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Wheat is cultivated across diverse global environments, and its productivity is
significantly impacted by various biotic stresses, most importantly but not limited
to rust diseases, Fusarium head blight, wheat blast, and powdery mildew. The
genetic diversity of modern cultivars has been eroded by domestication and
selection, increasing their vulnerability to biotic stress due to uniformity. The rapid
spread of new highly virulent and aggressive pathogen strains has exacerbated
this situation. Three strategies can be used for enhancing disease resistance
through genome editing: introducing resistance (R) gene-mediated resistance,
engineering nucleotide-binding leucine-rich repeat receptors (NLRs), and
manipulating susceptibility (S) genes to stop pathogens from exploiting these
factors to support infection. Utilizing R gene-mediated resistance is the most
common strategy for traditional breeding approaches, but the continuous
evolution of pathogen effectors can eventually overcome this resistance.
Moreover, modifying S genes can confer pleiotropic effects that hinder their
use in agriculture. Enhancing disease resistance is paramount for sustainable
wheat production and food security, and new tools and strategies are of great
importance to the research community. The application of CRISPR-based
genome editing provides promise to improve disease resistance, allowing
access to a broader range of solutions beyond random mutagenesis or
intraspecific variation, unlocking new ways to improve crops, and speeding up
resistance breeding. Here, we first summarize the major disease resistance
strategies in the context of important wheat diseases and their limitations.
Next, we turn our attention to the powerful applications of genome editing
technology in creating new wheat varieties against important wheat diseases.
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1 Introduction

Wheat is a vital crop that provides up to 20% of human calorie intake; however, its
production is jeopardized by future environmental stresses exacerbated by climate change.
As such, maintaining yield will be crucial to meeting the escalating food security demands
under a changing climate. Wheat diseases significantly reduce global production, leading to
losses of 20% or more of the crop annually (Savary et al., 2019). Some major wheat diseases
are rust (stripe rust, leaf rust, and stem rust), wheat blast, Fusarium head blight (FHB),
powdery mildew, and other bacterial, nematode, and viral diseases. A changing climate and
increased global trade can accelerate the spread and the emergence of new diseases,
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complicating disease resistance breeding efforts. For instance,
climate models forecast conditions that will facilitate the
expansion of damaging wheat diseases, which will further
exacerbate the challenges to future food security (Pequeno et al.,
2024). The development and deployment of wheat varieties
exhibiting robust and long-lasting disease resistance are crucial
for combating new and existing diseases for several reasons. First,
disease resistance helps stabilize yields and allows farmers to avoid
substantial economic losses from crop damage and reduced
production. Second, host disease resistance can slow pathogen
spread and reproduction, managing severe outbreaks. Lastly,
deploying disease-resistant cultivars can reduce reliance on
pesticide applications, thereby representing a more cost-effective
approach for farmers as well as benefiting the environment and
human health (Cowger et al., 2022).

In plants, the immune response primarily consists of two layers:
pattern recognition receptors (PRRs) that act on the cell surface and
nucleotide-binding leucine-rich repeat receptors (NLRs) that work
in the cytoplasm. PRRs recognize pathogen-associated molecular
patterns (PAMPs) in the apoplast, and NLRs identify pathogen
effectors in the cytoplasm, inducing plant immune responses. PRRs
activate pattern-triggered immunity (PTI) responses, and NLRs
activate effector-triggered immunity (ETI) responses. Both

immune responses lead to many biochemical changes inside the
cell to combat infection, such as reactive oxygen species (ROS)
formation, calcium burst, and hormonal reprogramming (Langner
et al., 2018). PTI response leads to disease defense gene activation
through various steps starting from intercellular kinase activation,
and ETI response triggers numerous events downstream to effector-
NLR binding, such as the involvement of helper NLRs, resistosome
formation, and the induction of immune response by resistosomes
(Figure 1) (Wang J. et al., 2023).

The most prominent disease resistance strategy has been
introducing resistance (R) genes in wheat to enhance resistance
against invading pathogens. R genes typically fall into two broad
categories: all-stage resistance (ASR) and adult plant resistance
(APR) genes (Norman et al., 2023). ASR genes typically provide
strong, race-specific resistance throughout all growth stages,
mediated by intracellular NLR immune receptors. However, they
are prone to being overcome by pathogen mutations, and this is not
considered a form of durable resistance. APR genes, in contrast,
confer partial, race-nonspecific resistance during adult growth
stages. Encoding a more diverse range of proteins, APR genes
offer more durable resistance, making them highly desirable for
breeders (Ellis et al., 2014). Although the process of identifying R
genes and introgression by natural breeding is cumbersome and

FIGURE 1
Model outlining the components and events involved in the plant immune system. The first layer of defense involves the recognition of pathogen-
associatedmolecular patterns (PAMPs) by pattern recognition receptors (PRRs) on the cell surface, leading to pattern-triggered immunity (PTI), activation
of intracellular kinases, the influx of calcium ions into the cytoplasm, the expression of defense genes, and the accumulation of antimicrobial secondary
metabolites, triggering systemic acquired resistance and the hypersensitive response and overall plant immunity. The secondary immune response,
known as effector-triggered immunity (ETI), is initiated upon the suppression of the PTI by pathogen-deployed effectors. Nucleotide-binding leucine-
rich repeat receptors (NLRs) recognize pathogen effectors and, via resistosome complexes, trigger calcium ion influx into the plant cell, leading to ETI.
Pathogens use effector proteins to counteract plant immunity by interfering with host factors encoded by susceptibility (S) genes, manipulating host
processes, and suppressing host defense systems to establish disease. R gene, resistance gene. Created in https://BioRender.com.
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time-consuming, it has been an important strategy in combating
plant pathogens and pests through breeding. Despite this, the
selection pressures produced by deploying single R genes in
crops promote pathogens to evolve and eventually overcome
resistance conferred by these R genes (Langner et al., 2018).
Transgenesis has been used to introduce R genes directly into
elite material to engineer resistance against disease without
introgression quickly. However, the challenge of pathogens
overcoming R gene resistance remains the same for traditionally
bred or genetically engineered disease resistance. Instead, the
pyramiding of multiple R genes in crops has been suggested as a
way to produce a selection pressure too high for the pathogen to
overcome (Luo et al., 2021; Jones et al., 2024).

Pathogens exploit multiple host genes to promote successful and
compatible infection. Plant genes that aid in disease progression are
known as susceptibility (S) genes or factors. Many wheat S genes
have been identified, and these genes help in numerous aspects of
the disease progression, such as pathogen penetration, pathogen
sustenance, and plant immunity suppression (Eckardt, 2002; Garcia-
Ruiz et al., 2021). Inactivating S genes is a promising strategy for
conferring disease resistance. Loss-of-function mutant generation
for S genes through conventional mutagenesis or genome editing
(GE) has enhanced disease resistance against various crop pests and
pathogens. In this review, we discuss the different strategies
employed for improving disease resistance in wheat, followed by
detailing the application of CRISPR-mediated GE to manipulate S
genes and R genes to enhance resistance. Finally, we propose new
possibilities for applying an ever-increasing GE toolbox for
engineering durable and robust disease resistance in wheat.

2 Improvement of wheat disease
resistance through conventional and
transgenic approaches

2.1 Conventional breeding approaches to
improve wheat disease resistance

Conventional breeding has played a pivotal role in enhancing
disease resistance in cultivated wheat, contributing significantly to
protecting agricultural productivity. Conventional breeding
approaches for enhancing host disease resistance involve utilizing
both qualitative and quantitative resistance. Qualitative traits are
controlled by major effect R genes, and quantitative traits are
controlled by a group of minor effect genes regulated by
quantitative trait loci (QTL) (Merrick et al., 2021). R gene-based
resistance tends to be easier to use in breeding programs compared
to minor gene-based resistance, which is improved gradually over
multiple breeding cycles (Poland and Rutkoski, 2016). In breeding
programs, R genes are commonly introduced into elite cultivars
through marker-assisted selection; however, this can lead to linkage
drag when introduced from wild or non-adapted germplasm.

As of 2021, 467 R genes had been designated for wheat disease
resistance, with 47 of these cloned, most of which were race-specific
NLRs (Hafeez et al., 2021). Moreover, for just the three rust diseases,
around 920 QTLs and R genes have been identified, demonstrating
the vast genetic resources already identified for disease-resistance
breeding (Tong et al., 2024). For example, Yr5, Yr10, Yr15, and Yr24/

Yr26 are NLRs that provide strong race-specific resistance to stripe
rust in India (Haider et al., 2023). NLRs are commonly deployed in
breeding programs; however, they are prone to being overcome by
pathogen evolution, especially when single R genes are deployed. For
instance, Sr31 provided effective stem rust resistance in wheat for
30 years before being overcome by the stem rust race Ug99
(Pretorius et al., 2000). Pyramiding multiple R genes is proposed
as an effective strategy to prevent resistance breakdown, but
conventional breeding to combine R genes is a very lengthy
process (Hafeez et al., 2021; Wang F. et al., 2023; Jones et al.,
2024). For instance, combining four broad-spectrum R genes for
each of the three rusts (12 genes in total) would require
19 generations through a crossing approach to generate near-
isogenic lines in an elite background (Hafeez et al., 2021).

2.2 Genetic modification approaches to
improve wheat disease resistance

Integrating wheat breeding efforts and genetic engineering using
R genes represents a sustainable approach for attaining broad-
spectrum disease resistance in wheat. The introduction of cloned
R genes through transgenesis has been demonstrated to improve the
biotic resistance to many diseases in wheat; examples of this are
found in Supplementary Table S1. For instance, the overexpression
of the NLR Yr10 provides robust resistance against stripe rust (Liu
et al., 2014). Similarly, overexpression of the Sr13 gene confers
resistance against stripe rust and Ug99 stem rust (Zhang W. et al.,
2017). However, pathogen evolution can still overcome the
introduction of single R genes through transgenesis. To prevent
this, transgenesis allows for the introduction of multiple R genes in a
transgene stack, allowing for the pyramiding of R genes without
lengthy and labor-intensive crossing schemes (Hafeez et al., 2021;
Jones et al., 2024). Luo et al. (2021) showed that overexpressing a
multigenic construct containing the Sr45, Sr55, Sr50, Sr35, and Sr22
genes conferred broad-spectrum rust resistance in wheat. Moreover,
since the R genes introduced in this manner are in perfect linkage,
they would be easy to deploy in breeding schemes through marker-
assisted selection. However, due to limitations in the size of
transgene that can be transformed into wheat, there is a limit to
the number of R genes that can be introduced on a single R gene
stack. Additionally, transgenes are randomly integrated into the
genome, which may affect genes and genetic elements around their
integration site.

Transgenic RNA interference (RNAi) approaches have also been
demonstrated to improve wheat disease resistance (Supplementary
Table S1). For the viruses wheat yellow mosaic virus and wheat
streak virus, RNAi elements targeting a polymerase gene (NIb8) and
a replicase gene (NIb), respectively, enhanced disease resistance to
these two viruses (Chen et al., 2014; Tatineni et al., 2020).
Constitutively expressed CRISPR/Cas nucleases have been used
to target viral genomes and improve viral resistance in an
approach reminiscent of RNAi. For instance, wheat dwarf virus
resistance was improved in wheat through the expression of
CRISPR/Cas9 and single guide RNAs (sgRNAs) targeting the
DNA genome of this virus (Yuan et al., 2024). However, this
resistance appears short-lived due to the rapid viral evolution
that circumvents the target sites of the sgRNA (Mehta et al.,
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FIGURE 2
Examples of CRISPR-based tools for the modification of genomes and transcriptomes. Cas9 enables genome editing and is widely used for
knockouts. Cas12a produces cohesive ends employed for both knockout, knock-ins, and easier multiplexing. Base editors integrate a nickase Cas9
(nCas9) with an adenine or cytosine deaminase to catalyze A-to-G or C-to-T substitutions, respectively. Prime editing combines nCas9 and a reverse
transcriptase that uses a prime editing guide RNA (pegRNA) to install a desired edit into the target site. Cas13 is a programmable RNA-targeting
system for sequence-specific recognition and cleavage. PrimeRoot utilizes a prime editor coupled with recombinases to facilitate accurate large DNA
insertion. Transposase-assisted target-site integration (TATSI) utilizes a fused Pong transposase protein in combination with Cas9 or Cas12a to facilitate
the integration of large DNA insertions. Cas-Exo harnesses Cas9 or Cas12a fused with a 5′-exonuclease to enable precise and scar-free insertion of large
DNA fragments. crRNA, CRISPR RNA; ssRNA, single-stranded RNA; UGI, uracil glycosylase inhibitor; PE, prime editing; TE, transposable element. Created
in https://BioRender.com.
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2019). Nevertheless, genetic modification approaches face
cumbersome, costly regulatory processes and low societal
acceptance; therefore, these examples have not been translated
into commercially available crops. Instead, it is hoped that the
new and precise GE technologies can open the door for
improving disease resistance in wheat due to their better
regulatory framework and social acceptance.

3 CRISPR-based precision genome
editing technologies

GE enables precise modifications of DNA, including insertions,
deletions, or alterations, at specific genomic loci. Several GE
technologies have been developed over the years, including zinc
finger nucleases (ZFNs), transcription activator-like effector
nucleases (TALENs), and CRISPR/Cas nucleases (Songstad et al.,
2017). While the costly and complicated protein construction
associated with the protein-guided ZFNs and TALENs has
limited their use, the RNA-guided CRISPR/Cas nucleases have
been widely adopted due to their simplicity, cost-effectiveness,
and ease of use (Figure 2). Among these, Cas9 and Cas12a
nucleases are the most commonly used nucleases for GE, with
engineered versions with expanded protospacer adjacent motif
(PAM) sequence recognition broadening their applications in GE
(Walton et al., 2020; Zeng et al., 2020; Ren et al., 2021; Liu Z.
et al., 2024).

The CRISPR/SpCas9 system, derived from Streptococcus
pyogenes, is the most widely used CRISPR system. This consists
of a Cas9 nuclease and a sgRNA that directs the nuclease to a specific
20-nucleotide target site adjacent to a PAM site (Jinek et al., 2012).
For SpCas9, the PAM sequence is ‘NGG’; however, CRISPR systems
from other bacterial species have different PAM and target site
requirements. Once bound to the target site, the Cas9 nuclease
induces a double-strand break, which is subsequently repaired by
endogenous cellular mechanisms. These include error-prone non-
homologous end joining (NHEJ) or, less frequently, homology-
directed repair (HDR) when a template sequence is present
(Songstad et al., 2017). NHEJ is the primary repair pathway in
plants, often introducing small insertions or deletions that can result
in frameshift mutations within protein-coding sequences. While
HDR is less common in plants, it enables the precise knock-ins of
desired DNA sequences. The CRISPR/Cas9 technology has been
widely applied to improve agronomic traits of different cereal,
horticulture, and legume crops (Saini et al., 2023).

The CRISPR/Cas12a system differs from CRISPR/Cas9 by
generating cohesive ends with overhangs, in contrast to the blunt
ends produced by Cas9, which improve the efficiency of HDR-
mediated DNA insertions (Bandyopadhyay et al., 2020). Cas12a is
also a smaller protein that recognizes a ‘TTTV’ PAM sequence and
cleaves DNA at a site distal to the target sequence, often resulting in
larger deletions. This system has been successfully utilized in key
crops, such as wheat, rice, maize, and soybean (Hu et al., 2017; Kim
et al., 2017; Lee et al., 2019; Liu et al., 2020). Beyond Cas9 and
Cas12a, new Cas variants and ultra-compact Cas nucleases are
further expanding GE possibilities (Teng et al., 2018; Harrington
et al., 2020; Pausch et al., 2020). Moreover, RNA editing by CRISPR
systems opens a new window in disease research, especially for

targeting RNA viruses. Cas13 and its variants are considered one of
the emerging tools for diverse RNA targeting in plants, such as
plant-adapted virus resistance, RNA knockdown, alternative
splicing modulation, and RNA base editing (Mahas et al., 2019).

Expanding on the precision of CRISPR systems, base editing
enables single-base transition substitutions without inducing DNA
double-strand breaks or requiring donor templates (Komor et al.,
2016). The two main types of base editors are cytosine base editors,
which convert C:G to T:A, and adenine base editors, which convert
A:T to G:C. These tools have been widely used in plant GE to achieve
targeted base modifications (Molla et al., 2021). However, base
editors face several limitations, including their ability to install
only transition substitutions, strict sequence suitability and PAM
availability requirements, and relatively low editing efficiencies.

Prime editing represents a significant advancement in GE,
enabling all 12 types of base substitutions, as well as small DNA
insertions and deletions, in a very precise manner (Anzalone
et al., 2019). Unlike base editors, prime editors are not
constrained by PAM sequence availability or specific sequence
requirements, though they are generally associated with lower
editing efficiencies (Hillary and Ceasar, 2022). This system relies
on a nickase Cas9 (nCas9) fused with a reverse transcriptase and
guided by a prime editing guide RNA (pegRNA). The pegRNA
contains both a sgRNA for target recognition and a reverse
transcription template encoding the desired edit. Upon
binding, the nCas9 induces a nick in the DNA, allowing the
pegRNA to initiate reverse transcription, integrating the desired
edit into the genome (Anzalone et al., 2019). Prime editing has
been successfully demonstrated in crops such as wheat (Ni et al.,
2023), rice (Lin et al., 2020; Zong et al., 2022), maize (Jiang et al.,
2020; Qiao et al., 2023) and tomatoes (Vu et al., 2024).
Improvements have also been made to increase the efficiency
in plants, such as the use of an extra sgRNA to nick the non-
edited strand (Lin et al., 2020), interfering with the mismatch
repair pathway through RNAi (Liu X. et al., 2024), using
improved prime editors with modifications to nCas9 or the
reverse transcriptase (Li J. et al., 2022; Zong et al., 2022), and
using engineered pegRNAs with improved RNA stability (Ni
et al., 2023).

Recently, innovative technologies have emerged that facilitate
large DNA insertion and knock-ins in plants. One such innovation is
PrimeRoot, a novel tool enabling the precise integration of large
DNA segments into plant genomes (Sun et al., 2024). This technique
first employs prime editing to introduce a recombination site into
the genome. Concurrently, a tyrosine recombinase excises two
identical recombination sites on a donor vector, producing an
intermediate donor with the desired DNA insert next to a
corresponding recombination site. Finally, the tyrosine
recombinase integrates the desired DNA insert into the newly
established recombination site within the genome. Transposase-
assisted target-site integration (TATSI) is another recent technology
enabling targeted DNA insertion in plants by utilizing transposable
elements (Liu P. et al., 2024). Here, a rice Pong transposase protein
fused to Cas9 or Cas12a is used to precisely excise and insert DNA
cargo into a desired target site within the genome. Another new
technology, Cas-Exo, was shown to significantly improve the
efficiency of HDR in plants through the fusion of 5′ exonucleases
to Cas9 or Cas12a (Schreiber et al., 2024). After the Cas nuclease
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induces a double-strand break, the 5′ exonuclease creates a longer
free 3′ end by degrading the 5′ sequence of the cut strands. This free
3′ end greatly improves the efficiency of HDR in repairing the
double-strand break. This Cas-Exo technology has achieved stable
and heritable knock-ins in wheat with a frequency of around 1%. As
these DNA insertion methods continue to improve, they hold great
potential for enhancing agronomic traits in wheat through the
targeted insertion of large DNA sequences.

4 Genome editing approaches for
enhancing disease resistance in wheat

GE technologies present transformative tools to target and
modify specific genetic elements for the improvement and
development of durable disease resistance in wheat. This section
will explore the various GE approaches that can be employed for
enhancing wheat disease resistance, from targeted S gene
manipulation to sophisticated R gene knock-ins and NLR
domain engineering.

4.1 Manipulation of susceptibility genes
using genome editing

GE has been extensively demonstrated to improve wheat disease
resistance through the targeted knockout of S genes (Figure 3). By
disrupting these genes, their role in supporting compatible infection is
rendered ineffective, improving the plant’s resistance to the disease. This
strategy has been used to improve the biotic resistance of many crop
species to viruses, bacteria, fungal pathogens, nematodes, and
oomycetes (Zaidi et al., 2018; Li M. et al., 2022; Bishnoi et al., 2023).
Resistance mediated by the loss of an S gene is thought to be more
durable than R gene-mediated resistance since it is not based on the
recognition of effectors that can rapidly evolve to overcome R gene-
mediated resistance (Pavan et al., 2010; Gorash et al., 2021).
Accordingly, examples exist of durable S gene-mediated resistance
that have lasted for several decades in the field, demonstrating the
use of this type of resistance in agriculture (Kusch and Panstruga, 2017).

Pathogens exploiting S genes for infection create selective
pressure for their elimination, yet many S genes persist through
plant evolution. This retention may vary by gene but is often
attributed to their critical roles in host function, where loss could
negatively impact plant physiology and fitness (Hückelhoven et al.,
2013). For instance, mlo-based resistance affects agronomic traits,
while eif4e knockouts for potyvirus resistance cause dwarfing and
yield losses in several crops (Kusch and Panstruga, 2017; Hoffie
et al., 2021). Despite this, there are many examples of S gene-
mediated resistance with no associated yield penalties (Sun et al.,
2016; Ingvardsen et al., 2019). It may also be possible to use GE to
fine-tune the expression of essential S genes and uncouple the
negative pleiotropic effects associated with complete loss-of-
function from enhanced disease resistance. This could be done
through the introduction of new untranslated open reading
frames (ORFs) using base or prime editing to reduce protein
accumulation (Xue et al., 2023) or through disrupting enhancer
sequences within the promoter to reduce gene expression (Tang and
Zhang, 2023).

Another reason that may explain their retention is that some S
genes have been found to confer susceptibility to one pathogen while
boosting resistance to another (McGrann et al., 2014). For wheat
specifically, the polyploid genome and recessive nature of S gene-
mediated resistance may make natural S gene loss-of-function
mutations exceedingly rare due to genetic redundancy. For mlo-
based powdery mildew resistance in wheat, the knockout of all three
TaMLO homeologues was required to confer resistance (Wang et al.,
2014). Therefore, due to this evolutionary constraint, it is possible
that polyploid wheat harbors more S genes than diploid species,
where selective pressures would more easily facilitate their
elimination. This highlights the benefit of GE for the knockout of
all S gene homeologues through multiplexing, which would
otherwise be very difficult to achieve through conventional
breeding methods.

The conserved function of S genes across plant species has
facilitated their identification in wheat, with most wheat S genes
identified as orthologues of those from other crops (Table 1) (Sun
et al., 2016). For instance, eIF4E, an S gene for potyvirus
infection, improved resistance when knocked out using

FIGURE 3
Commonmechanisms of susceptibility (S) gene action. Pathogens employ effector molecules to target plant S genes, enabling them to manipulate
host processes in their favor by transporting pathogen proteins within the host cell, acquiring nutrients, suppressing plant defenses, and ultimately
establishing disease. Created in https://BioRender.com.
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TABLE 1 Susceptibility gene examples in wheat that were targeted using genome editing tools.

Disease(s) Gene(s) Susceptibility (S)
gene

identification

Proposed
susceptibility
mechanism

Protein
description

Pleiotropic
effect

References

Powdery mildew TaMLO1 Orthologue of known S
gene

Unknown; suggested to be
involved in preventing

pathogen establishment or
immunity suppression

Plasma membrane protein
with seven-

transmembrane domains

Growth and yield
penalties

Wang et al.
(2014)

Powdery mildew TaEDR1 Orthologue of known S
gene

Unknown; suggested to be
involved in preventing

pathogen establishment or
immunity suppression

Raf-like mitogen-activated
protein kinase kinase

kinase

No obvious growth
penalties

Zhang et al.
(2017b)

Powdery mildew TaMLO1 Orthologue of known S
gene

Unknown; suggested to be
involved in preventing

pathogen establishment or
immunity suppression

Plasma membrane protein
with seven-

transmembrane domains

No growth or yield
penalties

Li et al. (2022c)

Stripe rust and
Powdery mildew

TaMKP1 Orthologue of known S
gene

Negative regulator of plant
immune response

Mitogen-activated protein
kinase phosphatase

Increased plant height,
spike length, grain size

and grain weight

Liu et al. (2024c)

Stripe rust TaWRKY19 Orthologue of known S
gene

Negative regulator of plant
immune response

WRKY transcription
factor

Authors did not
mention investigating

this

Wang et al.
(2022a)

Stripe rust TaCIPK14 Orthologue of known S
gene/Differential gene
expression during

infection

Negative regulator of plant
immune response

Calcineurin B-like protein-
interacting protein kinase

No growth or yield
penalties

He et al. (2023)

Leaf and Stripe rust TaPsIPK1 Differential gene
expression during

infection

Effector target; suggested to
negatively regulate plant

immune response

Receptor-like cytoplasmic
serine/threonine kinase

No growth or yield
penalties

Wang et al.
(2022b)

Leaf rust TaGW2 Differential gene
expression during

infection

Negative regulator of plant
immune response

E3 ubiquitin ligase Increased grain width
and grain weight with

no yield penalty

Liu et al. (2024b)

Fusarium head
blight

TaHRC Cloned resistance (R) gene
of wheat (Fhb1)

Unknown Histidine-rich calcium-
binding protein

Authors did not
mention investigating

this

Su et al. (2019)

Fusarium head
blight

TaNFXL1 Differential gene
expression during

infection

Unknown Transcription factor Authors did not
mention investigating

this

Brauer et al.
(2020)

Fusarium head
blight

TaHRC Cloned R gene of wheat
(Fhb1)

Unknown Histidine-rich calcium-
binding protein

Authors did not
mention investigating

this

Chen et al. (2022)

Septoria nodorum
blotch, tan spot, and

spot blotch

TaTsn1 Cloned R gene of wheat Toxin sensitivity gene
targeted by ToxA to induce
necrosis (effector-triggered

susceptibility)

Serine/threonine protein
kinase domain and

nucleotide binding-leucine
rich repeat (NB-LRR)

domain protein

Authors did not
mention investigating

this

Karmacharya
et al. (2023)

Septoria nodorum
blotch, tan spot, and

spot blotch

TaSnn5 Orthologue of known S
gene

Toxin sensitivity gene
targeted by Tox5 to induce
necrosis (effector-triggered

susceptibility)

Protein kinase and major
sperm protein domain

protein

Authors did not
mention investigating

this

Poddar et al.
(2023)

Septoria nodorum
blotch, tan spot, and

spot blotch

TaTsn1 Cloned R gene of wheat Toxin sensitivity gene
targeted by ToxA to induce
necrosis (effector-triggered

susceptibility)

Serine/threonine protein
kinase domain and NB-
LRR domain protein

Authors did not
mention investigating

this

Poddar et al.
(2023)

Barley yellow dwarf
virus

TaIMP-α Orthologue of known S
gene

Aids in transport of the virus’
17K virulence proteins into

the host nucleus

Karyopherin nuclear
transport receptor

No growth or yield
penalties

Wang et al.
(2024)

Barley yellow dwarf
virus

TaSDN1 Orthologue of known S
gene

Negative regulator of plant
immune response by

degrading antiviral RNAi

Small RNA-degrading
nuclease

No growth or yield
penalties

Jin et al. (2022)

(Continued on following page)
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CRISPR/Cas9 in tomatoes, potatoes, melons, barley, and wheat
(Moury et al., 2020; Hoffie et al., 2021; Lucioli et al., 2022; Pechar
et al., 2022; Kan et al., 2023). Moreover, wheat-specific S genes
have been identified through cloning resistance loci, such as
TaHRC-3B, which underlies the Fhb1 locus conferring FHB
resistance (Su et al., 2019; Chen et al., 2022). Another
approach involves identifying host genes upregulated during
pathogen infection and then validating their role as an S gene
through virus-induced gene silencing (VIGS) in wheat. For
example, TaPsIPK1 expression increases during stripe rust
infection, and its VIGS knockdown enhances stripe rust
resistance (Wang et al., 2022b). Subsequently, its CRISPR/
Cas9-mediated knockout improved resistance to stripe rust.
Published databases of differentially expressed genes during
pathogen infection are available, and these could be mined to
identify new possible S genes (Ma et al., 2009). Identifying host
genes that are upregulated during compatible but not
incompatible infections also helps to identify possible S genes,
and then VIGS can be used to confirm their role in susceptibility.
This approach has been widely applied in wheat, especially for
stripe rust and powdery mildew, identifying genes that could be
future targets for knockout using GE (as reviewed in Li S. et al.,
2022; Taj et al., 2022).

Several wheat S genes have been knocked out using GE to
increase resistance to various pathogens, including fungal diseases
and viruses. Table 1 provides details on these examples, information
on how the S gene was identified, and if any pleiotropic effects were
observed in knockout lines.

4.1.1 Powdery mildew S gene examples
The first S gene knockout in wheat using GE was TaMLO,

enhancing resistance to powdery mildew (Wang et al., 2014).
TALEN-mediated knockout of all three TaMLO homeologues
conferred strong resistance but resulted in growth and yield
penalties, restricting its use in plant breeding. Later, CRISPR/
Cas9 knockouts produced a mutant with a 304-kilobase deletion
in TaMLO-B1 (Tamlo-R32), which maintained strong resistance
while avoiding yield penalties (Zhang Y. et al., 2017). Moreover, the
CRISPR/Cas9 knockout of all TaEDR1 homeologues provided
moderate resistance without growth penalties, making it suitable
for breeding (Liu et al., 2024c). Similarly, the knockout of all
TaMPK1 homeologues increased powdery mildew resistance (Li
S. et al., 2022). Among the TaMPK1 homeologues, the D-genome
contributed the most to susceptibility, highlighting the unequal roles
that homeologues can play in susceptibility.

4.1.2 Rust disease S gene examples
CRISPR/Cas9-mediated knockout of TaMPK1 not only

improved resistance to powdery mildew but also enhanced stripe
rust resistance, another biotrophic pathogen of wheat (Liu et al.,
2024c). Again, the D-genome contributed the most to stripe rust
resistance. This suggests that pathogens of a similar lifestyle may
exploit a similar repertoire of S genes, highlighting the potential S
gene-mediated resistance has for conferring broad-spectrum
resistance. Similarly, the CRISPR/Cas9-mediated knockout of
TaGW2 and TaWRKY19 also conferred resistance to leaf and
stripe rust in wheat, respectively (Wang et al., 2022a; Liu et al.,
2024b). Race-nonspecific resistance, defined as resistance to
multiple pathogen races, has also been achieved with wheat S
gene knockouts. For example, TaCIPK14 knockouts improved
resistance to five stripe rust races without yield penalties under
field conditions (He et al., 2023). Similarly, TaPsIPK1 knockouts
enhanced the resistance to predominant epidemic Chinese races of
stripe rust in field trials with no yield penalties (Wang et al., 2022b).
TaPsIPK1 knockout also improved leaf rust resistance but had no
effect on stem rust resistance due to conserved effectors between
stripe rust and leaf rust, but not stem rust, that target TaPsIPK1. This
highlights the importance of testing S gene knockouts against
multiple pathogens to uncover broad-spectrum resistance potential.

4.1.3 Fusarium head blight and other fungal
diseases S gene examples

Fhb1 is the most effective source of FHB resistance in wheat,
providing stable and broad-spectrum resistance (Cuthbert et al.,
2006). A loss-of-functionmutation in TaHRC-3B has been identified
as the key determinant of Fhb1-mediated resistance, classifying it as
S gene-mediated resistance (Su et al., 2019). Consequently, the
CRISPR/Cas9 knockout of TaHRC-3B improved FHB resistance,
offering a faster alternative to backcrossing for introducing this locus
into wheat varieties (Su et al., 2019; Chen et al., 2022). Similarly, the
knockout of all six TaNFXL1 gene copies, a gene associated with
deoxynivalenol toxin sensitivity, also enhanced FHB resistance
(Brauer et al., 2020).

Other fungal pathogens, such as Septoria nodorum blotch, tan
spot, and spot blotch, produce necrotrophic effectors like ToxA,
which interacts with the wheat gene TaTsn1 to cause disease (Faris
et al., 2010; McDonald et al., 2018). Loss-of-function TaTsn1 ethyl
methanesulfonate (EMS) mutants are insensitive to ToxA and show
increased resistance to Septoria nodorum blotch, confirming this as
an S gene (Faris et al., 2010). CRISPR/Cas9-mediated knockout of
TaTsn1 rendered wheat plants insensitive to ToxA, with similar

TABLE 1 (Continued) Susceptibility gene examples in wheat that were targeted using genome editing tools.

Disease(s) Gene(s) Susceptibility (S)
gene

identification

Proposed
susceptibility
mechanism

Protein
description

Pleiotropic
effect

References

Wheat yellow
mosaic virus

TaPDIL5-1 Orthologue of known S
gene

Unknown; suggested to be
recruited by virus to act as a
cellular chaperone during

infection

Endoplasmic reticulum-
localized chaperone

No growth or yield
penalties

Kan et al. (2022)

Wheat yellow
mosaic virus

TaeIF4E Orthologue of known S
gene

Utilized by virus to initiate
protein translation

Eukaryotic translation
initiation factor

Increased plant height
and delayed heading
with no yield penalty

Kan et al. (2023)
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resistance to these fungal pathogens expected based on EMS mutant
observations (Karmacharya et al., 2023; Poddar et al., 2023).
Similarly, CRISPR/Cas9 knockout of TaSnn5, targeted by the
necrotrophic effector Tox5, produced Tox5-insensitive lines that
likely also enhance resistance to Septoria nodorum blotch (Poddar
et al., 2023).

4.1.4 Virus S gene examples
Nearly half of virus resistance loci in crops are recessively

inherited, highlighting the prevalence of S gene-mediated
resistance against viruses (Kang et al., 2005). However, genetic
redundancy in wheat’s polyploid genome may mask such
resistance, enhancing wheat’s susceptibility to viral disease.
Several virus S gene orthologues identified in other species have
been successfully targeted in wheat using GE (Table 1). eIF4E, a
component of the translation initiation complex targeted by
potyviruses, is a well-characterized S gene. Its knockout enhances
potyvirus resistance in various crops, including wheat, where
CRISPR/Cas9-mediated knockout of TaeIF4E homeologues
increased resistance to wheat yellow mosaic virus without yield
penalties (Kan et al., 2023).

Barley, with its diploid genome, serves as a useful model for
identifying orthologues of wheat virus S genes. For instance, loss-of-
function of HvPDIL5-1 in barley confers resistance to bymoviruses,
and CRISPR/Cas9 knockout of the orthologous wheat gene
TaPDIL5-1 similarly enhances resistance to wheat yellow mosaic
virus without yield penalties (Yang et al., 2014; Kan et al., 2022).
Similarly, reducing HvIMP-α expression in barley via VIGS
improves barley yellow dwarf virus resistance, and the CRISPR/
Cas9 knockout of TaIMP-α genes in wheat enhanced resistance to
this virus with no negative agronomic penalties (Wang et al., 2024).
Additionally, the HvSDN1 gene supports barley yellow dwarf
infection in barley, and the CRISPR/Cas9-mediated knockout of
TaSDN1 also improved resistance to this virus in wheat (Jin et al.,
2022). These studies demonstrate the value of using barley as a
model to translate findings to wheat, enabling effective S gene
identification and targeting in polyploid wheat.

4.2 Introduction of resistance genes using
genome editing

Introducing R genes through genetic modification bypasses the
linkage drag and lengthy backcrossing issues associated with
conventional gene introgression. However, this technique is
limited by transgene size restrictions and the random integration
of transgenes, complicating the introduction of these into safe
harbors. New knock-in technologies, such as Cas-Exo, TATSI,
and PrimeRoot, allow the precise introduction of desired DNA
sequences into crop genomes. As the efficiencies of these
technologies improve, this will allow for the targeted insertion of
R genes at specific safe harbor loci within the genome of elite wheat
cultivars already locally adapted and bred for high yields
(Greenwood et al., 2023; Jones et al., 2024). This circumvents the
need for introgression through backcrossing, reducing the time
needed to introduce R genes into elite material and abolishing
linkage drag from agronomically poor breeding material.
Moreover, by introducing multiple R genes for several diseases at

a single safe harbor locus, these R gene stacks would be easy to
manage in breeding programs through marker-assisted selection
since they would stay linked at a single perfect locus.

Small polymorphisms within non-NLR proteins have been
found to be responsible for improving disease resistance. For
instance, for the durable APR wheat gene Lr67/Yr46/Sr55/Pm46,
a single nucleotide polymorphism in this hexose transporter
determines the difference between the susceptible and resistant
alleles (Moore et al., 2015; Milne et al., 2019). Similarly, for the
durable APR wheat gene Lr34/Yr18/Sr57/Pm38, two nucleotides
differ between the susceptible and resistant alleles of this ABC
transporter (Krattinger et al., 2009). Such polymorphisms
responsible for improved resistance could be introduced directly
into elite material using precise GE tools like base editing or
prime editing.

4.3 Manipulation of NLR resistance genes
using genome editing

The typical structure of an NLR is composed of a C-terminal
coiled-coil (CC) domain or Toll/interleukin-1 receptor (TIR)
enzyme domain, a central nucleotide-binding (NB) domain, and
an N-terminal leucine-rich repeat (LRR) domain (Figure 4). NLRs
interact either directly with their corresponding effectors or
indirectly via decoy or guardee proteins. Effector interaction
often occurs within their LRR domains or sometimes within
integrated domains (IDs) that are located between their CC/TIR
domain and NB domain or at the end of the LRR domain.

Substantial advancements in understanding the evolution,
functional attributes, and structural properties of NLRs enable
novel engineering strategies to improve the capacity of NLRs.
NLR engineering could be used to broaden their pathogen
recognition, strengthen their immune response, or create novel
recognition patterns and specificities (Tamborski and Krasileva,
2020). While the efforts of CRISPR-mediated NLR engineering in
wheat are limited, advancements in base editing, prime editing, and
knock-in technologies open possibilities for engineering the
complex domains of NLRs. This section discusses several
applications of using GE to modify NLRs, as summarized
in Figure 4.

4.3.1 Reactivating pseudogenized NLR proteins
GE can be used to reactivate pseudogenized NLR genes and

restore their functional allele directly in elite germplasm. This
strategy is most suited to pseudogenized NLRs whose loss-of-
function is mediated by a few polymorphisms that precise editing
techniques can repair. A prior attempt to reactivate a pseudogenized
NLR gene in wheat was made using GE. lr21Ψ differs from a
functional Lr21 allele by three nucleotide substitutions and a
single base deletion that disrupts the ORF (Huang et al., 2009).
TALEN-mediated editing of lr21Ψ in the wheat variety Fielder
restored its ORF but did not reconstitute functional resistance,
possibly due to consequences of the editing footprint (Luo et al.,
2019). In contrast, a similar approach in rice using base editing was
successful in reactivating a pseudogenized receptor-like kinase Pi-
d2, conferring rice blast resistance (Ren et al., 2018). Through
advances in the fields of comparative genomics and NLR
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detection, more pseudogenized wheat NLRs could be identified and
reactivated similarly.

4.3.2 Engineering NLR protein domains
Alterations within NB or LRR domains can broaden or modify

the recognition specificities of NLRs. For instance, two
polymorphisms within the NB domain of the wheat NLR
Pm3 are responsible for an enhanced recognition spectrum and
signaling activity of this powdery mildew R gene (Stirnweis et al.,
2014). Similarly, the LRR domain is crucial for effector recognition
specificities. For instance, the stem rust R genes Sr50 and Sr33 share
a high sequence similarity but recognize different effectors (AVR-
Sr50 and AVR-Sr33, respectively). Tamborski and colleagues (2023)
identified the LRR domain residues responsible for the binding of
Sr50 and AVR-Sr50 in wheat. They then generated a synthetic
version of Sr33 containing 12 amino acid modifications derived
from Sr50, which enabled the recognition of the AVR-Sr50 effector.
GE technologies such as base editing, prime editing, or knock-in
techniques could modify the NB or LRR domains within the
endogenous NLRs of elite varieties to alter or broaden their
recognition specificities. Moreover, complete LRR domain
swapping using GE could modify an endogenous NLR gene to
target a new set of effectors and impart resistance to a different race
or disease. The feasibility of this was demonstrated in wheat and

barley, where the LRR domains of TaSh1, HvSh1, HvMLA10, and
HvMLA13, which do not recognize AVR-Sr35, were replaced with
the LRR domain of Sr35 from wheat (Förderer et al., 2022). The co-
expression of these newly engineered gain-of-function NLRs with
AVR-Sr35 led to its recognition and subsequently induced cell death
in Nicotiana benthamiana and wheat protoplasts. Moreover,
HvMLA10 and HvMLA13 confer immunity in barley against
barley powdery mildew effectors and share low sequence
homology to Sr35, demonstrating the versatile capacity of LRR
domain swapping to recognize and respond to vastly different
effectors. These studies offer proof-of-concept approaches for
engineering NLRs in wheat with GE.

4.3.3 Engineering integrated domains
Some NLRs contain IDs that interact with pathogen effectors,

mediating their recognition. These often act as effector recognition
modules that mimic the host targets of effectors. GE-mediated
targeted modifications in IDs or the exchange of these domains
could bring about a desired change in the recognition profile of an
NLR (Zdrzałek et al., 2023). Engineering of IDs has not yet been
demonstrated in wheat; however, examples exist from other crops.
For example, the heavy metal-associated (HMA) ID of the rice blast
Pikp-1 receptor was modified based on structure-guided mutations
to increase its binding with previously unrecognized AVR-Pik

FIGURE 4
Proposed strategies for the editing of nucleotide-binding leucine-rich repeat receptors (NLRs) and associated signaling counterparts. CC, coiled-
coil; TIR, toll/interleukin-1 receptor, NB, nucleotide binding; LRR, leucine-rich repeat. Created in https://BioRender.com.
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effector variants (De la Concepcion et al., 2018). Likewise, such
domains could be modified directly within endogenous wheat NLRs
using GE to change their recognition specificities.

IDs can also be exchanged for new effector recognition modules
to allow for novel recognition specificities. In rice, the HMA ID of
Pikp-1 was exchanged for the HMA from the host target
OsHIPP19 protein to gain recognition of previously unrecognized
AVR-Pik effectors (Maidment et al., 2021). Moreover, an NLR’s ID
can be swapped for a different unrelated protein domain that binds a
specific pathogen effector to elicit a cell death response. This was
demonstrated with the replacement of the HMA ID of rice Pikp-1
with a single-domain antibody (also known as a nanobody) that
recognized fluorescent proteins and triggered an immune response
to plant viruses expressing these proteins (Kourelis et al., 2023). This
approach may allow for the development of synthetic NLRs that
recognize any desired secreted pathogen protein through the knock-
in of these IDs (Zdrzałek et al., 2023).

4.3.4 Engineering decoy or guardee proteins
Some NLRs recognize effectors indirectly through the detection

of effector-mediated modifications to decoy or guardee proteins
(Jones and Dangl, 2006; Cesari, 2018). A guardee protein is a host
protein that a pathogen effector directly targets and a decoy protein
is a host protein that mimics an effector target protein and exists
only to enable indirect NLR detection. These guardees or decoys
work as a trap for pathogen effectors monitored by NLRs that trigger
immune responses after detecting effector-mediated modifications.
The GE-mediated modification of guardees or decoys has been
proposed as a promising approach to trap novel pathogen
effectors (Veillet et al., 2020). While this has not been
demonstrated within wheat, its proof-of-concept comes from
Arabidopsis, where the cleavage of AtPBS1 by the bacterial
effector AVR-PphB is monitored by the NLR receptor AtRPS5.
Plants transformed with synthetic AtPBS1 genes containing the
cleavage sites of other bacterial or viral proteases resulted in the
recognition of these proteases by the AtRPS5 NLR, eliciting an
immune response (Kim et al., 2016). The cleavage site of endogenous
AtPBS1 could be modified to include these other protease sites using
GE, resulting in AtRPS5-mediated surveillance of these novel
effectors (Pottinger and Innes, 2020). Similarly, the GE-mediated
modification of other trap decoy or guardee proteins could confer
the new ability to recognize other effectors or proteases (Veillet et al.,
2020). In the future, this approach could be employed in wheat to
engineer novel disease resistance.

4.4 Other applications of genome editing for
disease resistance

GE has also been used to clone R genes by confirming candidate
genes through GE-mediated gene knockouts, inducing susceptibility
in an otherwise resistant background, thereby confirming their role
in resistance. For example, CRISPR/Cas9 was used to validate the
cloned R genes of Yr9, Lr47, and Fhb7 in wheat (Li et al., 2023; Yu
et al., 2024; Zhao et al., 2024). Cas nucleases have also been applied
in pathogen diagnostics and resistance genotyping. Cas12a has
enabled sensitive lateral flow assays to detect FHB in wheat
grains (Mu et al., 2022; Zhang et al., 2023), and dead Cas9 has

been used in lateral flow-based assays to genotype resistance alleles
like Lr34 and Lr67 in wheat varieties and to detect stripe rust and
wheat blast infections (Sánchez et al., 2022). GE also aids in
pathogen characterization, with CRISPR/Cas9 utilized to identify
essential FHB genes for subsequent targeting with spray-induced
RNAi gene silencing methods (Kim et al., 2023). These studies
demonstrate the broad applications of GE technologies for
researching and improving wheat disease resistance.

5 Future perspectives and conclusion

The ability of CRISPR/Cas nucleases to modify multiple alleles
simultaneously represents the primary benefit of this technology for
polyploid wheat. This allows for generating loss-of-function
mutations in all the homeologues of an S gene, which would
otherwise be incredibly challenging to achieve through
conventional breeding techniques. While recessive S gene-
mediated resistance is prevalent in diploid species, particularly
against viruses (Kang et al., 2005), it may represent an untapped
source of disease resistance in wheat due to functional redundancy.
To date, the main application of GE for disease resistance has been
the targeted knockout of S genes, which has improved resistance to
many of wheat’s major diseases. However, these examples have
predominantly been carried out in wheat varieties amenable to
transformation, such as Fielder, and the next step will be to
extend this work to agronomically important varieties.
Furthermore, exploring the combination of multiple S gene
knockouts would be an important research avenue to pursue.
Investigating whether such combinations can confer greater
resistance to the same pathogen or resistance to multiple
pathogens without inducing negative pleiotropic effects is
essential for their deployment in plant breeding.

Although numerous examples of S gene modification using GE
in wheat exist, examples of R gene manipulation are lacking. This
scarcity likely reflects the current difficulty of achieving precise DNA
editing or targeted DNA insertion in wheat. However, as prime
editing and new DNA insertion techniques continue to improve in
efficiency, their application in enhancing disease resistance by
manipulating R genes will increase. A major initial target will be
to use newDNA insertion techniques to knock inmultiple R genes at
a single heritable locus. This approach would circumvent the
complex and time-consuming crossing schemes typically required
to pyramid multiple R genes within breeding programs. Such a
strategy would enable the deployment of multiple R genes at a single
locus, providing durable resistance that does not segregate in
subsequent generations, a very desirable prospect for the wheat
breeding industry.

Precise editing and targeted DNA insertion technologies will
also enable future structure-based engineering of existing NLRs to
expand their recognition specificities. Achieving this requires a deep
understanding of the molecular mechanisms of NLR-effector
recognition in wheat. Recent work identifying key amino acids
involved in the effector interactions in wheat of Sr35 and
Sr50 demonstrates that such precise manipulations are now
feasible (Förderer et al., 2022; Tamborski et al., 2023). Looking
ahead, the development and deployment of synthetic NLRs in
response to newly emerging diseases with little natural genetic
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resistance available could be possible through GE (Kourelis et al.,
2023). An immediate application for this could be the design of
novel NLRs against wheat blast, a disease that first emerged in Brazil
in the 1980s and has since spread from South America to Africa and
Asia (Singh et al., 2021). With little existing genetic diversity in
wheat, resistant varieties rely on a single source of resistance (2NS/
2AS translocation) that is being eroded by this pathogen. Moreover,
climate models predict that wheat blast could reduce global wheat
production by as much as 69 million tons (13%) annually by 2070
(Pequeno et al., 2024). Therefore, the ability to engineer and deploy
new NLRs through GE offers significant potential in combating this
expanding threat.

Since the introduction of CRISPR-mediated GE technology, it has
been widely employed in wheat for trait development, notably
improving disease resistance. Through GE technologies, the strategic
combination ofR and S gene-mediated resistance could provide durable
resistance in wheat (Jones et al., 2024), and advancements in the
discovery of new S genes and structure-guided engineering of NLRs
will likely accelerate these efforts further. CRISPR-based GE is also
poised to play a role in broadening resistance against continuously
evolving and newly emerging pathogens and in accelerating wheat
breeding efforts to improve disease resistance. However, it is important
to recognize that GE is not a standalone solution for boosting disease
resistance in crops. It must be intelligently integrated into existing
conventional breeding strategies while aligning with the needs of the
plant breeding industry. Additionally, the complex and evolving
regulatory landscape surrounding GE poses challenges to its
widespread adoption. Nevertheless, we hope that a shift towards
product-based regulation in the coming decades will enable the
broader application of GE to enhance disease resistance within
our crops.
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