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Introduction: Postpartum hemorrhage (PPH) is a significant cause of maternal
mortality worldwide, particularly in low- and middle-income countries. It is
essential to develop effective prediction models to identify women at risk of
PPH and implement appropriate interventions to reduce maternal morbidity and
mortality. This study aims to predict the occurrence of postpartum hemorrhage
using machine learning models based on antenatal, intrapartum, and postnatal
visit data obtained from the Kenya Antenatal and Postnatal Care Research
Collective cohort.
Method: Four machine learning models – logistic regression, naïve Bayes, decision
tree, and random forest – were constructed using 67% training data (1,056/1,576).
The training data was further split into 67% for model building and 33% cross
validation. Once the models are built, the remaining 33% (520/1,576)
independent test data was used for external validation to confirm the models’
performance. Models were fine-tuned using feature selection through extra tree
classifier technique. Model performance was assessed using accuracy, sensitivity,
and area under the curve (AUC) of the receiver operating characteristics (ROC)
curve.
Result: The naïve Bayes model performed best with 0.95 accuracy, 0.97 specificity,
and 0.76 AUC. Seven factors (anemia, limited prenatal care, hemoglobin
concentrations, signs of pallor at intrapartum, intrapartum systolic blood
pressure, intrapartum diastolic blood pressure, and intrapartum respiratory rate)
were associated with PPH prediction in Kenyan population.
Discussion: This study demonstrates the potential of machine learning models in
predicting PPH in the Kenyan population. Future studies with larger datasets and
more PPH cases should be conducted to improve prediction performance of
machine learning model. Such prediction algorithms would immensely help to
construct a personalized obstetric path for each pregnant patient, improve
resource allocation, and reduce maternal mortality and morbidity.
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Introduction

Postpartum hemorrhage (PPH) is a major cause of maternal

mortality worldwide, accounting for 30%–50% of maternal

deaths (1–3). Most maternal deaths (99%) occur in low- and

middle-income countries (LMICs) (2). Sub-Saharan Africa is

disproportionately affected, with the highest maternal mortality

(66% of global burden) (4) and a PPH prevalence of 10.5% (5),

accounting for 1 in 4 maternal deaths (1) PPH is also linked to

severe maternal morbidity, including puerperal hysterectomy,

multiple organ failure, and chronic psychological trauma (6, 7).

Despite aggressive governmental efforts over the last 15 years to

reduce maternal mortality in Kenya, including the implementation

of a reproductive health voucher program in 2006 (8) and the

provision of free maternity treatments in government facilities in

2013 (9), progress has been slow. The maternal mortality ratio

(MMR) in Kenya is high (342 per 100,000 live births) compared

to the current global MMR of 211 per 100,00 live births (4). A

reduction in maternal mortality to a target of less than 70

maternal deaths per 100,000 live births is one of the United

Nations’ Sustainable Development Goals for 2030 (10). The

ability to identify patients at risk of PPH and associated

complications reliably, accurately, and early in pregnancy would

be an important step towards achieving this aspirational goal.

In contrast to traditional general-purpose predictive algorithms,

which merely transform input data into an output based on

predetermined rules, artificial intelligence (AI) systems can generate

new rules and patterns by analyzing both input and output data. A

recent systematic review found three PPH risk prediction models

with promising clinical applications (11), but AI approaches have

not yet been thoroughly evaluated in obstetrics (12). Moreover,

these predictive models that have been developed thus far used

populations from the United Kingdom (13), South Korea (14), and

China (15), and focused on PPH in the setting of cesarean

delivery. Predictive modeling for PPH in a general obstetric LMICs

population has not previously been reported.

The aim of this study was to construct and validate machine

learning models to predict PPH in a general obstetric population

using data from the Kenya Antenatal and Postnatal Care

Research Collective (ARC) cohort. The long-term goal is to allow

obstetricians to identify patients at high risk of PPH and guide

clinical decision-making.
Materials and methods

Study population

Data from the Maternal and Newborn Health (MNH)

monitoring report collected by ARC were utilized for the

development and validation of PPH prediction models. Briefly,

MNH monitoring report data were collected as a part of

prospective longitudinal study for pregnancy risk stratification

innovation and measurement alliance at multiple LMIC sites,

including in Ghana, Kenya, Zambia, and Pakistan. For this study,
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we used the antenatal, intrapartum, and postnatal visit data from

the Kenya site collected between August 2020 and February 2022.

The inclusion criteria were women with documented antenatal,

intrapartum, and postnatal visits, including delivery outcome and

reported PPH outcome. As a part of Maternal labor and delivery

outcome documentation, PPH outcome were reported by

healthcare staff within 24 h of delivery. Data were collected

during home visits by healthcare staff as well as during healthcare

facility visits, including antenatal clinic (ANC) visits, intrapartum

visit within 24 h of delivery, and postnatal care (PNC) visits.
Experimental design

Demographic and clinical information collected during the

ANC and intrapartum (delivery) visits were used to build the

predictive models. The data were randomly divided into a

training (67%) and independent testing (33%) dataset. The ratio

of PPH to non-PPH cases was kept similar in training and

testing dataset. The training dataset was again randomly divided

into 67% and 33%, and the smaller dataset used for cross

validation. The definition and classification of PPH in the

literature is variable, depending on such factors as the estimated

blood loss (EBL) (>500 ml or >1,000 ml), type of delivery

(vaginal vs. cesarean), and timing of hemorrhage (early vs. late)

(16–18). In this study, we used the outcome of interest (presence

or absence of PPH) as reported by healthcare staff while

collecting maternal labor and delivery outcome during delivery

visit. This was generally determined using the criteria of EBL >

500 ml after vaginal delivery and >1,000 ml after cesarean

delivery. All were early PPH cases as they were documented at or

shortly after delivery.
Feature engineering and machine learning

Data were collected across four ANC visits at 0–17 weeks,

18–25 weeks, 26–33 weeks, and ≥34 weeks of gestational age.

Socio-demographic data (such as age and height) were collected

during the first ANC visit, whereas clinical data (such as

hemoglobin level, blood pressure, and proteinuria,) were collected

at each ANC visit. Overall, around 700 features consisting of

categorical, numerical, and date/time variables were collected

from each study subject across all pregnancy visits. To develop

predictive algorithms for PPH, most of the features collected

after the onset of labor (with the exception of the presence or

absence of PPH) and all of the features collected at the PNC visit

were removed from the analysis. The exclusion of such features

was intentional to facilitate early prediction of PPH. This

approach aims to optimize resource allocation, particularly in

low-resource healthcare settings prevalent in LMICs. When two

columns or features were highly correlated with each other as

identified by data science techniques, only one of them was

retained to avoid multicollinearity. Missing values were handled

in one of two ways: for categorical variables, a new category

“others” was created; for numerical variables, missing values were
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imputed using Generative Adversarial Nets Framework (GAIN)

imputation methodology (19).

Data for each study subject were captured at different

gestational ages: 47% of women had their first ANC visit at 0–13

weeks of gestation, whereas 53% had their first ANC visit at 14–

18 weeks of gestation. This is common in the healthcare setting

resulting in data that is heterogenous and irregularly sampled at

multiple time points. To address this issue, we employed the

FIDDLE (Flexible Data-Driven Pipeline) framework (20) and

transformed our features into two categories: time-invariant and

time-variant features. Time-invariant features are those that were

collected only once and typically do not vary (such as maternal

age), whereas time-variant features were collected at different

time points and vary over the course of the study (such as blood

pressure).
TABLE 1 Demographic and clinical characteristics of the study
populations.

PPH (n = 40) No PPH
(n = 1,536)

Demographic Characteristics
Maternal age, years 28.5 ± 6.8 26.4 ± 5.3

Vaginal delivery 33 (82.5%) 1,324 (86.2%)

FIGURE 1

Flow chart of Kenya maternal cohort.
Model performance and comparison

First, we trained four machine learning models (logistic

regression, naïve Bayes, decision tree, and random forest) to

predict PPH outcome using all of the features. The internal

validation was performed using k-fold cross-validation.

Thereafter, secondary models were built using limited sets of

features selected through extra trees classifier, thereby making it

more relevant to the clinical setting. For comparison between the

models and to evaluate performance accuracy, the sensitivity, and

area under the curve (AUC) of the receiver operating

characteristics (ROC) curve were calculated using model

predictions on the independent testing dataset.

Cesarean delivery 7 (17.5%) 212 (13.8%)

Gestational age at delivery, weeks 35.3 ± 7.2 36.6 ± 9

Previous pregnancies
Nulligravida 14 (35%) 473 (30.8%)

≥1 26 (65%) 1,059 (68.9%)

Previous pregnancies with live birth
0 1 (2.5%) 60 (4%)

1 10 (25%) 414 (27%)

≥2 15 (37.5%) 585 (38%)

Clinical Characteristics (Intrapartum)
Model interpretation

To estimate relative relevance of each feature, Shapley values

were calculated using python library SHAP (21). To understand

the importance of each feature towards predicting PPH, the

mean absolute SHAP (SHapley Additive exPlanations) values

were plotted for each individual in the training dataset.
Systolic blood pressure, mmHg 119.9 ± 16.3 119.4 ± 15.6

Diastolic blood pressure, mmHg 75.3 ± 11.7 76.2 ± 11.3

Temperature, °C 36.4 ± 0.4 36.4 ± 0.4

Total hemoglobin, g/dl 12.4 ± .6 12.3 ± 1.4

Heart rate, beats/minute 88.4 ± 13.3 86.9 ± 13.3

Respiratory rate, breaths per minute 19.0 ± 2.6 21.2 ± 3.7

Oxygen saturation, % 97.3 ± 1.4 97.8 ± 1.3

Data are given as n (%) or mean± SD. (PPH, postpartum hemorrhage).
Results

A total of 2,550 women were included in the Kenya maternal

cohort. Of those, women were excluded if there was no reported

delivery outcome (n = 924, 36.2%) or no report of the presence

or absence of PPH (n = 50, 2.0%), leaving 1,576 women (61.8%)

in the final analysis (Figure 1). Among these 1,576 women, 40

(2.5%) were reported to have PPH. Table 1 presents the

comparison of demographic and clinical characteristics between

the PPH and non-PPH groups, revealing no significant

differences between two groups. The mean age was 28.5 and 26.4

years for the PPH and non-PPH groups, respectively.

A total of 58 candidate features were derived from the overall

707 features and used to develop the PPH prediction models.

The features included, amongst others, maternal age, gestational
Frontiers in Global Women’s Health 03
age, hemoglobin levels, systolic and diastolic blood pressure, and

respiratory rate. These 58 features were transformed into 264

variables based on the time at which the variables were captured.

Using these variables, logistic regression, naïve Bayes, decision

tree, and random forest models were built. Due to high-class

imbalance (40 PPH cases and 1,536 non-PPH cases), the logistic

model did not perform well with AUC of 0.51 on the testing

dataset. The remaining three models performed marginally
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better, with random forest and naïve Bayes both having AUC of

0.55 on the testing dataset (Table 2). To further improve the

performance of the models, the top 10 variables were selected

using the extra trees classifier technique. Out of these top 10

variables, few were associated with the following features

collected at intrapartum period: systolic blood pressure, diastolic

blood pressure, respiratory rate, hemoglobin levels, and signs of

pallor. Remaining variables were related with features such as

time of third ANC visit, anemia diagnosis at first trimester and

second trimester, and fetal heart rate in third trimester. As

compared to the baseline models, the performance of all the

models improved after training on these 10 selected variables.

The naïve Bayes model performed significantly better than the

other models when compared across the majority of performance

metrics with 0.76 AUC, 0.95 accuracy, and 0.97 specificity

(Table 3). The comparison of ROC curves across the four

models after training is shown in Figure 2.

As the naïve Bayes model performed best, we performed SHAP

analysis using this model to investigate the impact of individual

variables on PPH prediction. The critical features associated with

a high risk of PPH included: (1) signs of pallor documented

during the intrapartum visit, (2) a diagnosis of anemia made

anytime during the pregnancy (defined as hemoglobin levels less

than 11 g/dl), (3) limited prenatal care (defined as the third ANC

visit occurring within 11 weeks of delivery), (4) elevated diastolic

blood pressure at intrapartum visit (greater than 85 mmHg), and

(5) elevated systolic blood pressure at intrapartum visit (greater

than 123 mmHg). In contrast, elevated hemoglobin

concentrations at intrapartum visit (greater than 13 g/dl) and

rapid respiratory rate (more than 20 breaths per minute at

intrapartum visit) were protective of PPH prediction (Figure 3).
Discussion

Main findings

In this study, we demonstrated that machine learning can be

employed to predict PPH using routine clinical data collected at
TABLE 2 Performance matrix of machine learning models on independent
test set before feature selection. (AUC, area under the curve).

Model AUC Accuracy Sensitivity Specificity
Logistic Regression 0.51 0.72 0.31 0.74

Naïve Bayes 0.55 0.64 0.50 0.64

Decision Tree 0.53 0.50 0.56 0.50

Random Forest 0.55 0.89 0.13 0.90

TABLE 3 Performance matrix of machine learning models on independent
test set after feature selection using extra tree classifier technique. (AUC,
area under the curve).

Model AUC Accuracy Sensitivity Specificity
Logistic Regression 0.62 0.65 0.50 0.66

Naïve Bayes 0.76 0.95 0.31 0.97

Decision Tree 0.65 0.62 0.69 0.55

Random Forest 0.65 0.82 0.37 0.78
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routine antenatal and intrapartum visits. The ability to accurately

predict patients at high risk of PPH is important in order to

identify and stratify their care and mitigate the consequences of

this dangerous condition. The association of clinical features such

as blood pressure, respiratory rate, hemoglobin levels, and anemia

with the development of PPH is consistent with published data

(6, 22). The association with anemia is particularly significant

since, in addition to predisposing women to PPH, it also limits

tolerance to blood loss (18). Our final model did not include

many previously identified risk factors such as a history of PPH

in a prior pregnancy, route of delivery, and multiple gestations.

This could be because of the low incidence of such conditions in

the study population or because the drivers and risk factors for

PPH may be different in a LMIC population such as that in

Kenya as compared to a western population.

In this cohort, we also found an association between ANC visits

and risk of PPH. More limited prenatal care (defined as the third

ANC visit occurring within 11 weeks of delivery) was associated

with an increased risk of PPH. This underlines the importance of

prenatal care and timely ANC visits in LMICs. Such insights can

help inform policies that address unfavorable social determinants

of health to take down barriers that prevent some women from

accessing care and adhering to recommended antenatal visit

schedules. This finding further suggests that targeted interventions

to improve access and visit compliance may reduce maternal

mortality and morbidity due to PPH in LMICs.

In our study, we made notable observations regarding the

performance of different classifiers on an independent test

dataset. Specifically, the naïve Bayes classifier exhibited superior

accuracy compared to random forest and decision tree, which

experienced significant decline in accuracy. This decline may

indicate a potential issue of overfitting in the latter classifiers (23,

24). In contrast, recent study on Iran population found that

machine learning model such as random forest and decision tree

provided improved performance in predicting PPH (25).

Westcott et al. (26) also reported better performance of boosted

decision trees for prediction of PPH in United States population.

Additionally, we observed suboptimal performance of logistic

regression when compared to naïve Bayes. This can be attributed

to the relatively small sample size of the PPH population.

Previous studies have consistently demonstrated that generative

classifiers such as naïve Bayes tend to outperform discriminatory

classifiers like logistic regression when trained on limited sample

sizes (27, 28).
Clinical implications

These findings suggest that routine clinical and demographics

data can be used to predict women at high risk for adverse

pregnancy events. At present, healthcare providers predominantly

rely on clinical expertise and nonspecific risk factors to identify

high-risk pregnancies. Further, the International Federation of

Gynecology and Obstetrics (FIGO) developed a PPH care

pathway to integrate WHO PPH guidelines in Sub-Saharan

African countries (29). These guidelines are primarily derived
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FIGURE 3

SHAP summary plot of top 7 features for naïve Bayes PPH prediction model. Color represents relative feature value for each patient. Blue color indicates
low feature value whereas red color indicates high feature value. Positive SHAP values suggest greater PPH risk and negative SHAP values are protective
for PPH (Hb, hemoglobin; ANC, antenatal clinic; SBP, systolic blood pressure; DBP, diastolic blood pressure; BPM, breaths per minute, SHAP, Shapley
Additive exPlanations).

FIGURE 2

Receiver operating characteristics curves of four machine learning model of PPH prediction (AUC, area under the curve; GaussianNB, naïve Bayes).
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from expert opinion and clinical consensus lacking the ability to

offer personalized risk predictions. By incorporating such

predictive models into clinical practice, healthcare professionals

will be able to personalize and stratify the care of women at

high-risk for PPH. For such cases, targeted interventions may

include treating anemia, administrating prophylactic medication

(often referred to as active management of the third stage of

labor), ensuring the availability of blood products during

delivery, and/or non-clinical interventions such as providing free

transportation to the clinic or home visits in resource-limited
Frontiers in Global Women’s Health 05
settings. The efficacy of these intervention modalities should be

tested against existing practice before introducing them into

routine clinical practice. This can be accomplished with impact

studies such as cluster randomized trials (30, 31).
Strengths and limitations

To our knowledge, this is the first study to predict PPH in a

population from Sub-Saharan Africa using a machine learning
frontiersin.org
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approach. This “proof of concept” study demonstrates that—even

in LMICs with limited resources and a lack of standardized

electronic health records—such predictive machine learning

techniques can be used to identify women at high-risk of serious

adverse pregnancy events, such as PPH which is a major cause of

maternal mortality and morbidity. Additional studies are needed

to prospectively validate our model and to determine whether it

is generalizable to other Sub-Saharan African populations.

Limitations of this study include a small sample size with only

40 PPH cases. Moreover, our cohort had a PPH rate of 2.5%, which

is significantly lower than the reported 10.5% prevalence of PPH in

this region (5). The exclusion of late PPH cases, considering that

the PPH outcome was reported within 24-hours of delivery,

could potentially account for the lower PPH rate observed in the

present study population. Additionally, it is plausible that the

underreporting of cases could be another contributing factor to

the observed low PPH rate. Data quality with a high proportion

of missing data is another limitation of this study. Given the

current state of clinical documentation in LMICs, it is possible

that certain important factors were not captured and therefore

could not be incorporated into the model. Future studies

including larger datasets with more cases of PPH would allow for

the careful examination and inclusion of additional variables into

the prediction models for improved prediction performance.
Conclusions

Seven factors (anemia, limited prenatal care, hemoglobin

concentrations, signs of pallor at intrapartum, intrapartum

systolic blood pressure, intrapartum diastolic blood pressure, and

intrapartum respiratory rate) were associated with PPH

prediction in Kenyan population. These findings provide an

opportunity to explore machine learning approaches to identify

patients at high-risk of PPH in resource constrained settings. Use

of such predictive models to identify and stratify women at high

risk of PPH and other adverse pregnancy events could bring us

one step closer to designing a personalized obstetric journey for

each pregnant patient, improving resource allocation, and

ultimately reducing maternal mortality and morbidity.
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