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Here we report (210Pb/226Ra), (226Ra/230Th), (230Th/238U) and (234U/238U)
disequilibria for eleven lavas from the ABE vent site in the Lau Basin. Most ABE
lavas have (210Pb/226Ra) > 1 and (226Ra/230Th) > 3. These results indicate that most
of these lavas erupted within the past 100 years. Model ages calculated assuming
initial (210Pb/226Pb) = 1.8–2.0 further constrain the timing of eruption, suggesting
that more than half of the lavas erupted within the past 60 years. When combined
with complementary data (side-scan sonar, lava flow morphology, tectonic
mapping), this high-resolution record provides fundamental time constraints
for interdisciplinary studies examining oceanic crustal construction and
development of the hydrothermal system in the ABE vent field. Notably the
youngest samples cluster around the active vent sites indicating that the ABE vent
site’s location is a direct consequence of this concentrated young volcanism. This
study is the first high resolution U-series study of a seafloor vent site and
demonstrates the potential of using (210Pb/226Ra) for the determination of lava
ages for young submarine lavas in spreading environments with active
hydrothermal venting. As such these (210Pb/226Ra) measurements hold the
promise for addressing in far greater detail the connections between
spreading ridge eruptive and hydrothermal activity on the decadal to century
time scales.
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1 Introduction

Time constraints are essential for understanding geological processes at oceanic
spreading ridges. Without time constraints, many central questions about how oceanic
spreading centers work and how the various aspects of the ridges’ volcanic and
hydrothermal systems relate to one another are unanswerable. For example, without
lava ages it is not possible to relate volcanic activity to tectonics processes, establish
temporal changes in lava compositions, and link hydrothermal and biological activities to
fluctuations in volcanism. Thus, age constraints are not a detail, they are necessary. Without
them, our understanding of ridge systems will be forever limited.
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Dating young submarine lavas has proven to be notoriously
difficult (e.g., Batiza et al., 1987). Long-lived radiogenic isotope
systems like Rb-Sr, Sm-Nd, and U-Th-Pb have half-lives that are too
long and lack the temporal resolution for precise ages. Cosmogenic
age dating on the ocean floor is not possible. Potassium-Argon
dating techniques (e.g., Abdel-Karim and Azzaz, 1995), which have
provided crystallization ages in very young sub-aerial lavas, suffer
from a myriad of problems when applied to young mid-ocean ridge
basalts (MORB), for example: 1) low concentrations of K in MORB
yield low Ar (e.g., typically K2O in MORB is ~0.1 wt% and so over
103–106 years this yields 10−13–10−9 moles/g rock of ingrown 40Ar);
2) open system behavior of Ar. Although stepwise heating can
correct for atmospheric argon, this procedure cannot account for
inherited magmatic Ar in MORB glass, the most commonly
available sample material. Furthermore, contamination of lavas
by seawater K also affects the accuracy of results (Batiza et al.,
1987; Duncan and Hogan, 1994; Guillou et al., 2017). Other
techniques for dating MORB have had even less success. For
instance, fission track dating of MORB glasses is complicated by
low U concentrations and consequently low track densities, as well
as rapid track annealing (Batiza et al., 1987). Finally, although
sediment accumulation has been used to estimate the relative age
of seafloor terrain, this method is unreliable for absolute age
determinations, as sedimentation rates are known to vary widely
over short spatial scales. Thus, the visual appearance of lavas
provides only a subjective, semi-quantitative estimate of age
(Klein et al., 2013).

Fortunately, 238U-series disequilibria can provide robust
eruption ages for young oceanic basalts (e.g., Rubin and
Macdougall, 1990; Goldstein et al., 1991; Volpe and Goldstein,
1993; Rubin et al., 1994; Lundstrom et al., 1995; Sims et al., 1995;
Sturm et al., 2000; Sims et al., 2002; Cooper et al., 2003; Sims et al.,
2003; Sims et al., 2008a; Standish and Sims, 2010; Waters et al.,
2011; Waters et al., 2013a; Waters et al., 2013b; Haase et al., 2016;
Scott et al., 2019; Sims et al., 2021). The 238U-decay series nuclides
have a range of half-lives that are appropriate for dating a wide
age range of young basalts, and the application of U-series
disequilibria to the dating of young submarine basalts has
been well established. While there have been several studies
using 238U-230Th-226Ra disequilibria to date oceanic basalts in
the range of hundreds of years to hundreds of thousands of years
(the half-life of 230Th is 75 kyr, and 226Ra is 1.6 kyr), there have
been no studies using 226Ra-210Pb to provide high resolution ages
on basalts less than 100 years old.

Here we report (230Th/238U), (226Ra/230Th), (210Pb/226Ra) and
(234U/238U) disequilibria for eleven lavas from the ABE vent site
in the Lau Basin. Because the half-life of 210Pb is 22 years, the
(210Pb/226Ra) measurements provide a temporal record of
eruption ages on the order of tens of years. While (210Pb/
226Ra) have previously been used to establish age limits for
lavas (i.e., less than or older than 100 years, e.g., see Sims
et al., 2008a), these results are the first published (210Pb/226Ra)
model ages. When combined with complementary data (side-
scan sonar, lava flow morphology, tectonic mapping), this high-
resolution record provides fundamental time constraints for
interdisciplinary studies examining oceanic crustal
construction and development of the hydrothermal system in
the ABE vent field.

2 Background

2.1 Geological background

2.1.1 Lau Spreading Center
Subduction of the Pacific plate at the Tonga trench has led to the

formation of the NE-SW trending Tonga volcanic arc and the
associated Lau Basin (Figure 1). Opening of the Lau Basin began
at ~6 Ma in response to rapid subduction of the Pacific plate along
the Tonga, or Tofua, arc (Hergt and Farley, 1994; Hergt and
Hawkesworth, 1994). Spreading south of 18°S is accommodated
along the Central, Intermediate, and Eastern Lau Spreading Centers
(ELSC). The ELSC runs from 19–22°S and can be further divided
into five northwest stepping subsegments. From south to north these
segments are the Valu Fa Ridge (VFR), ELSC IV, ELSC III, ELSC II,
and ELSC I (Figure 1). Along the ELSC, the spreading rate increases
northward from <60 mm/yr at 22°S to 90 mm/yr at 19°S (Zellmer
and Taylor, 2001). Based on comparison with open ocean ridges, the
ELSC’s morphology might be expected to vary from rift valley in the
south to crustal plateau in the north. Instead, the slower spreading
VFR is at a shallow water depth, has thicker crust, limited faulting, a
prominent axial high, and a bright axial magma chamber reflector
(AMCR). As spreading rates increase northward, the ridge deepens
from 1,700 to 3,300 m, a well-developed rift valley forms, the crust
thins, and the AMCR disappears. These changes occur as distance
from the arc front increases from 35 km at 22°S to 100 km at 19°S
(Martinez et al., 2006; Jacobs et al., 2007; Ferrini et al., 2008). The
progressive change in distance from the volcanic front suggests that
increased influence of the subduction component in the south leads
to enhanced magmatic productivity, and that proximity to the arc
trumps spreading rate in its influence on ridge morphology
(Martinez et al., 2006). Distance from the arc also influences
magma composition, as enrichment in mobile trace elements is
greater in the southern segments of the ELSC (Escrig et al., 2009).

To take advantage of this unique tectonic setting, the Ridge
2000 program designated the Lau Basin one of three global
integrated study sites (ISS). Initial bathymetry and side-scan
sonar surveys were conducted in 2004 aboard the R/V Kilo
Moana (KM0410; F. Martinez, Chief Scientist). Miniature
Autonomous Plume Recorders (MAPRs) were also deployed to
search for signs of hydrothermal activity (Baker et al., 2005;
2006; Martinez et al., 2006). A second cruise built upon this data
by deploying the autonomous underwater vehicle (AUV) ABE and
the Woods Hole Oceanographic Institute (WHOI) Towed Camera
System (Tow Cam) to generate 1–2 m grid resolution bathymetry of
areas where hydrothermal activity was suspected and to collect
photos of the seafloor to ground truth previous observations.
These data were used to constrain the location of three vent
fields: ABE, Tow Cam, and Kilo Moana (Figure 1), with the ABE
vent field being selected as the “bullseye” for the Lau ISS Ridge
2000 program. Because of the hydrothermal venting and the
apparent young ages of the lavas our study focuses on the lavas
of the ABE vent site (Figure 1).

2.1.2 ABE vent site
The ABE vent field (20°45.8′S, 176°11.5′W), is located 5 km

south of the northern terminus of ELSC IV, ~600 m west of the ridge
axis, and at a water depth of 2,140 m. The transition from axial
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plateau to axial valley, as well as the disappearance of the ACMR,
occurs just north of the ABE vent field. Within the ABE vent field,
hydrothermal activity is localized at five sites, with an additional area
of diffuse flow. The area is cut by three NE-SW striking normal
faults, with throws of 10–20 m. Three flow fronts were also
identified. Lava flows have a pillow/lobate texture, with columnar
basalts visible in fault scarps (Martinez et al., 2006; Jacobs et al.,
2007; Ferrini et al., 2008).

The ABE vent site, which is the focus of this study, is located on
the central segment of the ELSC in the Lau back-arc basin (Figure 1).
This portion of the ridge is broad (4.2 km) and tall (200 m) and a
NE-SW fault area dominates the field. Several lava different flows
with distinct surfacemorphologies are apparent throughout the ABE
survey area. Additionally, remote operated vehicle (ROV) Jason 2
identified three areas of hydrothermal activity along 600 m of the
NE–SW trending fault. For a highly detailed description of the ABE
vent area the reader is referred to Ferrini et al. (2008).

2.2Methodological background: Application
of U-series dating of ocean ridge samples

Currently, U-series dating provides the best age constraints for
young mid-ocean ridge lavas. The application of U-series

disequilibria to the dating of young submarine basalts is well
established (e.g., Rubin and Macdougall, 1990; Goldstein et al.,
1991; Volpe and Goldstein, 1993; Rubin et al., 1994; Lundstrom
et al., 1995; Sturm et al., 2000; Sims et al., 2002; Cooper et al., 2003;
Sims et al., 2003; Sims et al., 2008a; Standish and Sims, 2010; Waters
et al., 2011; Waters et al., 2013a; Waters et al., 2013b; Haase et al.,
2016; Scott et al., 2019; Sims et al., 2021). See Sims et al. (2021) for a
detailed overview of U and Th decay series dating methods.

Because the timescale of mantle circulation is on the order of
hundreds of millions to billions of years it can be reasonably
assumed that the mantle source starts out with U-series nuclides
in a state of radioactive equilibrium. During petrogenetic processes,
most significantly during partial melting, U-series disequilibrium
is created by fractionation of parent-daughter nuclide pairs. In
the absence of secondary processes (e.g., post-eruptive
alteration), any disequilibria generated by magmatic processes
are “locked in” once the lava has erupted and has solidified. The
activity ratio then acts as a “stop-watch,” with parent and
daughter returning to secular equilibrium after about five half-
lives of the daughter isotope. Thus, the presence of disequilibria
between a parent-daughter pair provides a maximum eruption
age. Since 238U-230Th-226Ra-210Pb have half-lives ranging from
~20 years to 75 kyr, these techniques are appropriate for dating
MORB erupted 0.1–375 kyr.

FIGURE 1
(A) Bathymetric map of the ABE vent field showing sample locations. (B) The large-scalemap shows the segments of the Lau Spreading Center (Valu
Fa, and the center and northern ELSC) and the various hydrothermal vents listed from south to north: Vai Lili, Mariner, Tui Malila, ABE (denoted with a red
star), Tahi Moana, TowCam and KiloMoana. The small inset shows the global context of the Lau Spreading Center. See Ferrini et al. (2008) formore details
on imaging and location.
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Quantitative estimates of ages by other U-series methods are
also possible. Internal isochrons, for example, make use of the
differential retention of some radionuclides by different minerals
(e.g., Ra is preferentially incorporated into feldspar). However, this
technique requires phenocryst-rich samples and is therefore not
suitable for MORB glasses. Even when samples contain abundant
phenocrysts, the resolution of this method is limited by uncertainties
in the phenocryst ages (i.e., have the phenocrysts resided in crustal
storage for a significant period of time relative to the half-life of the
daughter nuclide).

If the initial extent of disequilibrium at the time of eruption is
known, then the difference between the initial activity ratio and the
measured activity ratio can be used to determine the lava’s eruption
age. These “model ages” improve the resolution of the U-series ages by
roughly an order of magnitude for each parent-daughter pair; tens of
thousands of years resolution for 230Th model ages and hundreds to
thousands of years resolution for 226Ra model ages. It is important to
note that model ages assume a constant source (spatially and
temporally) and are the sum of a sample’s crustal residence time
(i.e., magma storage time) and their eruption age. When determining
U-series model ages for a related group of samples, several
assumptions must be accounted for (Sims et al., 2003):

1. The lavas reflect melting of source material which has spatially
and temporally constant U/Th.

2. The initial extent of disequilibria of the lavas is known. This
requires similar degrees of melting and melting depths, as well
as similar ascent rates (e.g., McKenzie, 1985; Williams and Gill,
1989; Spiegelman and Elliott, 1993; Lundstrom et al., 1995;
Sims et al., 1995; 1999; 2002).

3. The U-series disequilibria result from primary magmatic
processes, and the lavas remained a closed system with
respect to U, Th, Ra, and Pb after eruption.

4. The timescales of magma storage and eruption after the
processes generating U-series disequilibria ceases must be
short relative to the half-lives of 230Th, 226Ra, and 210Pb.

When these conditions are met, U-series model ages can provide
constraints for the timing of eruption. This is demonstrated in
studies of the East Pacific Rise, where large data sets and the
necessary isotopic and geochemical data are available to develop
meaningful model ages. In this setting, model ages indicate that mid-
ocean ridge magmatism occurs over a wide area and is not limited to
the axial trough (Sims et al., 2003; Waters et al., 2013a; Waters
et al., 2013b).

3 Sample collection

Samples were collected during three cruises: KM0417 in 2004
(R/V Kilo Moana; C. Langmuir, Chief Scientist), TUIM05MV in
2005 (R/V Melville; M.K. Tivey, Chief Scientist), and MGLN07MV
in 2006 (R/V Melville; C. Fisher, Chief Scientist). Although the
samples collected during KM0417 consist of two dredge samples and
two rock cores, the remaining seven samples collected during
TUIM05MV and MGLN07MV were collected using ROV Jason
2, and thus their locations and geological context are well-known
(Table 1; Figure 1).

4 Analytical methods

Major elements (Table 2) were measured on glass chips using a
Cameca SX-100 electron microprobe (EMP) at Rensselaer
Polytechnic Institute (RPI) and a Cameca SX-50 at the
University of Massachusetts, Amherst (See Bezós et al., 2009 for
analytical details). Trace elements (Table 3) were measured by
solution nebulized ICP-MS and laser ablation ICP-MS (SN-ICP-
MS and LA-ICP-MS) at Harvard University (See Bezós et al., 2009
for analytical details). Pb, Sr, and Nd isotope ratios were measured
on dissolved solutions at the Lamont-Doherty Earth Observatory
(LDEO; see Escrig et al., 2009 for analytical details).

Briefly, the 238U, 234U, 232Th, 230Th and 226Ra concentrations and
isotopic compositions (Table 4) were measured on dissolved and
spiked solutions on the WHOI ThermoFisher NEPTUNE following
procedures described by Sims et al., 2008a; Sims et al., 2008b), Ball
et al. (2008) and Scott et al. (2019). The activities of 210Pb were
measured by analyzing samples for its descendent 210Po and
assuming (210Pb/210Po) = 1 before Pb-Po chemical separation.
Analytical details for 210Po are discussed in Reagan et al. (2005)
and Waters et al. (2013). Because the U-decay series measurements
are the focus of this paper, the full analytical details for these
methods are discussed in full in Supplementary Appendix SA.
U-Series abundances and activities for two quality assurance
standards, USGS Reference Material Columbia River Basalt
(BCR-2) and the U-series community reference material Table
Mountain Latite (TML) are also reported in Table 4.

5 Results

On a total alkali silica diagram (Figure 2), the ABE site lavas are
basaltic andesites, with silica contents ranging from
53.62–54.88 weight percent, total alkalis (Na2O plus K2O)
ranging from 2.88 to 3.77 weight percent and molar Mg numbers
ranging from 32 to 40 (Table 2). The ABE samples are light rare
earth element (LREE) depleted with CI normalized (Palme and
O’Neill, 2014) (La/Dy)n ranging from 0.49 to 0.52 and have flat
heavy rare earth (HREE) element patterns with (Dy/Yb)n ranging
from 0.99 to 1.01 (Table 3; Figure 3). These ABE samples’ LREE are
more depleted than average N-MORB and their HREE are slightly
more enriched and show a limited range in composition compared
to the rest of the ELSC. On an extended trace element diagram
normalized to primitive mantle (Palme and O’Neill, 2014), these
samples have distinct enrichments of Ba, U and K and relative
depletions of Nb and Ta (Table 3; Figure 3). Overall, these lavas are
tholeiitic based on the high FeO*/MgO at approximately 54% SiO2.

Their depleted LREE patterns and enrichment in fluid-mobile
elements, indicate that they are very similar to classic arc-
tholeiites. Compositionally, it is important to note that one
sample, RC-086, has a distinctive chemistry with lower LREE and
other trace element abundances, most notably Pb, than the rest of
the ABE samples. Thus, sample RC-086 is plotted separately on all
figures to highlight its chemical and isotopic distinction.

Radiogenic isotope ratios are only available for three ABE
samples: two dredge samples (DR50-1 and DR51-1) and one rock
core sample (RC-086) (Table 3). Results for the two dredge
samples (DR50-1 and DR51-1) were previously reported in
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Escrig et al. (2009). Within the ABE vent field, 206Pb/204Pb ranges
from 18.426–18.490, 207Pb/204Pb ranges from 15.535–15.530,
208Pb/204Pb ranges from 38.132–38.186; 143Nd/144Nd ranges
from 0.513053–0.513064 (ƐNd = 8.30–8.66) and 87Sr/86Sr
ranges from 0.703008–0.703265. The compositional range of
long-lived radiogenic isotopes observed within the ABE vent
field is limited, especially when compared with the whole of
the ELSC (Figure 4).

U-Series abundances and activities for the ABE samples and two
quality assurance standards (BCR-2 and TML) are reported in
Table 4. Recommended values for these U-series standards are
tabulated in Sims et al. (2008b) and Scott et al. (2019). For a full
discussion of the pedigree and site locations for each of these
reference materials see Sims et al. (2008b). In the following
discussion we have listed the results of RC-086 separately.

• (234U/238U) ranges from 1.000 to 1.004, with an average (234U/
238U) of 1.002 ± 0.001 (2SD). Both standard reference samples,
TML and BCR-2, have (234U/238U) of 1.001 ± 0.002. Although
all samples measured have one to two per mil (234U) excesses
we note that these measurements were not conducted with
abundance sensitivity (RPQ) filtering, so there is likely some
down mass contribution from 235U on 234U (Scott et al., 2019).
RC-086 is furthest from equilibrium with (234U/238U) of
1.005 ± 0.002. These values indicate that alteration by
seawater is negligible.

• (230Th/238U) ranges from 0.778 to 0.880, with an average
(230Th/238U) of 0.828 ± 0.012 (2SD). Standards reference
samples TML and BCR-2 have (230Th/238U) of 0.996 and
1.009, respectively. RC-086 has a (230Th/238U) of 0.941 ±
0.013, much higher than the other ABE samples (Figure 5).

• (226Ra/230Th) ranges from 3.026 to 3.444, with an average
(226Ra/230Th) of 3.281 ± 0.086 (2SD). Standards reference
samples TML and BCR-2 have (226Ra/230Th) of 1.010 and
0.998, respectively. RC-086 has a (226Ra/230Th) of 1.838 ±
0.043, which is much lower than the other ABE samples
(Figures 5–7).

• (210Pb/226Ra) ranges from 1.05 to 1.82, with an average (210Pb/
226Ra) of 1.25 ± 0.07 (2SD). Standards reference sample BCR-2
has (210Pb/226Ra) of 1.00± 0.03. RC-086 has a (210Pb/226Ra) of
0.92 ± 0.13 (Figure 7).

6 Discussion

6.1 210Pb-226Ra-230Th ages of ABE vent
site lavas

Since secular equilibrium is achieved after ~5 half-lives, the
presence of disequilibria between a parent-daughter pair provides an
eruption age limit. All ABE lavas have (230Th/238U) < 1, indicating
they were erupted less than 350 kyr ago and (226Ra/230Th) > 1,
indicating they were erupted less than 8 kyr ago. Far more stringent
constraints on their age are that all the ABE lavas (except RC-086)
have (210Pb/226Ra) > 1, implying that these lavas erupted within the
past 100 years.

In practice, eruption ages are better constrained than these age
limits because samples with large disequilibria are likely much
younger than the maximum age limit. To further constrain ages,
if the initial extent of disequilibrium at the time of eruption is known
or can be reasonably approximated, then the difference between the
initial activity ratios and the measured activity ratios can be used to
determine the lava’s eruption age. These “model ages” significantly
improve the resolution of the U-series ages. For these ABE lavas, we
use our (210Pb/226Ra) measurements to provide decadal constraints
on lava eruption ages.

It is important to note, however, that model ages assume that, upon
eruption, the lavas started with the same extent of disequilibria, which
requires that they had similar source compositions, were produced by
similar degrees of melting, and experienced identical petrological
processing, such as extents of crystallization, or in the case of 210Pb,
experienced similar magma-gas interactions. It is also important to
remember that the model ages are the sum of a sample’s crustal
residence time (i.e., magma storage time) and their eruption age.

TABLE 1 ABE hydrothermal vent site sample description.

Sample name Expedition Sampling technique Longitude (°W) Latitude (°N) Depth

DR50-01 Langmuir Dredge −176°11′28.79″ −20°45′42.66″ 2,147

DR51-01 Langmuir Dredge −176°11′25.26″ −20°45′43.49″ 2032

RC-083 Langmuir Rock Core −176°11′30.78″ −20°46′5.82″ 2,132

RC-086 Langmuir Rock Core −176°11′24.90″ −20°45′29.81″ 2,114

J2-236-003 Fisher AUV −176°11′35.09″ −20°45′58.97″ 2,136

J2-236-004 Fisher AUV −176°11′34.05″ −20°45′58.54″ 2,134

J2-237-003 Fisher AUV −176°11′26.22″ −20°45′40.89″ 2,145

J2-237-006 Fisher AUV −176°11′26.46″ −20°45′38.19″ 2,144

J2-237-021 Fisher AUV −176°11′29.61″ −20°45′47.24″ 2,139

J2-128-1-R1 Tivey AUV −176°11′26.25″ −20°45′41.61″ 2,145

J2-128-7-R1 Tivey AUV −176°11′29.50″ −20°45′46.57″ 2,147

J2-136-4-R1 Tivey AUV −176°11′42.50″ −20°46′12.60″ 2,152
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TABLE 2 ABE hydrothermal vent major element abundances.

Sample name SiO2 TiO2 Al2O3 FeOt MnO MgO CaO Na2O K2O P2O5 Total Mg# Analyzed Spot #

DR50-01 53.96 1.49 14.81 12.29 0.28 4.06 8.48 2.77 0.23 0.13 98.49 39.6 UMASS 5-spot average

DR51-01 54.55 1.73 13.75 13.36 0.29 3.55 8.14 2.74 0.27 0.16 98.54 34.5 UMASS 5-spot average

RC-083 54.19 1.51 14.45 12.46 0.28 4.01 8.25 2.80 0.24 0.13 98.30 38.9 UMASS 5-spot average

RC-086 54.55 1.68 13.79 13.55 0.29 3.74 8.27 2.71 0.25 0.16 98.99 35.3 UMASS 5-spot average

J2-236-003 54.19 1.63 13.95 13.08 0.29 3.84 8.22 2.72 0.26 0.15 98.34 36.8 UMASS 5-spot average

J2-236-004 54.16 1.54 14.36 12.71 0.28 4.11 8.32 2.64 0.24 0.14 98.50 39.1 UMASS 5-spot average

J2-237-003 54.50 1.66 13.81 13.03 0.29 3.54 7.92 2.93 0.26 0.15 98.09 35.0 UMASS 5-spot average

J2-237-006 54.23 1.47 14.81 12.23 0.28 3.86 8.27 2.83 0.23 0.14 98.34 38.5 UMASS 5-spot average

J2-237-021 54.88 1.58 14.48 12.38 0.25 3.80 7.90 3.12 0.25 0.20 98.84 37.8 Univ. Tulsa 4-spot average

J2-128-1-R1 53.62 1.69 13.72 13.12 0.23 3.61 7.92 2.86 0.27 0.16 97.18 35.3 UMASS 5-spot average

J2-128-7-R1 53.77 1.49 14.74 12.24 0.21 4.00 8.33 2.84 0.23 0.13 97.98 39.3 UMASS 5-spot average

J2-136-4-R1 54.32 1.82 13.18 13.82 0.23 3.21 7.65 2.70 0.29 0.16 97.38 31.5 UMASS 5-spot average

SiO2 adjusted + 0.75 wt% based on calibration from other samples. Mg# = 100 * [MgO/(MgO + 0.9 * FeOt)] on a molecular basis.
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TABLE 3 ABE hydrothermal vent trace element abundances and isotopic compositions.

Sample name Li Be P Sc Ti V Cr Mn Co Ni Cu Zn Ga Rb Sr Y Zr Nb Mo Sn Sb Cs Ba La Ce Pr Nd

DR50-1 8.36 0.46 0.14 36.26 1.44 399.58 2.50 0.20 38.34 16.17 83.03 103.91 18.29 3.77 126.59 35.03 82.51 1.21 0.54 0.78 0.04 0.167 71.6 2.65 8.71 1.58 8.76

DR51-1 9.15 0.47 36.64 396.27 7.01 38.05 15.85 16.81 3.78 128.29 36.12 84.91 1.27 0.46 0.83 0.05 0.175 72.1 2.75 9.07 1.63 9.08

RC-083 8.67 0.42 36.35 377.03 5.14 37.55 18.92 81.84 104.64 17.42 3.67 126.30 35.05 82.98 1.22 0.46 0.77 0.06 0.163 69.5 2.72 8.85 1.61 8.77

RC-086 8.12 0.44 0.14 35.60 1.43 412.63 3.51 0.20 37.67 13.76 62.94 104.54 18.16 3.61 112.99 34.73 74.72 1.19 0.58 0.72 0.04 0.118 54.7 2.55 8.17 1.49 8.29

J2-236-003 9.18 0.46 0.14 37.22 1.46 383.73 4.44 0.20 38.34 19.91 84.33 104.94 18.23 3.87 129.54 35.83 84.53 1.19 0.77 0.78 0.06 0.17 71.73 2.70 8.85 1.63 9.11

J2-236-004 8.96 0.47 0.13 37.29 1.51 397.62 3.05 0.20 38.90 17.87 86.62 105.17 18.79 3.91 129.66 35.68 82.88 1.20 0.77 0.80 0.06 0.17 71.64 2.71 8.92 1.62 9.15

J2-237-003 9.44 0.54 0.14 36.33 1.52 367.18 2.66 0.21 37.15 15.54 80.76 108.26 18.86 4.11 130.70 37.69 89.99 1.32 0.82 0.87 0.06 0.17 74.49 2.93 9.62 1.73 9.78

J2-237-006 9.23 0.49 0.14 36.41 1.46 371.18 2.96 0.20 37.22 16.63 78.26 104.86 18.58 4.00 129.80 36.67 86.56 1.27 0.79 0.81 0.06 0.17 73.09 2.83 9.27 1.69 9.54

J2-237-021 9.47 0.54 0.15 35.72 1.52 337.46 3.30 0.20 35.65 14.41 72.72 106.70 18.75 4.22 129.68 37.83 90.95 1.35 0.89 0.88 0.06 0.18 75.21 2.97 9.73 1.76 9.97

J2-128-1-R1 9.21 0.50 0.14 35.86 1.50 365.49 2.77 0.20 37.10 15.34 80.98 107.02 18.95 4.07 128.87 37.38 89.61 1.32 0.79 0.86 0.06 0.17 73.18 2.87 9.52 1.72 9.79

J2-128-7-R1 8.96 0.51 0.13 36.71 1.48 377.77 2.95 0.20 37.96 17.44 81.60 104.27 18.56 3.92 129.54 35.49 84.63 1.22 0.81 0.79 0.06 0.17 71.85 2.74 9.00 1.63 9.28

J2-136-4-R1 9.13 0.50 0.13 36.33 1.48 376.27 2.73 0.20 37.68 16.07 82.66 104.78 18.62 4.01 127.70 36.79 87.06 1.27 0.79 0.81 0.06 0.17 72.71 2.84 9.35 1.71 9.56

Sample
name

Eu Gd Tb Dy Ho Er Yb Lu Hf Ta W Tl Pb Th U 206Pb/
204Pb

207Pb/
204Pb

208Pb/
204Pb

208Pb/
206Pb

207Pb/
206Pb

D7/
4

D8/
4

87Sr/
86Sr

143Nd/
144Nd

ƐNd

3.04 1.12 4.57 0.81 5.53 1.23 3.55 3.65 0.57 2.28 0.09 0.06 0.05 1.03 0.15 0.08 18.490 15.537 38.186 2.065 0.840 4.170 20.455 0.703265 0.513063 8.30

3.10 1.19 4.69 0.84 5.66 1.27 3.64 3.70 0.58 2.31 0.09 0.07 0.04 1.07 0.16 0.07 18.466 15.539 38.185 2.068 0.841 4.601 23.293 0.703259 0.513064 8.32

3.08 1.12 4.54 0.82 5.54 1.25 3.55 3.63 0.58 2.25 0.09 0.14 0.04 1.20 0.15 0.07

2.98 1.11 4.52 0.81 5.52 1.23 3.56 3.62 0.57 2.18 0.09 0.05 0.04 0.87 0.16 0.07 18.464 15.535 38.162 0.703228 0.513082 8.66

3.17 1.13 4.70 0.83 5.68 1.26 3.65 3.74 0.59 2.32 0.09 0.16 0.05 1.08 0.15 0.07

3.13 1.14 4.67 0.84 5.67 1.25 3.64 3.75 0.59 2.32 0.09 0.16 0.05 1.14 0.15 0.07

3.35 1.19 4.94 0.89 6.00 1.33 3.86 4.00 0.63 2.49 0.10 0.16 0.05 1.19 0.17 0.08

3.27 1.17 4.84 0.87 5.88 1.29 3.77 3.86 0.61 2.43 0.09 0.16 0.05 1.37 0.16 0.08

3.39 1.21 5.01 0.90 6.08 1.34 3.91 4.02 0.63 2.54 0.10 0.16 0.06 1.17 0.17 0.08

3.31 1.19 4.92 0.88 5.94 1.32 3.84 3.93 0.62 2.47 0.09 0.16 0.05 1.52 0.16 0.08

3.15 1.14 4.68 0.85 5.67 1.26 3.64 3.78 0.59 2.34 0.09 0.16 0.06 1.07 0.16 0.07

3.27 1.17 4.86 0.87 5.89 1.30 3.77 3.91 0.61 2.43 0.09 0.16 0.05 1.37 0.16 0.08
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TABLE 4 ABE hydrothermal vent site U-series abundances and isotopes.

Sample

Th 2σ U 2σ Th/U 2σ 2σ 230Th/232Th atom 2σ 2σ 2σ

(ppm) (%) (ppm) (%) (wt.) (%) (238U/232Th) (%) (×10−6) (%) (230Th/232Th) (%) (234U/238U) (%) (230Th/238U)

DR50-1 0.150 0.8 0.076 1.404 1.979 1.404 1.533 1.404 6.445 0.258 1.193 0.258 1.002 0.156 0.778

DR51-1 0.159 1.4 0.074 1.434 2.145 1.434 1.415 1.434 6.367 0.319 1.178 0.319 1.000 0.157 0.833

RC-083 0.154 1.3 0.074 1.423 2.093 1.423 1.450 1.423 6.892 0.233 1.276 0.233 1.000 0.158 0.880

RC-086 0.158 0.6 0.071 1.401 2.225 1.401 1.363 1.401 6.929 0.217 1.282 0.217 1.005 0.160 0.941

J2-236-003 0.154 1.4 0.072 1.402 2.144 1.402 1.415 1.402 6.317 0.277 1.169 0.277 1.004 0.152 0.826

J2-236-004 0.152 0.5 0.073 1.423 2.082 1.423 1.457 1.423 6.435 0.194 1.191 0.194 1.004 0.160 0.818

J2-237-003 0.167 0.5 0.078 1.428 2.150 1.428 1.411 1.428 6.338 0.287 1.173 0.287 1.002 0.152 0.831

J2-237-006 0.159 1.5 0.076 1.400 2.101 1.400 1.444 1.400 6.740 0.172 1.247 0.172 1.002 0.159 0.864

J2-237-021a 0.170 1.3 0.080 1.400 2.123 1.400 1.429 1.400 6.354 0.219 1.176 0.219 1.003 0.166 0.823

J2-237-021a

J2-237-021b

J2-128-1-R1 0.163 1.4 0.077 1.432 2.102 1.432 1.444 1.432 6.335 0.172 1.172 0.172 1.003 0.159 0.812

J2-128-7-R1 0.155 1.1 0.073 1.441 2.118 1.441 1.432 1.441 6.418 0.337 1.188 0.337 1.004 0.167 0.829

J2-136-4-R1 0.160 1.0 0.076 1.407 2.112 1.410 1.437 1.410 6.301 0.197 1.166 0.197 1.002 0.158 0.812

BCR-2a 5.853 1.3 1.688 1.457 3.466 1.457 0.875 1.457 4.769 0.190 0.883 0.190 1.001 0.156 1.009

BCR-2a

BCR-2b

TML 30.315 1.4 10.798 1.406 2.807 1.400 1.081 1.400 5.812 0.108 1.076 0.108 1.001 0.162 0.996

Measurement
error

Measurement
+ spike error

Sample 2σ 226Ra 2σ (210Pb) 1σ 1σ (226Ra) 2σ 2σ 2σ 2σ Propagated
error

(%) (226Ra/230Th) (%) fg/g (%) dpm/g abs (%) dpm/g abs (%) abs (%) (210Pb/226Ra) abs (%)

1.427 3.276 2.398 65.405 1.319 0.170 0.006 3.53 0.144 0.0019 1.32% 0.0036 2.52% 1.184 0.072 6.05%

1.470 3.216 2.349 66.913 1.141 0.170 0.006 3.53 0.147 0.0017 1.14% 0.0034 2.34% 1.158 0.068 5.87%

(Continued on following page)
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TABLE 4 (Continued) ABE hydrothermal vent site U-series abundances and isotopes.

Measurement
error

Measurement
+ spike error

Sample 2σ 226Ra 2σ (210Pb) 1σ 1σ (226Ra) 2σ 2σ 2σ 2σ Propagated
error

(%) (226Ra/230Th) (%) fg/g (%) dpm/g abs (%) dpm/g abs (%) abs (%) (210Pb/226Ra) abs (%)

1.442 3.112 3.500 68.018 2.854 0.204 0.005 2.45 0.149 0.0043 2.85% 0.0061 4.05% 1.369 0.089 6.50%

1.417 1.838 2.357 41.432 1.260 0.084 0.006 7.14 0.091 0.0011 1.26% 0.0022 2.46% 0.924 0.089 9.60%

1.429 3.026 2.624 60.491 1.697 0.241 0.006 2.49 0.133 0.0023 1.70% 0.0038 2.90% 1.817 0.098 5.38%

1.437 3.408 2.076 68.559 0.470 0.169 0.005 2.95 0.150 0.0007 0.47% 0.0025 1.67% 1.126 0.052 4.62%

1.457 3.305 2.419 71.979 1.300 0.187 0.006 3.21 0.158 0.0021 1.30% 0.0039 2.50% 1.184 0.068 5.71%

1.411 3.347 2.116 74.033 0.726 0.175 0.005 2.86 0.162 0.0012 0.73% 0.0031 1.93% 1.077 0.052 4.78%

1.417 3.383 3.530 75.176 2.914 0.237 0.007 2.74 0.165 0.0048 2.91% 0.0068 4.11% 1.437 0.099 6.86%

0.230 0.006

0.244 0.007

1.443 3.291 2.473 69.911 1.409 0.163 0.005 3.06 0.153 0.0022 1.41% 0.0040 2.61% 1.064 0.060 5.67%

1.480 3.281 2.298 67.299 1.008 0.186 0.007 3.76 0.148 0.0015 1.01% 0.0033 2.21% 1.259 0.075 5.97%

1.424 3.444 2.917 71.667 2.122 0.165 0.006 3.64 0.157 0.0033 2.12% 0.0052 3.32% 1.049 0.073 6.96%

1.469 0.998 2.509 573.813 1.419 1.259 0.018 1.39 1.259 0.0179 1.42% 0.0330 2.62% 1.001 0.040 4.00%

1.256 0.017 1.35

1.262 0.019 1.51

1.433 1.010 2.006 3,664.69 0.400 NM NM NM 8.040 0.0322 0.40% 0.1286 1.60% NM NM NM

U and Th isotopic compositions measured by MC-ICP-MS at WHOI using the ThermoFisher NEPTUNE (Sims et al., 2008a; Ball et al., 2008; Sims et al., 2008b); 210Pb measured at University of Iowa using EGG, Ortec alpha spectrometry system (Reagan et al., 2005;

Waters et al., 2013a).

Errors are calculated using standard error propagation methods and include uncertainties in: 1) the decay constants: λ210 (0.4%), λ226 (0.4%), λ230 (0.3%), λ232 (0.5%), λ238 (0.07%), (Le Roux and Glendenin, 1963; Jaffey et al., 1971; Holden, 1990; Cheng et al., 2000; Tuli,

2000); 2) the time-averaged uncertainty in 233U (0.7%), 229Th (1%), 228Ra (1.3%) spikes used for isotope dilution; 3) the instrument parameters, including the uncertainty in determining the tailing of 232Th on 230Th (~0.1%–0.2%); 4) the weighing errors (~0.001%); 5)

measurement precision for the samples and bracketing standards (0.03%–0.4%).
aReported 210Pb values for J2-237-021 and BCR-2, are the average of two analyses.
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For the following reasons we argue that these ABE lavas are ideal
for determining (210Pb/226Ra) model ages.

(1) The lavas share a common source. Although long-lived
radiogenic isotope ratios are only available for three ABE
samples, the isotopic and major and trace element
compositional ranges observed within the ABE vent field are
small. For example, compared to the ELSC (Figure 4) range of
206Pb/204Pb of 18.13–18.66, 206Pb/204Pb within ABE is
18.46–18.49, or roughly 6% of the total range in ELSC lavas
(Escrig et al., 2009). Therefore, it is reasonable to conclude that
the ABE lavas share a common mantle source.

(2) The ABE lavas reflect similar extents of melting, with similar
melting and ascent rates. Except for sample RC-086, the ABE
lavas with 210Pb excesses have a limited range of major and
trace element abundances (Tables 2, 3; Figures 2, 3) and have
similar extents of (230Th/238U) and (226Ra/230Th)
disequilibria (Figure 5).

(3) The ABE lavas’U-Th-Ra-Pb disequilibria result from primary
magmatic processes. Although (234U/238U) of the ABE
samples are not exactly within secular equilibrium, it is
highly unlikely that these slight excesses of 234U are a
result of secondary alteration processes because of the
likely slight tailing of 235U on 234U. Furthermore, these

FIGURE 2
Total alkali vs. silica diagram after Le Maitre et al. (2002). Data for Eastern Lau Spreading Center from Peate et al. (2001), Bézos et al. (2009), and Gale
et al. (2013).

FIGURE 3
(A) CI normalized (Palme and O’Neill, 2014) rare-earth element plot. The green field is the ABE vent site and the dark green is the average of the ABE
samples, excluding RC-086. Grey field is the Eastern Lau field with dark grey line being the average, with data for Eastern Lau field fromBezos et al. (2009).
Sample RC-086 is plotted separately on all figures to highlight its chemical distinction. The mean composition of MORB comes from Gale et al. (2013).
Average oceanic arc is from Kelemen et al. (2014). Average arc tholeiite comes from a weighted average of data from Vanuatu and Palau, Schmidt
and Jagoutz (2017). (B) Primitive mantle normalized (Palme and O’Neill, 2014), extended trace element plot.
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samples’ (234U/238U) does not vary systematically with K2O/
P2O5 ratios, another measurement of secondary alteration.
Furthermore, neither (234U/238U) nor K2O/P2O5 vary
systematically with (210Pb/226Ra).

(4) ABE lavas have (210Pb/226Ra) as high as 1.82. This maximum
value also is the highest measured to date for any lava erupted
from a spreading center (c.f., Rubin et al., 2005; Waters et al.,
2013) and lavas with (210Pb/226Ra) values greater than 2 are
rare in any tectonic setting (e.g., Berlo and Turner, 2010;

Reagan et al., 2017). Thus, the length of time that elapsed
between generation of 210Pb-226Ra disequilibria in magma and
eruption of lava was short with respect to the 22.3-year half-
life of 210Pb. In this regard, we note that among the samples
with 210Pb excess, (210Pb/226Ra) is positively correlated with
(210Pb) but does not vary systematically with 1/(226Ra) or Pb
concentration, indicating that (210Pb/226Ra) > 1 results from
enrichment of 210Pb or its parent 222Rn, rather than removal of
Ra or enrichment of Pb (Figure 6).

FIGURE 4
(A) εNd versus 87Sr/86Sr and (A) 208Pb/204Pb versus 206Pb/204Pb for ABE samples compared to ELSC (Escrig et al., 2009) and MORB-OIB database (see
Supplementary Appendix SB). End-member mantle compositions are shown with yellow symbols; depleted MORB mantle (DMM) from Zindler and Hart
(1986), Salters and Stracke (2004), and Sims and Hart (2006); HIMU and Enriched Mantle 1 (EM1) from Zindler and Hart (1986) and Hart et al. (1992); and
Enriched Mantle 2 (EM2) from Workman et al. (2004).

FIGURE 5
(230Th/238U) versus (226Ra/230Th) for the Lau ABE Basalts. Also shown are the MORB-OIB database (see Supplementary Appendix SB for references)
and the lavas from the Tonga-Kermadec arc (Turner et al., 1997) and the Sunda arc (Turner and Foden, 2001). Note how all the ABE samples except RC-
086 cluster tightly, suggesting similarities in their petrogenetic processes.
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Given that all the ABE samples except RC-086 meet the above
criteria, we calculate (210Pb/226Ra) model ages for the time (T) since
sample eruption using:

T � 1
λ210

ln
210Pb/226Ra( )m − 1
210Pb/226Ra( )o − 1

where (210Pb/226Ra)m is the measured ratio, (210Pb/226Ra)o is the
calculated initial ratio at the time of the lavas’ eruption (Table 5), and
λ210 is the decay constant of 210Pb.

Calculating these (210Pb/226Ra) model eruption ages requires an
assessment of the initial extent of 210Pb excess at the time of these
samples’ eruption. Although (210Pb/226Ra) as high as seven has been
measured, (210Pb/226Ra) greater than two is extremely rare (Berlo and
Turner, 2010; Reagan et al., 2017). To model these samples’ eruption
ages, we use two possible and reasonable end-member scenarios as
bracketing starting conditions. Although, somewhat arbitrary, we
have chosen the given endmembers {(210Pb/226Ra)0 = 1.82 to 2.0 and
(226Ra/230Th)0 = 3.02 to 3.55} because they closely bracket the
observed range in the observed lavas (Figure 7; Table 4). We
then interpolate a model zero-age isochron between the two
endmembers (Figure 7). Given this model zero-age isochron we

use the samples’ (226Ra/230Th) to establish their initial (210Pb/226Ra)
and calculate the time of decay toward (210Pb/226Ra) since eruption.
Because of the large difference in the half-lives of 210Pb (t1/2 =
22 years) and 226Ra (t1/2 = 1,600 years), the decay trajectory in (226Ra/
230Th) versus (210Pb/226Ra) space (Figure 7) is essentially vertical.
Over a period of one-hundred years, (226Ra/230Th) decreases by only
3%. For all samples except for RC-086, we calculate model eruption
ages for all samples of 0–100 years, with an average eruption age for
the vent field being roughly 53 ± 29 years at the time of analysis in
2013. It is important to note that because the model age isochrons
get closer together over time the uncertainties in the sample
ages increase.

In contrast to all other ABE vent site samples, RC-086 has a (210Pb/
226Ra) that is slightly below unity but within error of equilibrium at the
one-sigma level of uncertainty, and its measured (226Ra/230Th) is much
lower than all other samples (Figure 7). The simplest explanation for
this difference is that RC-086 is much older than the other samples; its
equilibrium (210Pb/226Ra) indicates it erupted more than 100 years ago
and, if one assumes the initial (226Ra/230Th) was the same as the young
ABE samples (on the order of 1.8–2.0), then its measured (226Ra/230Th)
provides a model eruption age of 1,800–2,500 years. However, some

FIGURE 6
(210Pb/226Ra) vs. (A) (210Pb), (B) 1/(226Ra), and (C) Pb concentration. (210Pb/226Ra) is positively correlated with (210Pb), but not (226Ra) or Pb concentration
(see text for details). However, sample RC-086 has low Pb concentration, which suggests that the small 210Pb deficit in this sample is possibly due to post-
eruptive Pb loss. (D) (226Ra/230Th) vs. Ba/Th; note that both ratios are low in RC-086 relative to the other lavas.
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caution is warranted with this simple older eruption interpretation. RC-
086, which is located on the northern edge of the vent field, is
compositionally distinct from other ABE lavas (Figures 1–6),
including having different (230Th/238U). Additionally, secondary
alteration and post-eruptive Pb loss could be responsible for the
lower 210Pb in this sample, since RC-086 has lower Pb concentration
than the other samples and higher (234U/238U), which is also suggestive
of secondary alteration. Therefore, RC-086 is either older than the other

ABE samples, or the model ages for this sample are not valid because of
either alteration of different initial starting conditions, or both.

To first order our model ages indicate that, at the 68% uncertainty
level (1σ), all the ABE samples except RC-086 were erupted less than
100 years before the time of measurement (2013), with an average
eruption age of 53 years. These very youngmodel ages for the ABE vent
field are consistent with both visual observations of these samples
(Figure 8) as well as roughness analysis from side-scan sonar (Figure 9),

FIGURE 7
(210Pb/226Ra) vs. (226Ra/230Th) showing ABE vent field lavas and age trajectories calculated assuming (210Pb/226Ra)0 = 1.82 or 2.0 and (226Ra/230Th)0 =
3.02 or 3.55 and then interpolating a model zero-age isochron between the two endmembers. The majority of samples have (210Pb/226Ra) > 1, indicating
that they erupted within the past 100 years. RC-086 likely erupted more than 100 years ago; if this sample had (226Ra/230Th) = 3.05–3.63, then
1,800–2,500 years have elapsed since eruption. See text for details.

TABLE 5 (210Pb/226Ra) Model Ages.

Sample Model ages in years +(Years)a −(Years)a

J2-236-003 0 0 0

J2-237-021 25 7 5

RC-083 28 7 6

J2-128-7-R1 41 10 7

DR50-1 53 15 10

J2-237-003 53 15 9

DR51-1 56 17 11

J2-236-004 65 14 10

J2-237-006 80 28 15

J2-128-1-R1 88 83 21

J2-136-4-R1 95 78 27

RC-086 2,297 147 116

aAge uncertainties are the upper and lower limits in years from the mean model age assuming 1σ uncertainty for 210Pb and 2σ uncertainty for 226Ra measurements. For example, RC-083 ranges

from 22 to 35 years, with a mean model age of 28 years. Uncertainties are propagated as described under Table 4. Ages are reported relative to the date of analysis (2013).
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suggesting that there is little sediment cover (Ferrini et al., 2008). Not
surprisingly, the youngest of these samples cluster around the active
vent sites. We thus infer that the ABE vent site’s location is a direct
consequence of this concentrated young volcanism. Additionally, it is
notable that the oldest eruption ages were measured for flows on the
northern and southern ends of this vent site, consistent with the
observations of Ferrini et al. (2008) that noted the heaviest
sedimentation was observed in the extreme northern and southern
extents of the survey area.

The fact that all the ages of lava flows associated with the vent field
are so young raises interesting questions about the timing relationships
between eruptions and hydrothermal activity. One implication of the
very young ages would be that recent eruptive activity leads to, or is at
least associated with, active hydrothermal venting. Are all the
hydrothermal vents along the ELSC also associated with very recent
hydrothermal activity? Are eruptions on-going at this location? Is the
hydrothermal activity at this site perhaps declining? Would lavas from
portions of segments without recent activity be significantly older? The
measurements we report hold the promise for addressing in far greater
detail the connections between eruptive and hydrothermal activity on
the decadal to century time scales.

6.2 Lau ridge construction

A notable aspect of the ABE vent field is that it is located ~600 m
west of the ridge axis. If one assumes that the lavas erupted on axis
and that the average spreading rate at the latitude of ABE is ~80 mm/
year, then the expected age of these lavas is ~7,500 years (Martinez
and Taylor, 2002). There are two possible ways to reconcile the
much younger apparent and model ages (Table 5) compared to the
spreading rate ages. The first possibility is that magmatism in the
ELSC is not localized at the ridge axis, and that off-axis magmatism

has occurred quite recently. The second possibility is that the flows
originated at the axis and have traveled as surface flows or through
lava tubes to distances >600 m (e.g., Sims et al., 2003 for discussion
on flows that likely originated at the axis and traveled off-axis at
9–10°N East Pacific Rise). Given the patterns of faulting, the
bathymetry showing shallower depths and inflation adjacent to
the vents, and the observed flow fronts, this later possibility is
highly unlikely. Thus, we conclude that the ABE vent site is a
locus of off-axis volcanism.

6.3 Petrological implications

These ABE lavas are notable in that they are highly enriched in
(210Pb) relative to (226Ra). Such excesses of (210Pb) over (226Ra) have been
reported for subsets of MORB and arc lavas and are commonly
attributed to decay of 222Rn within an accumulated gas phase (e.g.,
Reagan et al., 2006; Sims et al., 2008a; Berlo and Turner, 2010;
Condomines et al., 2010; Reubi et al., 2015), typically near a density
or viscosity barrier within themagmatic system (e.g., Kayzar et al., 2009;
Waters et al., 2013). In an arc setting, magmas are enriched in water
from subducting plates. Loss of this water causes crystallization, which
may result in rheological barriers to volatile-phase migration from
below (e.g., Reagan et al., 2017). In a spreading center environment,
magma differentiation away from a melt lens can also create a low-
density, high-viscosity magma barrier (Waters et al., 2013). Thus, we
similarly posit, for the following reasons, that these ABE lavas’ (210Pb)
excesses were also created by a low-density, high-viscosity, rheological
magma barrier which prevented volatile phase migration and caused a
build-up of a222Rn-rich magma, which subsequently resulted in an
ingrowth of 210Pb:

(1) These ABE lavas were erupted off-axis.

FIGURE 8
Sample photos taken by ROV Jason 2, arranged in order of model age (left to right with top row being the youngest).
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(2) These lavas have geochemical signatures suggesting that they
have been significantly influenced by subduction processes
and are therefore relatively water-rich.

(3) These lavas are significantly differentiated and are thus high
viscosity and volatile rich.

7 Conclusion

• 210Pb-226Ra-230Th disequilibria presented here provide robust
decadal scale age constraints for the ABE vent field lavas.
While these results are specific to the ABE vent field, they
demonstrate the potential of using 210Pb-226Ra disequilibria as a
high-resolution chronometer for young lava fields of unknown age.

• All the samples except RC-086 have (210Pb/226Ra) > 1, which
indicates that they erupted within the past 100 years. However,
given the magnitude of their 210Pb-226Ra disequilibria, model
ages suggest that many of the lavas erupted within the past
60 years (Table 5).

• In combination with high-resolution bathymetry, this high-
resolution record provides fundamental time constraints for
interdisciplinary studies examining oceanic crustal construction
and the development of hydrothermal systems on in the ELSC.

• The young ages, shallower bathymetry, and localized faulting
with emanating flow fronts at the ABE vent site represents a
region of off-axis volcanism.

• While it may be possible to argue that sample RC-086 has an
eruption age of 1,800–2,500 years, it is important to keep in

mind that, although this sample is indeed likely to be much
older, it has also undergone post-eruptive, secondary
alteration thereby rendering its exact model age as uncertain.

• Lastly, we argue that these ABE lavas’ (210Pb) excesses were
created by a low-density, high-viscosity, rheological magma
barrier which prevented volatile phase migration and caused a
build-up of a222Rn-rich magma, which consequently resulted
in an ingrowth of 210Pb.
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