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Climate change is a global concern for agriculture, food security, and human
health. It affects several crops and causes drastic losses in yield, leading to severe
disturbances in the global economy, environment, and community. The
consequences on important staple crops, such as rice, maize, and wheat, will
worsen and create food insecurity across the globe. Although variousmethods of
trait improvements in crops are available and are being used, clustered regularly
interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/
Cas9) mediated genome manipulation have opened a new avenue for functional
genomics and crop improvement. This reviewwill discuss the progression in crop
improvement from conventional breedingmethods to advanced genome editing
techniques and how the CRISPR/Cas9 technology can be applied to enhance the
tolerance of the main cereal crops (wheat, rice, and maize) against any harsh
climates. CRISPR/Cas endonucleases and their derived genetic engineering tools
possess high accuracy, versatile, more specific, and easy to design, leading to
climate-smart or resilient crops to combat food insecurity and survive harsh
environments. The CRISPR/Cas9-mediated genome editing approach has been
applied to various crops tomake them climate resilient. This review, supported by
a bibliometric analysis of recent literature, highlights the potential target genes/
traits and addresses the significance of gene editing technologies in tackling the
vulnerable effects of climate change on major staple crops staple such as wheat,
rice, and maize.
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1 Introduction

The world is facing drastic climate change, with high global temperatures and elevated
carbon dioxide (CO2) levels. This has resulted in extreme events, adversely affecting all
dimensions of the world, including agriculture, biodiversity, and human community. The
root cause of climate change is greenhouse gas emissions, mainly from anthropogenic
activities, ascending the global surface temperature by 1.5°C since 1850 (Karavolias et al.,
2021; Nunez et al., 2019). Recent reports confirmed that the year 2023 was the hottest in
Earth’s history, which had several consequences such as drought, compound flooding,
heavy precipitation, global sea rise, and upper sea acidification in certain regions of the
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planet (Li Z. et al., 2024). Rising temperatures are a warning sign for
current agricultural production, although they have already started
devastating effects worldwide. Climate change will mostly affect
crop yield at lower latitudes more than at higher latitudes (Shukla
et al., 2019). The situation of agriculture at lower latitudes might
worsen with a temperature rise, whereas higher latitudes might
benefit from higher temperatures, which would increase crop yield
(Iizumi et al., 2018). More specifically, areas closer to the equator are
more prone to desertification and eventual agricultural loss, which
has already started in the Asian and African continents (Zougmoré
et al., 2018). These regions are already facing high populations and
unsustainable land management issues; therefore, their agricultural
productivity and biodiversity are under great threat due to climate
change (Viana et al., 2022). Increasing temperatures rise to over 35°C
in California caused the browning of berries, reducing the yield by
almost 50% (Kizildeniz et al., 2018).

The current scenario indicates that crop production in tropical
areas will be most affected by high temperatures and droughts
(Esquivel-Muelbert et al., 2019). It is estimated that food crop
production in Africa will be reduced by 2.9% by 2050 owing to
climate change. Global productivity losses disrupt other facets of
the ecosystem.

The entire ecosystem relies on food supplies, occupying the
highest agricultural land share. Studies have revealed that
approximately 90% of food calories and 80% of the proteins and
fats originate from agricultural land. Hence, agricultural land
contributes to food security and various FAO sustainability goals
(Avtar et al., 2020; FAO, 2017). However, most arable land has been
degraded because of non-sustainable agricultural practices,
including spraying chemical fertilizers, excess groundwater use,
intensive farming, and deforestation. Such practices have
increased greenhouse gas emissions, which are a major cause of
temperature increases (Funk, 2021; Shahzad et al., 2021). Therefore,
some areas of the globe might experience drought while others
might be flooded owing to rising sea levels. Currently, areas suitable
for crop production will soon become unsuitable (Iizumi et al.,
2018). Therefore, identifying suitable areas for crop production is
crucial for addressing the impacts of climate change. Several studies
have focused on identifying suitable areas for agriculture in different
countries (Musakwa, 2018). However, this alone is insufficient to
overcome the effects of climate change.

A meta-analysis of about a hundred studies explained the
impacts of climate change on biodiversity and found that a
moderate rise in temperature can cause significant harm to
biodiversity (Nunez et al., 2019). Owing to climate change
pressure, food production needs to be enhanced, which requires
more land, exacerbating biodiversity loss. For instance, the
production of soybeans, palm oil, beef, and wood from 2000 to
2011 in seven countries was responsible for 40% of the deforestation
of tropical forests and carbon losses (Henders et al., 2015; Ortiz
et al., 2021).

Despite this, plants adapt extraordinary mechanisms to survive
in the harsh climate. Such mechanisms involve root and leaf
modification, stomatal regulation, osmotic adjustment, ion
transport and sequestration, morphological behavior, and genetic
adaptations. However, these processes require years to develop a
climate-resilient plant (Krishna et al., 2023). Therefore, dealing with
these issues in a short step is feasible using a genome-editing

technique called clustered regularly interspaced short palindromic
repeats and CRISPR-associated protein 9 (CRISPR/Cas9). Climate-
smart crops in terms of increasing abiotic and biotic stress tolerance
and high-yielding biofortified crops can be generated using this
approach (Figure 1). Here, we summarize the progression in crop
improvement from conventional breeding methods to advanced
genome editing techniques and how the CRISPR/Cas9 technology
can be applied to safeguard the main cereal crops (wheat, rice, and
maize) from harsh climates.

2 Evolution of crop improvement from
conventional breeding, and genetic
engineering to genome editing

Although climate change is progressing at an exceptional rate, it
is not easy to envisage the loss it can cause to agriculture.
Nevertheless, the scientific community has made tremendous
efforts with conventional crop improvement techniques to
combat the effects of climate change. Such approaches include
breeding that produces superior varieties using donor and
recipient plants with desired characteristics (Sharma et al., 2023;
Van et al., 2022). This process was revolutionized in
1940–1950 when semi-dwarf wheat varieties were developed.
Although hybrid varieties are superior and popular innovations,
reaching the final product is time-consuming, costly, and requires
intensive labor. Breeding is associated with the plant’s phenotypic
trait, which is highly influenced by environmental factors, and
requires several backcrosses to obtain the desired trait.
Furthermore, conventional breeding methods result in selecting
an inferior parent crop limiting the germplasm gene pool and
causing genetic erosion (Krishna et al., 2023). Breeding can lead
to the development of undesired traits because the transfer of genetic
information cannot be controlled (Figure 2). Additionally, large
arable land requirements with huge investments are another
drawback of conventional breeding. The scientific community is
making tremendous efforts using breeding to combat the effects of
climate change. However, these efforts are insufficient, and more
advanced strategies are required to improve agricultural techniques.

Later, the emergence of recombinant DNA technology, where
the genetic material of plants could be modified by inserting a
foreign gene of interest to produce superior transgenic crops, also
called genetically modified (GM) crops, changed the concept of
producing superior varieties. Therefore, genetic manipulation can be
performed in a controlled manner. Currently, GM crops, including
BT cotton, corn, and soybean, are utilized worldwide, especially in
the United States of America (USA) (Wechsler, 2018). Because this
approach directly deals with transferring genetic information from
one species to another, some myths addressing biodiversity and
health concerns remain controversial. In addition, a long procedure
that requires clinical trials and money expenditure is required to
launch a GM product in the market (Van et al., 2022). Likewise,
similar trials are required for genetically engineered plants produced
via RNA interference (RNAi) technologies because of its several
disadvantages, including, off-targeting effects that may lead to plant
toxicity, development of insect resistance, incomplete or variable
levels of silencing, and highly programmatic designing process
(Sharma et al., 2023).
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Gene-editing technologies have attracted the attention of the
scientific community owing to their simplicity for designing,
efficient editing, and accuracy. Genome editing technology uses
molecular scissors to create double-stranded breaks in DNA, and the
remaining part is undertaken by the host DNA repair machinery,
which can either add or remove nucleotides randomly, leading to the
formation of mutants. This modification can be achieved through
site-specific insertion-deletion (indels), substitution, or epiallelic
changes within the targetted DNA in a cell or organism. Genome
editing is based on the principle of DNA repair, in which strand
breaks are introduced using molecular scissors, such as
endonucleases (Carroll, 2014), mega-nucleases (Gong and Golic,
2003), zinc finger nucleases (ZFNs) (Urnov et al., 2005),
transcription activator-like effector nucleases (TALENs) (Sun and
Zhao, 2013), and CRISPR/Cas9 (Jinek et al., 2012).

Among the above-mentioned methods CRISPR/Cas
endonuclease based is the most popular, which has gained
momentum in the last 10 years owing to its high efficiency, ease
of use, and accuracy. CRISPR/Cas systems are diverse and adopted
from bacteria and archaea. Currently, there are many tools such as
CRISPRi, CRISPRa, base editor, gene knock-in, targeted protein
tagging, and Viral mediated editing, that arose from the basic
CRISPR/Cas9 system (Anzalone et al., 2020; Kampmann, 2018).
Variants of Cas endonuclease, i.e., dCas9-foki, Cas9 nickase,

HypaCas9, Sniper-Cas9, eSpCas9 (1.1), SpCas9-HF1, xCas9,
evoCas9, SuperFi-Cas9, miCas9, evoCjCas9, SpRYc, KG, and
SpdNG-QT.12j (Goldberg et al., 2021; Jeon et al., 2018; Karvelis
et al., 2021; Kulcsár et al., 2022; Ma et al., 2020; Schmidheini et al.,
2024; Schmidt et al., 2021; Schuler et al., 2022; Sun A. et al., 2023;
Thakur et al., 2024; Wang et al., 2021a; Zhao et al., 2023). Moreover,
Cas9 functional analogs such as, Cas12a-b, Cas12d-f, Cas12h-j,
Cas121, Cas12n, Cas12 λ, Cas13 (C2c2), and Cas14 have been
developed that extend the editing capability to the RNA and
protein levels to enhance the performance of this technique
(Hillary and Ceasar, 2022; Schindele et al., 2018; Yan et al.,
2019). These all tools have been successfully applied to various
crops for different purposes to alter the metabolic pathway (Ahmar
and Gruszka, 2023; Kaur et al., 2020; Li D. et al., 2024; Ly et al., 2024;
Toinga-Villafuerte et al., 2022; Wang J. D. et al., 2024; Xie Y.
et al., 2024).

The detail mechanism of CRISPR/Cas9 for generating knockout
events in plants is described in Figure 3. It has been applied to gene
editing and transcriptional modulation of plants to improve various
agronomical characteristics, such as drought tolerance, salinity
tolerance, heat stress tolerance, disease resistance, nutritional
enhancement, and yield improvement. Because plant phenology
is affected by climate change events, this technology can also be used
to control plant development-related factors for instance, flowering,

FIGURE 1
Gene editing, a sustainable technology to reduce the Vulnerability of major Staple Crops to Climate Change (Graphical abstract).
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FIGURE 2
Conventional breeding versus Genome editing: This figure illustrates the advantages of genome editing over conventional breeding techniques.
Created with BioRender.

FIGURE 3
Mechanism of CRISPER/Cas9 in the plant: (1) The CRISPR/Cas9 system can be introduced into plant cells by Agrobacterium mediated
transformation, protoplast transformation or particle bombardment. (2) The sgRNA guides the Cas9 to the target region of the genome. (3)
Cas9 recognize the PAM region and creates double stranded cut. (4a) InDels are generated in the target site through the NHEJ repair system (4b) Precise
corrections can be made in the DNA or directed sequences can be inserted through HDR repair system Created with BioRender.
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TABLE 1 CRISPR/Cas9-mediated gene editing in Wheat.

Sr
No.

Targeted
genes

Role in plant Knockout effects on plant References

1 TtMTL Haploid induction is triggered mainly by
MATRILINEAL (MTL)

Haploid production Chang et al. (2024)

2 TaRPK1 Receptor-like protein kinase 1 (RPK1) has been reported to
regulate root architecture system (RAS), abiotic stress, and
yield

Enhanced yield Rahim et al. (2024)

3 TaPPD-1 It influences spike development by affecting late and earlier
flowering

Increase spike architecture and grain Errum et al. (2023)

4 TaTRXH9 Associated with heading time regulation Early heading Fan et al. (2023)

5 TaSPL13 It represents important targets for improving grain yield
and other major agronomic traits in rice

Increased grain size and number Gupta et al. (2023)

6 TaSPO11-1 Involves in programmed meiosis-specific DNA double-
strand breaks during recombination

Restore crossover sites, synapsis, and fertility leading
to increased seed set

Hyde et al. (2023)

7 TaARF12 Involves in auxin pathway Reduce plant height with larger spikes shows higher
grain yield

Kong et al. (2023)

8 TaARF15-A1 TaARF15-A1 as a negative regulator of senescence in wheat Accelerated leaf senescence and grain ripening Li et al. (2023a)

9 TaPPO1, TaPPO2 PPOs are dual-activity metalloenzymes that catalyze the
production of quinones, discolor of flour, dough, and end-
use products

Develop grain and vegetative tissues Wold-McGimsey
et al. (2023)

10 TaMYB10 Activates flavonoid biosynthesis genes to specify red grain
color and influences

Seed coat permeability is reduced in variants, and is
associated with PHS tolerance of grains

Zhu et al. (2023)

11 TaFT-D1 It significantly associated with the total spikelet number
and heading date

Rise in total spikelet number Chen et al. (2022d)

12 TaIPK1 Involves in the final step of the phytate biosynthesis
pathway

Improved the iron and zinc content and lowered the
phytic acid accumulation in wheat grains

Ibrahim et al. (2022)

13 TaSBEIIa Starch-branching enzyme High amylose content varieties Li et al. (2021b)

14 TaARE1 A negative regulator of nitrogen assimilation Increase grain yield and quality Zhang et al. (2021b)

15 TaPINb-47 Genes control grain texture and hardness Harder wheat grains Zhang et al. (2021c)

16 TaPP O -7 It catalyzes phenol oxidation into dark-colored products Improved grain color

17 TaPSY-13 Involves in carotenoid biosynthesis Low downstream metabolites

18 TaWAXY-2 Involves in amylose synthesis in wheat endosperm Glutinous wheat produced with lower amylose
content

19 TaGW7 Encodes TRM protein affects grain shape and weight in
allohexaploid wheat

Shorter and wider grains Wang et al. (2019)

20 TaCKX2-D1 Grain-regulatory genes Increased grain number per spikelet Zhang et al. (2019b)

21 TaGLW7 Grain-regulatory genes Increase wheat grain size and grain weight

22 TaGW2 Grain-regulatory genes Increased grain weight as well as protein content

23 TaGW8 Grain-regulatory genes Increase wheat grain size and grain weight

24 α- or γ-gliadins Possesses immunogenic epitopes for celiac disease Developed hypoimmunogenic-gluten” wheat lines Jouanin et al. (2019)

25 TaAT1 Associated with regulating the levels of reactive oxygen
species (ROS) and stress-related signaling pathways

Increased salt-alkaline tolerance, heightened plant
growth, and decreased ROS accumulation

Sun et al. (2023b)

26 TaSAL1 Negative regulator of drought tolerance Improves drought tolerance Mohr et al. (2022)

27 TaMBF1c Confers thermotolerance by regulating specific mRNA
translation

Upregulated in response to heat stress Tian et al. (2022)

28 TaHAG1 Contribute to salt tolerance by modulating ROS production
and signal specificity

Enhanced salt tolerance Zheng et al. (2021a)

(Continued on following page)
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male sterility, and photoperiod) (Cai et al., 2018; Liu et al., 2019;
Shen et al., 2017). CRISPR/Cas9 derivatives, including prime and
base editors, also provide opportunities to modify the plant genome
precisely. Substantial research is currently underway to improve
these techniques.

Therefore, considering the vast potential of gene editing
technologies, they may be the best solution for mitigating the
effects of climate change (Singh et al., 2024a). This review
describes the impact of climate change on food security and how
it can affect the main cereal crops (wheat, rice, and maize) that are
highly prone to climate change, and the research initiatives for their
improvement via the CRISPR/Cas9 approach are also discussed in
this review. The applications of this technology are extensive;
however, certain limitations such as government regulations must
be considered.

3 Climate changes impact on major
staple crops and improvement
strategies using CRISPR/Cas9

3.1 Wheat: improvement of traits via
CRISPR/Cas9 approach

Wheat is an important cereal crop that serves two purposes: feed
for the global community and support for the nation’s economy.
Average wheat production worldwide is over 700 million tons, with
China, India, the United States, the Russian Federation, and France
being the top five wheat producers. The main exporters of wheat are
the United States, Canada, France, Australia, and Russia, whereas
the main importers are Egypt, Italy, Brazil, Japan, and Algeria
(http://faostat.fao.org/). The overall production and trade of
wheat reflects its significant role and demand in the global

population. Approximately 95% of the total wheat produced
worldwide is hexaploid bread wheat (Triticum aestivum sp.
Aestivum, AABBDD, 2n = 6x = 42), whereas the remaining 5% is
tetraploid durum wheat (Triticum turgidum sp.Durum, AABB, 2n =
4x = 28), also known as pasta wheat. The dough-forming ability of
wheat flour increases the product range of wheat into bread, pasta,
noodles, and biscuits. The key components responsible for dough
formation are the grain storage proteins called gluten in wheat flour,
whose interactions with water upon kneading form a proteinaceous
structure (Shewry, 2019). Starch is another important component of
wheat that promotes dough formation and causes gelatinization. In
total, mature wheat grains contain approximately 13% water, 71%
carbohydrates, 11% proteins, 2% lipids, 2% minerals, and 0.1%
vitamins and phytochemicals, contributing significantly to human
health (Wieser et al., 2020). Wheat has undoubtedly contributed
significantly to global food security; however, wheat production is at
great risk owing to climate change. As a C3 crop, wheat may benefit
from high CO2 concentrations in the environment by improving
water-use efficiency, photosynthesis, and transpiration. However,
the grain quality can be negatively affected by higher levels of CO2.
At higher temperatures, wheat productivity may decline because of a
shorter crop season and an increase in transpiration (Bouras et al.,
2019). A report published in Nature Climate Change estimated the
impact of rising temperatures on global wheat yield using three
independent models. The results indicated that the per degree rise in
temperature can decline wheat productivity by 4.1%–6.4% (Liu et al.,
2016). Various studies have shown that increasing temperature can
have a drastic effect on wheat grain quality by shortening the grain-
filling period, which will affect the gluten composition of wheat.
High temperatures can change the ratio of gliadin to glutenin,
weakening the dough-making properties of wheat flour.
Moreover, extended heat waves and high temperatures can
reduce the nitrogen level and, ultimately, the protein content of

TABLE 1 (Continued) CRISPR/Cas9-mediated gene editing in Wheat.

Sr
No.

Targeted
genes

Role in plant Knockout effects on plant References

29 TaMKP1 Defense against devastating fungal pathogens and
determined its subcellular localization

Enhanced resistance to rust and powdery mildew in
wheat

Liu et al. (2024c)

30 TaGRF4 GRF4 protein and its interacting factor (GIF1) to develop a
reproducible genetic transformation and regeneration
protocol

Resistance against leaf rust and powdery mildew Biswal et al. (2023)

31 TaCIPK14 CBL-interacting protein kinases are involved in defense
responses during plant-pathogen interactions

Increased wheat resistance to Puccinia striiformis
fungus

He et al. (2023)

32 TaeIF4E Encodes a cap-binding protein binds to methylated
guanine triggering assembly of protein translation
initiation complex

Viral resistance, improvement in plant height and
grain length

Kan et al. (2023)

33 TaMLO-A1 Mildew resistance locus O (MLO), susceptibility gene Resistant against Powdery mildew fungus Li et al. (2022b)

34 TaHRC Histidine-rich calcium-binding protein gene (TaHRC) as
the gene for Fhb1, a major quantitative locus for FHB
resistance

Suppresses the calcium-mediated immune response
and triggers wheat Fusarium head blight
susceptibility

Chen et al. (2022a)

35 TaBAK1-2 Encodes BRI1-associated receptor kinase 1—an important
regulator of plant immunity and development

Increased immunity toward virus Hahn et al. (2021)

36 Ta-eIF4E and Ta-
eIF(iso)4E

Translation-initiation factors serve as susceptibility (S)
factors required for plant viruses from the Potyviridae
family to complete their life cycle

Viral resistance
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TABLE 2 CRISPR/Cas9-mediated gene editing in Rice.

Sr
No.

Targeted genes Role in plant Knockout effects on plant References

1 sbe2b sbe2b (Starch Branching Enzyme 2b) is involved
in starch biosynthesis, specifically in the
branching of amylopectin

Reduced seed setting rate and yield Chen et al. (2024)

2 OsPPKL1/qGL3 PROTEIN PHOSPHATASE WITH KELCH-
LIKE1 (OsPPKL1) as the causal gene for the
quantitative trait locus GRAIN LENGTH3
(qGL3) in rice

Reduced plant height, tiller numbers, and
grain size

Gao et al. (2024)

OsWDR48 OsWDR48 is involved in brassinosteroid
signaling

3 OsbZIP10 A basic zipper family TF directly influences genes
pivotal to starch synthesis

Improved rice grain quality Jiang et al. (2024b)

4 OsGAPDHC7 Glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) encodes a major glycolytic enzyme
involved in energy metabolism

Improved starch, soluble sugar, and
amino acid contents

Kim et al. (2024)

5 OsGAPC3 Involved in the regulation of starch and proteins
in rice grains

Affect the level of protein and starch
content

Peng et al. (2024)

6 OsLCG1 The less Chalk Grain 1 gene regulates the
accumulation of amylose and amylopectin by
influencing the expression of theWx gene in rice

Increased Chalkiness, reduced total starch
content, and increased protein and lipid
content in mature seeds

Tu et al. (2024)

7 OsSLRL2 A transcription factor SLR1-like2 mediates the
ABA-regulated amylose content of rice

Increased pre-harvest sprouting (PHS) Wang et al. (2024c)

8 OsCYP735A3/4, OsIPT1-10, OsLOG1,
OsLOGL1-10, OsPUP1-13, OsENT1-4,
OsCXX1-11

Cytokinin metabolism-associated genes Improved yield Wu et al. (2024)

9 OsLAC6 Regulating amylose content in rice by influencing
the splicing efficiency of the Wx gene locus

Reduced amylose content, decreased grain
length, and thousand-grain
weight (TGW)

Yang et al. (2024)

10 OsMIR168a It targets the main RNA-induced silencing
complex component AGO1 to regulate plant
growth and environmental stress responses

Fast growth at the seedling stage,
produced more tillers and matured early

Zhou et al. (2024a)

11 OsHd1, OsGHD7 and OsDTH8 Heading date genes Extremely early heading phenotype with
low yield

Zhou et al. (2024b)

12 OsPUB33 Plant U-box E3 ubiquitin ligase (OsPUB33)
interferes with the OsNAC120–BG1 module to
control rice grain development

Improved grain size and weight Xie et al. (2024c)

13 OsSBE It catalyzes the formation of α−1,6-glucosidic
linkages of amylopectin during starch
biosynthesis

Improved resistant starch levels up to 15% Biswas et al. (2023)

OsCpSRP43, OsCpSRP54a, and
OsCpSRP54b

Play an important role in the chloroplast signal
recognition particle (CpSRP) pathway

Increased Photosynthesis Caddell et al. (2023)

14 OsNAC24 Transcriptional activator of starch-synthesis
enzyme-coding genes

Improved starch synthesis in rice
endosperm

Jin et al. (2023)

15 OsMADS17 OsMADS17 encodes TF that regulates grain yield
by controlling multiple genes associated with
grain number and grain weight

Increase in both grain number and grain
weight

Li et al. (2023c)

OsAP2-39 OsAP2-39 regulates the yield-related network
and interacts with OsMADS17

Improved grain weight and yield

16 OsHHO3 A transcriptional repressor of three
AMMONIUM TRANSPORTER1 genes

Improves nitrogen use efficiency Liu et al. (2023a)

17 OsMKK3 Associated with the mitogen-activated protein
kinase signaling pathway

Decreases grain length Qing et al. (2023)

18 OsFLO2 A regulatory protein that controls the
biosynthesis of seed storage substances

Low amylose content Song et al. (2023)

(Continued on following page)
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TABLE 2 (Continued) CRISPR/Cas9-mediated gene editing in Rice.

Sr
No.

Targeted genes Role in plant Knockout effects on plant References

19 OsIPCS Involved in the synthesis of
inositolphosphorylceramide, determine the plant
architecture and influence physiological traits

Decreased growth attributes and reduced
the ceramide and glucosylceramide levels

Wang et al. (2023)

20 OsSGL2 SGL2 is a specific grain width regulator Decreased grain width Xiong et al. (2023)

GW8 GW8 is a positive regulator of grain width Reduction in overall plant height and
grain width

WOX11 WOX11 (Wuschel-related homeobox 11) is
involved in root and shoot development

Decreased grain width

21 OsAAP11 Amino-acid-transporter-encoding gene Increased viscosity during the cooking
process, enhanced the eating and cooking
quality

Yang et al. (2023)

22 OsWx and OsBADH2 The Waxy gene has a role in seed amylose
synthesis and the BADH2 gene has an anti-role in
the synthesis of 2-acetyl-1-pyrroline (2-AP)

Creation of Two-Line Fragrant Glutinous
Hybrid Rice

Zhang et al. (2023a)

23 OsNDF6 and OsNDHU Involved in the electron transport chain in the
chloroplast

Decreased cyclic electron flow Zhang et al. (2023c)

24 OsCKX Plays an important role in plant growth and cell
proliferation

Changed plant height, seed appearance
quality and starch composition

Zheng et al. (2023)

25 OsGLUA/B It encodes Glutelins: the major storage proteins
in rice grains

Low glutelin content rice Chen et al. (2022c)

26 OsKRN2 Encodes WD40 protein and determines kernel
row number by controlling the secondary panicle
branches

8% increase in grain yield by enhancing
secondary panicle branches

Chen et al. (2022b)

27 OsABA8ox Encodes ABA8 hydroxylase- involves ABA
catabolism

Improved pre-harvest spouting resistance
and enhanced seed dormancy

Fu et al. (2022)

28 OsBADH2 BADH2 gene has an anti-role in the synthesis of
2-acetyl-1-pyrroline (2-AP)

Aromatic rice Hui et al. (2022)

29 miR166-RDD1 Plays a role in the uptake and accumulation of
various nutrient ions

Decreased grain chalkiness Iwamoto, (2022)

30 OsSSSII-1/2/3 Soluble starch synthase (SSS) genes High amylose content in the seeds of up
to 63%

Jameel et al. (2022)

31 OsPMEI12 Involved in Growth, Cell Wall Development, and
Response to Phytohormone and Heavy Metal
Stress

Enhanced plant growth and development
at a mature stage

Li et al. (2022c)

32 OsWXB Plays a major role in seed amylose synthesis Increases Grain Amylose Content Liu et al. (2022b)

33 OsSBE3 Starch Branching Enzyme 3 involved in the
synthesis of amylopectin

Increase in the length of amylopectin
chains, enhanced starch digestibility, and
cooking quality

Shim et al. (2022)

34 OsIPA1 Ideal Plant Architecture 1 gene Enhanced grain yield Song et al. (2022)

35 OsGS2/GRF4 Encodes growth-regulating factor 4 (OsGRF4)
that regulates multiple agronomic traits

Increased rice grain size and yield Wang et al. (2022a)

36 OsPUB43 U-box E3 ubiquitin ligase Improves Grain Length and Weight Wu et al. (2022)

37 OsGW2 Role in grain width and grain weight Enhanced accumulation of iron, zinc,
potassium, calcium, and phosphorous in
endosperm and thick aleurone layer with
higher protein content

Achary and Reddy,
(2021)

38 OsPHYC Function in regulating flowering time
(photomorphogenesis)

Shorten the heading date Li et al. (2021a)

39 OsSPL16 and GW8 Encodes a promoter binding protein that
promotes cell division and increases grain weight

Improves grain yield Usman et al. (2021)

(Continued on following page)

Frontiers in Genome Editing frontiersin.org08

Kaur et al. 10.3389/fgeed.2025.1533197

https://www.frontiersin.org/journals/genome-editing
https://www.frontiersin.org
https://doi.org/10.3389/fgeed.2025.1533197


TABLE 2 (Continued) CRISPR/Cas9-mediated gene editing in Rice.

Sr
No.

Targeted genes Role in plant Knockout effects on plant References

40 OsHXK1 HXK-phosphorylated sugars have a role in the
regulation of photosynthesis-related gene
expression

Improving the rice photosynthetic
efficiency and yield

Zheng et al. (2021b)

41 GS3 Encodes a protein that restrains the cell division
of spikelet hull leading to shorter grain

Slenderical grain with a lower chalkiness
percentage

Yuyu et al. (2020)

42 GL3.1 Encodes an enzyme that controls grain size by
dephosphorylating cell cycle-related protein
Cyclin-T1,3 and inhibits the cell proliferation in
hull

Larger grain with higher chalkiness
percentage

43 OsDSG1 UBA pathway and regulation of biochemical
reactions in rice

Enhanced salt tolerance in rice Ly et al. (2024)

44 OsLCD Role in cadmium distribution and transport into
the rice grain

Reduction in cadmium accumulation Chen et al. (2023)

45 OsRR22 Involves in both cytokinin signal transduction
and metabolism

Enhance rice salinity tolerance Sheng et al. (2023)

46 OsLKP2 lov kelch repeat protein 2- the negative regulator
of cuticular wax synthesis

Increased leaf size, improves the tolerance
against drought

Shim et al. (2023)

47 OsEPSPS Encodes the enzyme 5-enolpyruvylshikimate 3-
phosphate synthase (EPSPS), which is crucial for
the shikimic acid pathway

Developed glyphosate-resistant rice Sony et al. (2023)

48 OsHPPD 30 UTR Involve in electron chain transport mechanism Enhanced resistance to HPPD inhibiting
herbicides

Wu et al. (2023)

49 OsALS Encodes an enzyme acetolactate synthase, which
plays a crucial role in the biosynthesis of
branched-chain amino acids

Resistance to the herbicide bispyribac-
sodium (BS)

Zafar et al. (2023)

50 OsbHLH024 Coincide high antioxidant activities with less
ROS and stabilized levels of MDA

Enhanced salt tolerance Alam et al. (2022)

51 OsMADS26 An upstream regulator of stress-associated genes Enhanced drought tolerance Anjala and
Augustine, (2022)

52 OsPIN9 Role in auxin efflux carrier Chilling tolerance Xu et al. (2022)

53 OsPQT3 Encodes E3 ubiquitin ligase, significantly
enhances resistance to abiotic stresses

Enhanced resistance to abiotic stresses
and increases grain yield

Alfatih et al. (2020)

54 OsERA1 Regulates ABA signaling and the dehydration
response

Enhanced drought tolerance Ogata et al. (2020)

55 OsPUB67 Encode U-box E3 ubiquitin ligase significantly
induced by drought, salt, cold, JA, and ABA

Reduced tolerance to drought Qin et al. (2020)

56 OsDST Regulates signal transduction pathways of
stomatal closure

Enhanced leaf water retention ability
lower stomatal density and under drought

Santosh et al. (2020)

57 OsPYL9 Involves in ABA and MDA signalling Enhance grain yield under drought Usman et al. (2020)

58 OsLOGL5 Conserved 25 amino acid sequences at the
C-terminal of rice cytokinin-activation enzyme-
like gene

Increased grain yield under abiotic
conditions

Wang et al. (2020b)

59 OsmiR535 OsmiR535 in response to NaCl, Polyethylene
glycol, ABA, and dehydration stresses

Increased tolerance against abiotic stresses Yue et al. (2020)

60 OsNAC006 Response to stimuli, oxidoreductase activity,
cofactor binding, and membrane-related
pathways

Drought and heat tolerance Wang et al. (2020a)

61 OsPIN5bOsGS3, and OsMYB30 OsPIN5b is an auxin carrier and has important
functions in auxin balance and transport, GS3
participates in the grain size regulatory network,
and MYB30 is cold stress related gene

Improvement of Rice Yield and Cold
Tolerance

Zeng et al. (2020)
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the grain (Wang and Liu, 2021b). In conclusion, climate change is
going to impact wheat; therefore, the development of climate-
tolerant wheat, which is difficult through conventional breeding
techniques due to its hexaploidy genome, is an utmost priority.
CRISPR/Cas9 technology was successfully used to obtain stable
inherited mutations in wheat. Agrobacterium-mediated
transformation has been used to deliver CRISPR constructs into
immature wheat embryos (Howells et al., 2018; Zhang Z. et al.,
2019). CRISPR/Cas9 genome editing-derived transgene-free wheat
plants have also been produced using biolistic and protoplast
transfection methods (Liang et al., 2017; Zhang et al., 2016).
These studies have successfully implemented CRISPR/
Cas9 genome editing technology in wheat, providing a platform
for improving wheat concerning climate change-mediated
problems. Grain weight, grain size, and grain yield per plant are
the main agronomic attributes highly influenced by abiotic and
biotic factors. Researchers have identified several genes that function
as negative regulators of grain’s weight, size, and overall yield. For
example, Receptor-like protein kinase 1 (RPK1), the Brittle rachis
gene (BTR1-A), GASR7, TaSPL13, GW2, and TaARE1 (Table 1). A

study reported the knockout of GASR7 and GW2 genes via the
ribonucleoprotein (RNP)-derived CRISPR/Cas9 approach in bread
wheat and pasta wheat resulted in transgene-free mutants with higher
grain weight (Zhang Y. et al., 2021). Similarly, the TaSPL13 gene,
responsible for controlling grain size and number, was edited using
CRISPR/Cas9 (Gupta et al., 2023). The results revealed that mutations
in this gene lead to an increase in the size and number of grains in
allohexaploid wheat, demonstrating the importance ofTaSPL13 in the
evolution of yield-related attributes in wheat. Similarly, Ta-eIF4E
alone has been targeted in wheat, resulting in viral resistance and
improved plant height and grain length (Kan et al., 2023). Another
important agronomic factor in wheat is early heading. Recently, the
role of the thioredoxin gene (TaTRXH9) is characterized and validated
in wheat using CRISPR/Cas9-mediated gene editing, and a loss-of-
function mutation in this gene found in early-heading wheat (Fan
et al., 2023). These studies reveal the success of CRISPR/Cas9 genome
editing in improving wheat yield, which can significantly mitigate the
impact of climate change on yield reduction.

The unstable weather can increase gluten levels in wheat, which
makes it less suitable for consumption (Mkhabela et al., 2022).

TABLE 2 (Continued) CRISPR/Cas9-mediated gene editing in Rice.

Sr
No.

Targeted genes Role in plant Knockout effects on plant References

62 OsSRL1/2 Putative glycosylphosphatidylinositol-anchored
protein

Drought tolerance (higher grain filling
under stress)

Liao et al. (2019)

63 OsNRAMP5 NRAMP5 is the major transporter for Cadmium
and manganese uptake in rice

Reduction in cadmium accumulation Yang et al. (2019)

64 OsRR22 Involve in CK signal transduction and
metabolism

Enhance rice salinity tolerance Zhang et al. (2019a)

65 OsLRR2 A leucine-rich repeat protein gene involved in
immunity, stress responses, and developmental
regulation

Reduced BPH (Brown planthopper)
infestation and enhanced natural
biological control by attracting natural
enemies

Kuai et al. (2024)

66 OsNAC Involves in growth, development, and stress
responses

Enhanced innate immunity Son et al. (2024)

67 OsBSR-d1 Negative transcription factor involves broad-
spectrum resistance to rice blast

Enhances the blast resistance Zhang et al. (2024)

68 OsHRC Histidine-rich calcium-binding protein gene Improved rice blast resistance Ding et al. (2023)

69 OsHPP04 A copper metallochaperone heavy metal-
associated plant protein involves in different
biological processes

Enhanced resistance to rice root-knot
nematode

Huang et al. (2023)

70 OsS5H Salicylic acid 5-hydroxylase activity, converting
SA into 2,5-dihydroxybenzoic acid (2,5-DHBA)

Broad-spectrum disease resistance Li et al. (2023b)

71 OsV-ATPase d Involves in proton translocation across
membranes

Increased resistance against Southern rice
black-streaked dwarf virus (SRBSDV), but
it decreased resistance against Rice stripe
virus (RSV) in rice

Lu et al. (2023)

72 OsCPK18/OsCPK4 Role in Rice Immunity Enhanced disease resistance and yield in
rice

Li et al. (2022a)

73 OsDjA2 and OsERF104 Encodes a chaperone protein and APETELA2/
ethylene response factor, respectively

Resistance to Pyricularia oryzae Távora et al. (2022)

74 OsXa13 Involves in pollen development and shows
recessive resistance to bacterial blight

Transgene-free bacterial blight-resistant
rice with retained fertility

Li et al. (2020a)

75 OsPFT1 Phytochrome and Flowering Time 1 Sheath blight resistance Shah et al. (2019)
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TABLE 3 CRISPR/Cas9-mediated gene editing in Maize.

Sr
No.

Targeted genes Role in plant Knockout effects on plant References

1 ZmTKPR1-1/2 Tetraketide α-pyrone reductases gene forms an important
precursor of sporopollenin

Male sterility with delayed tapetum degradation
and defective pollen exine and anther cuticles

An et al. (2024)

2 ZmWUS1-B Embryogenesis-related gene WUSHEL regulates the stem cell
population in inflorescence meristems

Affect inflorescence meristem Chen et al. (2021)

3 ZmMSH7 DNA repair-related genes confer natural variation in maize
pollen fertility

Boosts grain yield Jiang et al.
(2024a)

4 ZmBON1/3 Plasma membrane-associated copine proteins are critical
components of Brassinosteroids signaling

Produce dwarf morphology Jing et al. (2024b)

5 ZmEPSPS, GATIPS-
mZmEPSPS

Shikimic acid pathway gene High yield and enhanced glyphosate resistance Kaul et al. (2024)

6 ZmMPK6 Mitogen-activated protein kinase 6 role in key signaling
enzymes involved in stress responses, cell division, metabolism,
and plant growth

Reduction in kernel weight Li et al. (2024b)

7 ZmADF1 Actin-binding protein Greater pollen viability Lv et al. (2024)

8 ARFTF17 It encodes a protein that inhibits MYB40, a transcription factor
with the dual functions of repressing PIN1 expression and
transactivating genes for flavonoid biosynthesis

Reduces IAA content in the seed pericarp,
creating a flint-like kernel phenotype

Wang et al.
(2024b)

9 ZmARF1 Auxin response factors (ARFs) play crucial roles in root
development via auxin signaling mediated by genetic pathways

Shorter primary roots, fewer root tip number,
and lower root volume and surface area

Yan et al. (2023)

10 ZmRA2 and ZmTSH4 RA2 is a RAMOSA pathway member that generates highly
branched tassel. TSH4 represses lateral organ growth and also
affects phyllotaxy, axillary meristem initiation, and meristem
determinacy within the floral phase

Increased tassel branch number Xie et al. (2024b)

11 ZmNDF6 and
ZmNDHU

NDF6 is an integral part and a trans-membrane subunit of the
NDH complex, and NDHU is a chloroplast-specific subunit
located close to the electron donor ferredoxin binding site

Retarded growth, low leaf chlorophyll contents Zhang et al.
(2023b)

12 Zm00001d016075 Negatively modulating kernel row number Increased kernel row number and grain yield An et al. (2022)

13 ZmKRN2 Encodes WD40 protein and determines kernel row number 10% increase in grain yield Chen et al.
(2022a)

14 ZmPAT7 Phosphate transporter Increased tassel branch number Guan et al. (2022)

15 ZmDFR1/2 and
ZmACOS5-1/2

Regulating anther and pollen development Defective anther and pollen, male fertility Liu et al. (2022c)

16 ZmCOI2a/b Receptor of jasmonate signal Defective anther, male sterility Qi et al. (2022)

17 ZmSPL12 SPL transcription factor Increased height and ear height Zhao et al. (2023)

18 ZmNL4 Regulating cell division Reduced leaf width Gao et al. (2021)

19 ZmThx20 GT-2 Trihelix transcription factor Shrunken kernels Li et al. (2021c)

20 ZmAGAP Arf GTPase-activating protein Dwarfed plant, smaller ear, and small leaf Jia et al. (2020)

21 ZmCLE7, ZmFCP1,
ZmCLE1E5

CLE peptide ligands Increased multiple grain-yield-related traits Liu et al. (2021)

22 YIGE1 Regulating ear length by affecting pistillate floret number Decreased inflorescence meristem size and ear
length

Luo et al. (2021)

23 ZmACO2 Ethylene biosynthesis Enhanced ear length, kernel number, and grain
yield

Ning et al. (2021)

24 ZmBADH2a/b 2-acetyl-1-pyrroline biosynthesis Aromatic corn Wang et al.
(2022b)

25 ZmCEP1 Peptide hormones Increased plant height, kernel size, and weight Xu et al. (2021)

26 MSCA1, ZmGRX2/5 Modifying the redox state and the activity of their target proteins Suppressed meristem, reduced height Yang et al. (2021)
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However, Chinese researchers have developed a Gluten gene
Enrichment and Sequencing (GlutEnSeq) system, screened
thousands of prolamin genes from different wheat varieties, and
low gluten wheat was produced by modifying γ- and a-gliadin
genes via CRISPR/Cas9 (Jouanin et al., 2019). A study developed
improved winter and spring wheat varieties with high amylose
content via CRISPR/Cas9-mediated genome editing of starch-
branching enzyme (SBE) II (TaSBEIIa), and multiple transgene-
free mutant lines were obtained (Li J. et al., 2021).
Correspondingly, the CRISPR/Cas9 approach has been utilized
to modify four genes, i.e., puroindoline b (PINb), granule-bound
starch synthase gene (GBSS or WAXY), polyphenol oxidase gene
(PPO), and phytoene synthase gene (PSY), in wheat via the
Agrobacterium-mediated transformation method of gene
delivery (Zhang Y. et al., 2021; Zhang Z. et al., 2019). The PINb
gene controls grain hardness, the WAXY gene is responsible for
amylose synthesis, PSY is the main gene controlling the carotenoid
biosynthetic pathway, and PPO controls color via the oxidation of
phenolic compounds.

Micronutrient deficiency in wheat is likely to occur because of
increasing temperatures and drought, which can lead to
malnutrition and other health disorders. The CRISPR/
Cas9 genome editing approach is a straightforward method that
can be used to enhance the nutritional composition of wheat and
address this problem; for instance, Ibrahim et al. edited the Inositol
Pentakisphosphate 2-Kinase 1 (TaIPK1) gene, which expresses an
enzyme involved in the final step of the phytate biosynthesis
pathway (Ibrahim et al., 2022). Phytic acid is considered an anti-
nutrient because it reduces the bioavailability of iron and zinc in
humans. The phytic in wheat tissues binds to these micronutrients as
phytate and decreases their bioavailability. CRISPR/Cas9 genome
engineering of TaIPK1 in wheat improved iron (1.5–2.1-fold) and
zinc content (1.6–1.9-fold) and lowered phytic acid accumulation in
wheat grains. Several agronomic improvements via CRISPR/Cas9-
mediated genome editing in wheat are presented in Table 1.

Transcriptome profiling of wheat grains revealed several heat
stress-associated gene, including heat shock transcription factor
gene (TaHSFA6e), ascorbate peroxidase, β-amylase, γ-gliadin-2,

TABLE 3 (Continued) CRISPR/Cas9-mediated gene editing in Maize.

Sr
No.

Targeted genes Role in plant Knockout effects on plant References

27 MMS21 SUMO ligase Short root, abnormal seed Zhang et al.
(2021a)

28 ZmACS7 Ethylene biosynthesis Increase in plant height, ear height, above
internode number, and leaf angle

Li et al. (2020b)

29 ZmANT1 AP2 transcription factor Reduced growth rate and grain yield Liu et al. (2020)

30 STIFF1 F-box domain protein Stronger stalk strength Zhang et al.
(2020)

31 ZmNRPC2 Second-largest subunit of RNA polymerase III Reduced kernel size Zhao et al. (2020)

32 ZmADF5 Member of the actin-depolymerizing factor (ADF) family,
tightly linked with a consensus drought-tolerant quantitative
trait locus

Decreased drought tolerance Liu et al. (2024a)

33 ZmPP2C15 The protein phosphatase is involved in plant growth and
development and various signaling pathways

Severe leaf dryness, curling, and wilting under
drought stress

Pang et al. (2024)

34 ZmEREB24 Drought stress-responsive AP2 gene Drought sensitivity Ren et al. (2024)

35 ZmHDT103 Maize nutrition and reproductive development Drought Stress Tolerance Wang et al.
(2024e)

36 ZmGA20ox3 GA biosynthesis Improves plant architecture and drought
tolerance

Liu et al. (2023b)

37 ZmbHLH32 and
ZmIAA9

bHLH transcription factor for ZmIAA9 gene a member of the
maize Aux/IAA gene family

Increased sensitivity to salt stress, decreased ROS
detoxification

Yan et al. (2023)

38 ZmCLCg Chloride transport Reduced salt tolerance Luo et al. (2021)

39 ZmSRL5 Cuticular wax related gene Reduced drought tolerance Pan et al. (2020b)

40 ZmADT2 Arogenate dehydratase- downstream enzymes of chorismite
mutase

Increased susceptibility to Ustilago maydis
fungus

Ren et al. (2024)

41 ZmPDRP1/2 Involves in C4 photosynthesis of maize Resistance to potyvirus sugarcane mosaic virus
(SCMV)

Xie et al. (2024a)

42 ZmPR5L and
ZmRBOH4

Cell-wall-associated receptor kinase-like protein Reduced plant height and increased gray leaf
spot susceptibility

Zhong et al.
(2024b)

43 ZmGDIa Vesicle membrane trafficking Disease resistance Liu et al. (2022a)

44 ZmCOI1a, ZmJAZ15 Jasmonate signaling components Disease resistance Ma et al. (2021)
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and LMW-glutenin, were upregulated during the high-temperature
stress (Rangan et al., 2020; Wen et al., 2023). Such studies can help
select the potential target genes for CRISPR/Cas-mediated genome
editing, which might lead abiotic stress resistant crops. Moreover,
studies on different crops can be used to develop wheat that is
tolerant to increasing temperatures caused by climate change. For
example, CRISPR/Cas9-mediated knockout of themitogen-activated
protein kinase gene (SlMAPK 3) enhances heat tolerance in tomato
plants, and the edited pyrabactin resistance 1 (PYR1)/PYR1-like
(PYL) (pyl1/4/6) makes rice tolerant to hot weather (Miao et al.,
2018; Yu et al., 2019). Since wheat is hexaploid and has a complex
genome, there are fewer reports available on producing abiotic
stress-tolerant wheat plants than rice. TaSAL1, TaMBF1c, and
TaHAG1 genes have been edited to produce abiotic stress-
tolerant wheat plants (Mohr et al., 2022; Tian et al., 2022; Zheng
M. et al., 2021). The histone acetyltransferase (TaHAG1) gene
contributes to salt tolerance by affecting free radical production
in hexaploid wheat. MBF1c confers thermotolerance by regulating
the translation of specific mRNA translation, whereas SAL1
negatively regulates drought tolerance (Table 1). These studies
suggest that genome editing of wheat could be a promising
approach for conferring climate change.

3.2 Rice: improvement of traits via CRISPR/
Cas9 approach

Rice (Oryza sativa L.) is a staple crop, with a global consumption
rate of approximately 21% and 76% in Asian countries. Worldwide,
776.5 million tons of rice were produced in 2022, with
approximately 90.5% of the average rice production taking place
in Asia, in which China and India are the biggest producers (). This

high demand for rice is due to its taste and versatility in a variety of
international cuisines (Castanho et al., 2023). In addition, rice is
enriched in nutrients, mainly complex carbohydrates, and moderate
levels of vitamin B, phosphorous, iron, calcium, and protein. Most
nutrients (minerals, vitamins, proteins, and antioxidants) are
present in the rice brain, which has a brown outer layer. Rice
contains all essential amino acids except lysine and is a great
source of a balanced diet, as it does not contain cholesterol, fat,
or sodium (Sasaki and Burr, 2000). However, the current climate
change scenarios have adversely affected rice crops from farms to
consumers in various ways (Zhao et al., 2016). Increasing
temperature, carbon dioxide, drought, salinity, rainfall, pests, and
diseases are the main stressors that can directly affect various rice
attributes, such as grain size, quality, yield, nutritional constitution,
and appearance. Rice cultivation can be successful if the optimum
temperature and rainfall are provided; however, an increase of 1 °C
can adversely affect rice yield. A recent study showed a decline in the
nutritional content of rice due to rising atmospheric CO2

concentrations. Micronutrients, proteins, and several vitamins are
diminished in rice, leading to malnutrition in infants and children of
rice-dependent countries. A decline of approximately 17%–30% in
vitamins, 5% in zinc, 8% in iron, and 10% in protein was observed in
rice grown under high CO2 conditions (Smith and Myers, 2018). In
contrast, Guo et al. found a 15% increase in the mineral content of
rice grown under high CO2 and temperature conditions (Guo et al.,
2022). Though high CO2 is normally considered a growth-
stimulating agent along with high temperature, it acts
antagonistically. Jing et al. reported reduced rice yield due to
elevated temperatures under high CO2 conditions created using
temperature-free air CO2 enrichment (T-FACE) systems (Jing L.
et al., 2024). Another T-FACE experiment in China reported that
increasing CO2 substandardized the sensory quality of rice by

FIGURE 4
Annual publication trends from 2019 to 2025, showing the number of papers published each: The graph illustrates a surge in publications and
citations from 2019 to 2025 in the area of CRISPR/Cas9 for enhancing crop stress tolerance and yield Created with BioRender.
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increasing chalkiness (Wang et al., 2024d). The chalkiness of rice is a
major obstacle to rice marketing. Chalky rice forms owing to
abnormal starch development inside the grain and appears as a
scattered coarse material, thus making the surface turbid. This
abnormal starch accumulation occurs due to the high
temperature, mainly at the time of grain filling, which reduces
the ability of α-amylase enzyme to degrade the starch and, hence,
leads to malformed starch synthesis (Shimoyanagi et al., 2021). In
addition to grain quality, other issues in rice that can occur due to
climate change include decreased shoot biomass and carbohydrate
content in the stem, decreased starch content, and reduced
photosynthetic ability, transpiration, and leaf area (Cui et al.,
2024; Huanhe et al., 2024; Yamori et al., 2025). Hence,
concerning the future outcomes, researchers have been trying
different strategies, one of which is the robust and versatile
genetic editing technique called as CRISPR/Cas9 system for
generating climate-smart rice crops. CRISPR/Cas9-mediated gene
editing has been optimized in rice using Agrobacterium-mediated
transformation, particle bombardment, and RNPs (Miao et al., 2013;
Shan et al., 2013). Moreover, a multiplexing approach was
successfully established for rice. Recently, a group of researchers
accomplished ultra-multiplexing targeting 49 genes in rice using
both Agrobacterium-mediated and biolistic approaches (Wu
et al., 2024).

CRISPR/Cas9 mediated-knockout of two main quantitative trait
loci associated with grain length and thousand-grain weight, i.e.,GS3
and GL3.1 was reported in rice GS3 encodes a protein that restrains
the cell division of the spikelet hull, leading to shorter grains,
whereas GL3.1 encodes an enzyme that controls grain size by
dephosphorylating the cell cycle-related protein Cyclin-T1,3 and
inhibits cell proliferation in the hull. Mutations in this gene increase

grain size in rice (Yuyu et al., 2020; Zhang Y. M. et al., 2021). Huang
et al. used the CRISPR/Cas9 technique to create an Indica
maintainer line, Mei1B, containing an edited GS3 allele to
improve grain yield and quality (Huang et al., 2022). Another
study mutated the OsSPL16 or GW8 gene via CRISPR/
Cas9 technology to improve the cylindrical shape and grain yield
of Basmati rice (Usman et al., 2021). Rice aroma is an important
quality parameter that is affected by climate change. Nevertheless,
improving and introducing aromas into rice is feasible to improve
and introduce aromas into rice using genetic engineering
techniques. Mutations in Betaine Aldehyde Dehydrogenase 2
(OsBADH2) via CRISPR/Cas9 added aroma to elite non-aromatic
rice variety (Hui et al., 2022; Tang et al., 2021). Several reports are
available on the use of CRISPR-mediated gene editing for improving
various agronomic traits in rice (Table 2). Recently, loss-of-function
mutants of OsCKX were found to affect various attributes including
plant height, grain size, grain number, panicle size, seed shape, and
starch accumulation. This gene encodes a cytokinin-degrading
enzyme that inactivates cytokinins, which plays important roles
in plant growth and cell proliferation (Zheng et al., 2023). Similarly,
enhanced grain yield was observed by deleting a target site of the
transcription factor An-1 in the cis-regulatory region of the Ideal
Plant Architecture 1 (IPA1) gene (Song et al., 2022).

Rice quality improvement is crucial because rice passes through
various downstream processes, such as dehydration, milling,
removal of bran, cleaning, and cooking after harvesting, and each
process directly or indirectly decreases the nutrient content of rice.
For instance, cleaning alone can reduce vitamin levels by 25%–60%,
potassium by 20%–40%, and proteins by 3%–7% in rice (Müller
et al., 2022). Combining this with the effect of climate change, the
rice produced would not be useful. Therefore, biofortification is the

FIGURE 5
The tree map illustrates research across different subject areas: This map focuses on research across different subject areas, with Plant Sciences
comprising the largest share, followed by biochemistry, molecular biology and agronomy Created with BioRender.
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only method that can sustain rice nutrients. Carotenoid-enriched
marker-free rice has been developed by inserting two carotenoid
biosynthetic genes, SSU-CRTI and ZmPSY30, using the CRISPR/
Cas9 approach (Dong et al., 2020). Achary and Reddy produced a
rice variety with an enhanced accumulation of iron, zinc, potassium,
calcium, and phosphorous in endosperm via CRISPR/Cas9-
mediated editing of GW2 (Grain width and grain weight) locus
(Achary and Reddy, 2021). Moreover, the aleurone layer gained
thickness with an enhanced protein content. Another study found
decreased grain chalkiness, high ammonium cation, and phosphate
ion uptake, and high photosynthetic activity under high CO2

conditions in miR166-RDD1 knocked-out rice plants
(Iwamoto, 2022).

Among abiotic stressors, salinity is a serious event that can
potentially tarnish rice production. The development of salt-tolerant
varieties is a lifesaving approach feasible with CRISPR/Cas9 genome
editing technology. High salt concentrations can negatively affect
crop production by disrupting the metabolic and physiological

processes. These factors can significantly affect plant
development, seed germination, and productivity (Zörb et al.,
2019). Plants respond to salt stress by increasing the biosynthesis
of antioxidants, osmoregulators, and phytohormones that support
the plant by maintaining ion homeostasis; however, this ability
works to a certain extent, and not all plants can protect
themselves from high salinity (Raza et al., 2022). Similarly,
drought stress drastically affects the physiology of plants by
inhibiting nutrient uptake and other life-dependent activities,
including photosynthesis, cell division and elongation, turgor
pressure, and gene expression. Several rice genes have been
identified and mutated using CRISPR/Cas9 to produce abiotic
stress-tolerant plants (Table 2). For example, salt-tolerant
T2 homozygous mutant rice was developed by cleaving the
OsRR22 gene in rice using Cas9 (Zhang A. et al., 2019).
Knockout of OsRR22 improved the performance of rice plants
under high-salt conditions (0.75%), with no side effects on grain
size, yield, or plant biomass. The same strategy was used by Han

FIGURE 6
Network visualization of keyword co-occurrence related to CRISPR/Cas9 research in cereals: The central nodes in the figure illustrates the
relationship between CRISPR and genome editing specially in the research areas such as drought tolerance, yield improvement, and stress resistance,
with a primary focus on rice. Visualization uses different colors to distinguish between research areas, with red highlighting drought tolerance, green
representing stress resistance, and blue focusing on gene editing Created with BioRender.
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FIGURE 7
The overlay visualization of research trends on CRISPR/Cas9 over time: The figure shows the research trends over time, especially focusing on
drought tolerance, salinity tolerance, and abiotic stress. Since 2021, the research has increasingly focused on these topics, particularly in cereal crops like
rice, wheat, and maize Created with BioRender.

FIGURE 8
Country-wise distribution of publications on CRISPR/Cas9 research in cereals from 2019 to 2025: The heatmap reveals that countries such as China,
United States, and India are at the forefront of this research, with other countries like South Korea, Brazil, and France contributing significantly Created
with BioRender.
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et al. to develop novel rice germplasm at the seedling stage (Han
et al., 2022). In another study, the drought and salt tolerance
(OsDST) gene was edited using CRISPR/Cas9 to produce the
indica mega rice cultivar MTU1010 with enhanced tolerance
(Santosh et al., 2020). In rice, the transcription factor OsMADS26
plays a negative role, and mutations in this gene enhance drought
tolerance (Anjala and Augustine, 2022). Ogata et al. characterized
the Enhanced Response to ABA1 (ERA1) gene in rice using CRISPR/
Cas9-mediated editing and found frameshift mutations in mutants
with increased primary root growth, high sensitivity to abscisic acid
stress, and increased drought stress tolerance (Ogata et al., 2020).

The effect of climate change on disease susceptibility in rice
poses a major threat to rice productivity. Climate change-induced
pest and microbial emergence can annihilate agriculture, thereby
substantially threatening food security. Fortunately, this can be
mitigated using gene-editing applications in crops. Various
studies have been published on the production of pests and
microorganisms that cause disease tolerance in crops (Liu M.
et al., 2024; Oliva et al., 2019; Zhou et al., 2022). Table 2 shows
some examples of CRISPR/Cas9-mediated development of disease-
resistant plants. However, the current work is insufficient in
comparison to the upcoming consequences of climate change
because this change can also increase the potential of insects by
providing them with favorable conditions for their growth and
development. For example, fruit flies flourished more when the
temperature increased from 20°C to 35 °C in certain mango varieties.
This phenomenon is observed in all species worldwide. In particular,
insects in temperate regions have become more active, whereas
populations of tropical insects may decline or migrate
(Bhattacharjee et al., 2022). Therefore, genetically edited plants
may be a powerful solution for overcoming the effects of climate
change on agriculture. Several studies have been conducted to
develop rice resistance to various fungal and bacterial pathogens.
Xa13 is involved in pollen development and exhibits recessive
resistance to bacterial blight. Studies have shown that the
complete loss of function of the coding region of this gene can
lead to sterility; therefore, CRISPR-assisted modification was
performed in the Xa13 promoter region to produce transgene-
free bacterial blight-resistant rice with retained fertility (Li C.
et al., 2020). Another study targeted three salicylic acid 5-
hydroxylase (OsS5H) genes (BSR-D1, PI21, and ERF922) in rice
and found resistance to both rice blast and bacterial blight (Zhou
et al., 2022). Recently, rice with enhanced immunity was produced
by editing the NAC transcription factor gene in rice via CRISPR/
Cas9 approach (Son et al., 2024). Furthermore, broad-spectrum
disease resistance was achieved by editing three salicylic acid
hydroxylase (OsS5H) genes in rice (Li X. et al., 2023).

3.3 Maize: improvement of traits via the
CRISPR/Cas9 approach

Maize (Zea mays) is the most important cereal crop in the
world, with the highest production after rice and wheat, and fulfills
the needs of human food, animal feed, and biofuels (Chávez-Arias
et al., 2021). Maize is sensitive to heat stress during seed
germination and vegetative growth. It significantly affects maize
plant germination and seedling emergence. Heat stress causes the

formation of abscisic acid and affects the activity of enzymes
responsible for breaking down starch (Chandra et al., 2023).
Additionally, it inhibits the synthesis of proteins in the embryo,
which reduces the germination of maize seeds at over 37°C,
resulting in a decrease in plant density (Buriro et al., 2011).
Increased oxidative stress, altered membrane permeability,
decreased stomatal conductance, and other signs occur regularly
in plants under heat stress. The rate of photosynthesis was
negatively affected by a reduction in stomatal conductance.
Moreover, it induces the production of reactive oxygen species
and causes oxidative stress (Soengas et al., 2018; Zandalinas et al.,
2017). Heat stress negatively affects the number of florets, silk
number, fertilization, filling, development, and final grain yield
during flowering (Lizaso et al., 2018). Recently, the continuous
span of heat waves has affected maize yield and productivity. They
alter the morphology, physiology, genomic expression, and
biochemical metabolism of crops. In response to these
alterations, plants activate tolerance mechanisms via heat shock
transcription factors and proteins essential for reducing and
preventing heat-related damage (Li and Zhang, 2022d). Heat
stress affects the integrity of the plasma membrane and the
accumulation of reactive oxygen species (Dogra and Kim,
2020). Moreover, proteins are misfolded or unfolded, which
disrupts cell metabolism and physiology and eventually leads to
cell death. The development of climate resilience in maize is
urgently needed because heat-induced decline is high in this
crop (Chandra et al., 2023).

Currently, a decrease in yield resulting from drought stress is
estimated to affect over 20% of the annual maize area, and at high
temperatures, an average of 7.4% is lost for every 1°C increase
(Boyer et al., 2013; Malenica et al., 2021). Notably, Brazil, the third
largest producer of maize worldwide, showed a decrease in yield in
the 2015–16 and 2020–21 growing seasons of approximately
18 and 23 Mt, correspondingly to losses of approximately 21%
compared to the 2014–15 and 2019–20 seasons (Lopes Filho et al.,
2023). These crop failures occurred in years marked by extreme
drought conditions, resulting in diminished yields in many of the
largest producer geographies. Similarly, crop yield reductions and
spiking prices were affected by the 2012 drought in the US (the
world’s largest producer) (Boyer et al., 2013). Therefore, it is
essential to reduce the potential losses caused by the increased
frequency, severity, and duration of stresses associated with global
climate change by continuously developing new maize cultivars
that target better genetic adaptation and using improved
agricultural practices.

Abiotic stress tolerance and yield are two complex traits strongly
influenced by environmental factors and linked to small-effect
genetic loci. Using genomic engineering techniques to develop
superior cultivars for these traits is more difficult because of such
complexity, which makes it challenging to reliably evaluate the
molecular mechanisms behind gene activities and measure
phenotypes. Considering the few instances developed for complex
traits, transgenic maize cultivars with enhanced herbicide and insect
resistance have been on the market for decades (Yassitepe et al.,
2021). The difficulty in applying a transgenic approach to control
complex traits that are stable in multiple environments has limited
the development of biotech cultivars that could be widely used
(Simmons et al., 2021).
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Gene editing technology has enabled an efficient and consistent
way to understand the role of key genes and develop new germplasm
in maize (Doll et al., 2019; Wang Y. et al., 2022).

Potential putative functions of numerous genes involved in
maize development programs and stress responses have been
investigated thoroughly using CRISPR/Cas9 technology (Wang Y.
et al., 2022). CRISPR has been widely used to enhance numerous
agronomic traits in maize, yield, nutrition, improved pollen
characteristics, drought tolerance, and disease resistance (Jiang L.
et al., 2024; Kaul et al., 2024; Lv et al., 2024; Wang G. et al., 2024; Xie
Z. et al., 2024). ZmGDIɑ was specifically edited using CRISPR/
Cas9 to significantly increase maize resistance to the maize rough
dwarf virus without negative agronomic effects (Liu Y. et al., 2023).
ZmCOIɑ interacts inversely with ZmJAZ15 to alter maize immunity
against Gibberella stalk rot (GSR, a teleomorph of Gibberella zeae),
and further downregulation of ZmCOIɑ can increase maize
resistance to GSR (Ma et al., 2021). MMS21 maintains the
activity and integrity of the maize genome, resulting in improved
root and vegetative growth, pollen germination, and seed
development (Zhang et al., 2021b). ZmCLCg positively regulates
sodium chloride stress and chloride transport in maize as a stress
response (Luo et al., 2021). ZmSRL5 is essential for sustaining
cuticular wax structure and drought tolerance in maize (Pan Y.
et al., 2020).

Maize yield is severely affected by several environmental factors,
including drought, high temperatures, floods, and unsuitable soil
conditions. The breeding of stress-tolerant variants has shown great
potential when applying genome editing tools compared with
conventional breeding methods (Chávez-Arias et al., 2021;
Chennakesavulu et al., 2021; Prasanna et al., 2021). The
development of maize lines with high stalk strength has become
considerably important to breeders for maintaining high and
constant production, as stalk lodging caused by different
environmental factors poses a significant threat to maize quality
and production. STIFF1 is a negative regulator of maize stalk length,
its altered allele with a 2bp deletion caused a frameshift and an early
slowdown translation, conferring CRISPR-edited plants with a
stronger stalk, which contributed to high-density planting and
avoided stalk lodging (Armarego-Marriott, 2020). Furthermore,
ZmGA20OX3 has been modified to develop semi-dwarf maize
plants using CRISPR/Cas9 technology, which may be useful for
developing a novel genotype that is more resilient to lodging and
suitable for high-density planting (Liu Y. et al., 2023). For drought
tolerance, precisely editing the promoter sequence of ARGOS8
leads to an increase in its expression and enhances maize grain
yield under drought stress (Shi et al., 2017). By inserting the GOS2
promoter from maize plants at the 5ʹ untranslated regions that
remain of the ARGOS8 gene’s native promoter, which acts as a
negative regulator of ethylene responses (Zafar et al., 2020).
Targeted alteration of the native maize promoter using
CRISPR/Cas9 enhanced ARGOS8 expression and improved
grain production under drought conditions. In addition,
CRISPR/Cas9 has been used to target Slagamous-Like 6
(SIAGL6) to achieve heat tolerance (Doll et al., 2019).
Therefore, developing new germplasm sources for breeding
stress-tolerant maize has been achieved using CRISPR/
Cas9 technology. Table 3 illustrates several improvements in the
agronomic traits of maize using CRISPR/Cas9 gene editing.

4 Bibliometric analysis

A bibliometric analysis was conducted to examine global trends
in CRISPR/Cas9 research, focusing on cereal crops and their
applications for stress tolerance and yield improvement. The
search used terms like “CRISPR,” “Genome editing,” “Gene
editing,” and “Gene silencing,” along with crop-related terms
such as “Cereal crops” and stress-related topics like “Abiotic
stress,” “Biotic stress,” and “Drought tolerance.” The dataset,
initially containing 1,232 articles from 2019 to 2025, was
narrowed to 597 after excluding reviews, book chapters, and
non-English publications. The citation analysis and other
visualizations were conducted using Web of Science (WoS)
and VOSviewer.

According to the database, increasing trend in publications and
citations from 2019 to 2025 can be seen, demonstrating a significant
increase in scholarly interest in CRISPR/Cas9 for enhancing crop
stress tolerance and yield (Figure 4). After 2021, both publications
and citations remained steady, suggesting the field’s maturation or a
shift in research focus, with sustained interest continuing in the
subsequent years (Francis et al., 2024). The tree map in Figure 5
organizes research across different subject areas, with Plant Sciences
comprising the largest share, followed by biochemistry, molecular
biology and agronomy. This distribution emphasizes the central
focus on plant traits, particularly in cereals, while also highlighting
the broader applications of CRISPR/Cas9 in fields like biochemistry
and biotechnology. Smaller categories, such as Horticulture and
Environmental Sciences, reflect the interdisciplinary nature of
genome editing research (AlRyalat et al., 2019).

The network visualization in Figure 6 further shows the
relationships between key research themes. The central nodes
CRISPR and genome editing are closely connected to other
significant areas such as drought tolerance, yield improvement,
and stress resistance, with a primary focus on rice, a key cereal
crop. This network highlights the broad applications of CRISPR/
Cas9 in enhancing abiotic stress tolerance and improving crop yield.
The strong links between these themes suggest that improving crop
resilience is a major goal in CRISPR/Cas9 research (Altaf
et al., 2024).

The overlay visualization, tracks how research trends have
changed over time, especially focusing on drought tolerance,
salinity tolerance, and abiotic stress (Figure 7). From
2021 onward, the research has increasingly focused on these
topics, particularly in cereal crops like rice, wheat, and maize.
This shift reflects the growing need for developing climate-
resilient crops, with more research being dedicated to improving
stress resistance and water use efficiency in cereals. The overlay
emphasizes the growing interest in improving cereals to make them
more resilient and higher yielding under extreme environmental
conditions. While Figure 6 shows the connections between topics,
Figure 7 illustrates the evolution of these topics over time, especially
highlighting cereals as a key focus in the search for more resilient
crops to face climate change (Altaf et al., 2024).

Furthermore, the country distribution map, highlights the
geographic spread of research on CRISPR/Cas9 applications in
cereal crops (Figure 8). The heatmap reveals that countries such
as China, United States, and India are at the forefront of this
research, with other countries like South Korea, Brazil, and
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France contributing significantly (Martins et al., 2022). However,
there is a noticeable gap in regions that rely heavily on cereal crops,
such as the Middle East. This suggests an opportunity for further
research in these areas, particularly to address local agricultural
challenges related to climate stress and water scarcity.

5 Limitations, advancements, and
future challenges of gene editing

Gene editing has been successfully used to generate climate-
resilient crops for various climatic conditions. However, several
limitations are descending its overall potential remains limited
(Singh et al., 2024a; Singh et al., 2024b). The major drawback of
gene-editing technologies is off-target, which can cause unwanted
editing of other genes, which hinders their wide applicability for
crop trait improvement.

Another disadvantage of, the lack of efficient tissue culture
methods for regeneration, transformation and generation of gene
edited crops. The use of a de novomeristem induction technique can
be more useful and easier for recalcitrant crop species (Maher et al.,
2020). Research is being conducted to increase the transformation
ability of recalcitrant varieties using advanced tools to produce
climate-resilient crops.

Apart from these technical drawbacks, policymakers and
regulatory authorities must take the initiative to overcome the
lack of clarity regarding genome-edited crops among the
population. Altogether, these factors can provide ultimate success
in applying these technologies to address the impact of
climate change.

Intragenic, transgenic, and cisgenic (ICT) approaches have been
used to improve plant characteristics using foreign genes which
leverage its applications (Karavolias et al., 2021; Klümper and Qaim,
2014; Steinwand and Ronald, 2020).

Therefore, merging genome editing with ICT approaches
would be the best solution for raising climate-smart crops and
this can be possible using targeted gene integration using
CRISPR/Cas9 technology. This strategy has been applied to
maize varieties by successfully inserting a novel promoter
upstream of a gene responsible for ethylene regulation to
improve drought tolerance. Moreover, the entire gene can be
replaced using these approaches; for example, the replacement of
the japonica NRT1.1B allele with the indica allele improves
nitrogen use efficiency in rice (Li et al., 2018). Although these
approaches have great potential, regulations regarding these
technologies have decreased their feasibility. Therefore, new
advancements and technical improvements are required to
overcome these limitations.

For example, base editors and prime editors are second-
generation CRISPR-based genome modification tools that
mediate precise editing without relying on double-stranded
break formation and homology direct repair. These editors are
more precise in terms of single-nucleotide modification and
integration (Lin et al., 2020). Base editors involve the direct
conversion of a single-nucleotide base into another (A-to-G or
C-to-T, and A-to-C or C-to-G), without forming double-strand
breaks, introducing specific point mutations with utmost
precision. Base editing has been applied to several crops

including Arabidopsis, cotton, rice, tomato, maize, tobacco, and
soyabean (Li X. et al., 2024; Luo et al., 2023; Wang G. et al., 2024;
Wang et al., 2024f; Wei et al., 2023; Zhong D. et al., 2024). On the
other hand, prime editors integrate Cas9 nickase and a reverse
transcriptase, prime editing guide RNA (pegRNA) which is a
combination of Cas9 sgRNA, a reverse transcriptase template,
and a primer-binding site (PBS). The pegRNA guides the
nCas9 to the target site, where it makes a nick in the non-target
DNA strand. Then the reverse transcriptase extends the nicked
strand by utilizing the reverse transcriptase template (RTT) from
the pegRNA, thereby incorporating the intended modifications.
With prime editors, large deletion, replacement, and inversion of
larger DNA fragments can be performed in plants with high
precision. Researchers have achieved DNA inversions of up to
205.4 kb in wheat plants with 51.5% by using dual prime editors.
They have also been applied to edit large DNA fragments in
tobacco and tomato (Zhao et al., 2025). Similarly, a recent
study utilized high-efficiency prime-editing tools to knockin a
10-bp heat-shock element (HSE) into promoters of cell-wall-
invertase genes (CWINs) in rice and tomato cultivars (Lou
et al., 2025). These modified CRISPR tools can leverage the
gene editing efficiency of manipulating chromosomes and larger
DNA segments for crop improvement.

6 Conclusion

Gene editing could be a powerful solution for the present and
future anticipation of climate change consequences. With the
emergence of advanced genome editing techniques, including
CRISPR/Cas9, base editing, and prime editing, various
agronomic traits such as disease resistance, abiotic stress
tolerance, and nutritional enhancement have emerged. Despite
this, most gene editing technologies are still under laboratory
research and have not yet been translated into the real world.
This is due to technical limitations and restrictions imposed by
regulatory authorities and policymakers. However, technological
innovations are rapidly expanding owing to the ongoing efforts of
public and private institutions. The potential of gene editing in
offering solutions for climate change in agriculture is not
overlooked, even though it is not the only solution to improve
agriculture. Numerous studies show that gene editing can be used
to enhance agriculture and combat climate change effects greatly.
Nevertheless, as indicated by bibliometric analysis, significant
research gaps remain, particularly in applying CRISPR/Cas9 to
underexplored crops like rice, wheat and maize for comprehensive
climate resilience.
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Glossary
BADH2 Betaine Aldehyde Dehydrogenase 2

BE Base editing

CO2 Carbon dioxide

CRISPR/
Cas

Clustered Regularly Interspaced Short Palindromic Repeats and
CRISPR-Associated System

DST Drought and salt tolerance gene

ERA1 Enhanced Response to ABA1 gene

FAO Food and Agriculture Organization

GBSS Granule-bound starch synthase gene

GlutEnSeq Gluten gene Enrichment and Sequencing

GM Genetically Modified

GMOs Genetically Modified Organisms

gRNA Guide RNA

GSR Gibberella stalk rot

HAG1 Histone acetyltransferase gene

HSFA6e Heat shock transcription factor gene

ICT Intragenic, transgenic, and cisgenic approaches

IPA Ideal Plant Architecture 1 gene

IPK1 Inositol Pentakisphosphate 2-Kinase 1 gene

IUCN International Union for the Conservation of Nature

MLO Mildew resistance locus O

PAM Protospacer Adjacent Motif

PFT1 Phytochrome and flowering time 1 gene

PINb Puroindoline b gene

PPO Polyphenol oxidase gene

PSY Phytoene synthase gene

PYR1 Pyrabactin resistance 1 gene

RNAi RNA interference

RNP Ribonucleoprotein

S genes Susceptible genes

S5H Salicylic acid 5-hydroxylase genes

SBEIIa Starch-branching enzyme (SBE) II gene

SIAGL6 Slagamous-Like 6 gene

SlMAPK 3 Mitogen-activated protein kinase gene

TALENs Transcription activator-like effector nucleases

T-FACE Temperature-free air CO2 enrichment systems

TFs Transcription factors

TMT3B Tonoplast monosaccharide transporter 3 gene

TRM TONNEAU 1-recruiting motif

TRXH9 Thioredoxin gene

USA United States of America

WSSMV Wheat spindle streak mosaic virus

WYMV Wheat yellow mosaic virus

ZFNs Zinc finger nucleases
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