transdermal estradiol group

had preservation of prefrontal cortex volume over 7 years of

longitudinal MRI compared to the placebo group (85). However,

the increase in WM hyperintensity in the oral CEE group

compared to the placebo group did not persist 10 years after the

end of KEEPS in the KEEPS continuation study. No differences

in WMH was identified when the treatment groups (transdermal

estradiol, oral CEE) were compared to placebo 10 years after the

end of hormone therapies (14 years after randomization) (86).

Few studies have used therapies aimed at altering a woman’s

hormones, either as oral contraceptive pill or HT, with MRI lesion

load as an outcome measure. One study used a combination of

interferon beta-1a and oral contraceptive pill (containing

ethinylestradiol and desogestrel), finding that more patients did not

develop gadolinium-enhancing lesions compared to those treated

with interferon beta-1a alone (87). Similarly, another study showed

a longer time to the next gadolinium-enhancing lesion in women

on continuous oral contraception compared to women who were

not (88). There was also a randomized clinical trial using either the

combination of glatiramer acetate and estriol or glatiramer acetate

and placebo in women ages 18–50 with MS, finding a decrease in

relapse rate but no change to MRI lesions (89). Lastly, one study

(POPARTMUS) used a combination of nomegestrol acetate and

17-beta-estradiol in post-partum women with MS, finding no

difference in annualized relapse rate compared to placebo at 12

weeks, and no difference between groups with respect to volume or

number of gadolinium-enhancing or T2 lesions on MRI (90).

In a study on 14 peri/postmenopausal women with MS and 13

controls, the use of HT (estradiol and cyclical dydrogesterone) for

12 months improved vasomotor and depressive symptoms at 3 and

12 months in both groups and showed no change to MRI lesion

burden with respect to gadolinium-enhancing or T2-FLAIR

lesions at 12-months (91). In a follow-up study on 16 peri/

postmenopausal women with MS, lower baseline estradiol

correlated with lower whole brain volume on MRI independent

of age. Lower baseline estradiol also correlated with higher brain

white matter lesion load and higher serum NfL (sNfL) and

serum glial fibrillary acidic protein (sGFAP) levels (92). Over one

year of menopausal HT, there was no significant change in white

matter lesion load, whole brain volumes, sNfL and sGFAP. In

another pilot study on 24 peri/postmenopausal women with MS

treated with bazedoxifene plus conjugated estrogen for 2 months,

hot flashes were improved (93). Of the 12 participants who
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underwent MRI, only one in the placebo group, who was not on

DMT, developed new gadolinium enhancing lesions in 8 weeks,

whereas none of the 8 in the hormone treatment group, who

were all on DMTs, developed new lesions (93). Other than the

aforementioned studies, there is a dearth of studies on HT use in

menopausal women, which would be important given the higher

propensity for disability worsening upon entering menopause.

Transgender individuals also warrant mention here, though data

is very limited. One study has shown that MS risk is higher in

transgender individuals having undergone male-to-female transition

(94). The specific effects of HT on clinical and imaging outcomes in

these individuals with MS is unknown. However, in transgender

individuals without MS, those undergoing male-to-female transition

receiving estradiol and anti-androgen treatment developed volume

decreases in total brain (95), hypothalamus (95), and hippocampus

(96), as well as reduction in cortical thickness (97).
7 How does the intersection of sex
and race/ethnicity affect imaging
biomarkers in MS?

Most studies above do not report on the racial/ethnic makeup

of the participants, nor do they analyze differences between diverse

racial/ethnic groups in conjunction with age and sex. This is an

unmet need in MS, and of great importance given African

Americans tend to have more aggressive disease, both clinically

and radiologically, than White Americans (21, 98, 99).

Few studies exist on international populations withMS looking at

sex differences on imaging. A study using the Argentine MS Registry

(RelevarEM) (39) did not report on the race/ethnicitymakeup of their

participants. Other registries with diverse racial/ethnic groups with

MS include the National African Americans with MS Registry

(NAAMSR) (100) and the North American Research Committee

on Multiple Sclerosis (NARCOMS) (101). These are promising

avenues for further exploration of the interactions between sex and

race/ethnicity and MS, including MRI outcomes.

With the lack of MS studies looking at the intersection between

sex and race/ethnicity, one can turn to other systemic autoimmune

conditions where this has been studied more extensively, including

systemic lupus erythematosus (SLE) and sarcoidosis, for insight.

In SLE, African American men fare worse than African

American women with a higher likelihood of end organ damage

and death (102). Similar to MS, the prevalence of SLE in African

American women is higher than that in White American women

(103) as is the prevalence in Latin American women compared

to non-Latin American White women (104). Furthermore,

African Americans with SLE have more severe disease compared

to White Americans (105). The presence of focal brain lesions in

SLE is associated with African American ethnicity, with analysis

of sex not revealing an additional association (106).

Sarcoidosis is more common in African Americans than White

Americans, with African Americans having earlier age of onset and

being more likely to die from the disease (107). In neurosarcoidosis

specifically, African Americans are less likely to show resolution of

abnormalities on MRI than other races/ethnicities (108).
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The extent of interaction between race/ethnicity and sex in

other disorders is not limited to the immune activation and its

measures. As the other component of pathobiology of MS

is neurodegeneration, one can investigate such interactions in

other neurodegenerative disorders. In dementia, age-standardized

incidence of Alzheimer’s disease (AD) was found to be higher in

women than men, and AD risk was higher in African Americans

and Native Hawaiians, whereas the risk was similar in Latin

Americans, and lower in Asian Americans compared to White

Americans (109). High exposure to statins correlated with a lower

risk of AD among White women, White men, Latin American

women, Latin American men and Black women, but not in Black

men (110). Given the clinical and imaging interactions between sex

and race/ethnicity noted in these studies of other systemic

autoimmune and neurodegenerative diseases, more work needs to

be done using imaging biomarkers as an outcome measure to study

the intersection of sex and race/ethnicity in the clinical, imaging,

and laboratory immunophenotypes of MS in the age spectrum.
8 Discussion

There are clear sex differences in MS seen with imaging, with

women tending to have a higher number of T2 hyperintense and

gadolinium-enhancing lesions, as well as greater WM atrophy.

Both T2 hyperintense and gadolinium-enhancing lesions tend to

increase in the postpartum period but decrease after menopause.

In contrast, men are likely to have more T1 hypointense, cortical

GM, infratentorial, and spinal cord lesions. Men also

demonstrate lower diffuse and regional WM integrity as well as

decreased functional connectivity and re-organization in the
FIGURE 1

Putative sex differences in imaging in MS. The panel on the left shows the bal
having more MRI markers of inflammatory disease while men have more M
panels on the right outline MRI changes seen at reproductive milestones for
in both women and men with MS (bottom).
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brain than women, which suggests better functional preservation

and CNS reserve in women. Moreover, men have a higher

number of chronic active WM lesions with rims and lower WM

integrity in chronic stable WM lesions than women. Men exhibit

greater whole brain and GM atrophy than women, especially

early in the disease course. However, with aging, and potentially

with menopause, no significant difference in brain volume is

seen between the sexes, especially after around the sixth decade.

In parallel, a decrease in T2 hyperintense and gadolinium-

enhancing lesions along with decrease in brain atrophy rates

were observed in women who received HT (Figure 1).

Based on imaging study findings, neuronal and axonal loss is

overall more extensive in men with MS, leading to a more

neurodegenerative disease process early on (49, 111) in a region-

specific manner (52). Chromosomal differences between sexes and

how they affect the nervous and immune systems are one of the

main drivers of sex differences observed in CNS atrophy metrics of

MS. The XX genotype exhibits a more proinflammatory immune

response (112) whereas the XY genotype exhibits a more

neurodegenerative response to an immune system attack (49, 111).

Differences in sex hormone patterns also play a main role in the

sex variability in imaging metrics through their relationship with

nervous and immune systems, as sex hormones have both

neuroprotective and anti-inflammatory effects (113–115). The

gradual decline in sex hormones with aging and menopause is

associated with immuno-senescence and decreased neuronal repair,

and appears to result in enhancement of neurodegenerative

outcomes including increase in brain atrophy in MS.

From the work reviewed here, while there is a higher number of

studies looking at impact of sex on clinical and imaging phenotypes

of MS, such studies are less common with race/ethnicity. Similarly,
ance of imaging findings between women and men with MS, with women
RI markers of neurodegeneration, often early in the disease course. The
women with MS (top) and how hormone therapy can impact MRI findings

frontiersin.org

https://doi.org/10.3389/fgwh.2024.1412482
https://www.frontiersin.org/journals/global-womens-health
https://www.frontiersin.org/


Nathoo et al. 10.3389/fgwh.2024.1412482
with imaging biomarkers, the interactions with race/ethnicity have

not been studied. The paucity of studies with race/ethnicity as

opposed to sex is somewhat understandable given the easier

definition of sex as a variable rather than race/ethnicity in

studies, along with the fact that many centers may not have

enough representation of different ethnicities across the globe.

While single variable studies are helpful in answering focused

questions in MS, genetic and hereditary variables such as sex and

race/ethnicity, along with the impact of socioeconomic status and

disparities directly tied into these variables, cannot be separated

into single variable silo studies. Our review highlights the significant

unmet need in studying how age, sex and race/ethnicity interact in

predicting imaging and clinical outcomes in MS. Such studies need

to be conducted with significant effort across multiple centers with

sufficient power to come up with better predictive models to

individualize health care in discrepant MS populations.
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