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Large scale cancer genomic studies in patients have unveiled millions of non-
coding variants. While a handful have been shown to drive cancer development,
the vast majority have unknown function. This review describes the challenges of
functionally annotating non-coding cancer variants and understanding how they
contribute to cancer. We summarize recently developed high-throughput
technologies to address these challenges. Finally, we outline future prospects
for non-coding cancer genetics to help catalyze personalized cancer therapy.
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The challenges of interpreting non-coding variant
function in cancer

Understanding the molecular mechanism of a cancer variant has clear implications to
treatment. For example, KRAS is frequently mutated in several cancers and the G12C
mutation locks KRAS into an active oncogenic state. Functional profiling of mutant KRAS
led to the development of a new class of inhibitors that were recently FDA approved for
patients with KRAS G12Cmutations (Ostrem et al., 2013; Lito et al., 2016; Janes et al., 2018;
Canon et al., 2019). This example stresses the need to 1) map cancer variants and 2)
understand their mechanisms. There are different kinds of cancer variants, and they can be
grouped based on the technologies used to identify them.

• Somatic mutation identified by sequencing studies: Somatic mutations are variants
found by comparing the tumor and non-tumor samples from the same patient,
including point mutations, copy number variants and structural variants. In this
review, we focus on the point mutations category. Most of the somatic mutations are
acquired. The Cancer Genome Atlas (TCGA) has mapped many coding somatic
mutations in cancer with whole exome sequencing, focusing on protein coding
regions of the genome (Weinstein et al., 2013; Bailey et al., 2018; Ding et al., 2018).
The KRAS G12C example mentioned above is one example of a coding somatic
mutation. Recently, the International Cancer Genome Consortium (ICGC) broadly
applied whole genome sequencing (WGS) to identify millions of somatic mutations in
non-coding regions, which span >95% of the human genome (ICGC/TCGA Pan-
Cancer Analysis of Whole Genomes Consortium, 2020; Rheinbay et al., 2020). In
addition, sequencing studies can also identify germline variants with cancer relevance
(Huang et al., 2018). Excellent online resources such as COSMIC, the cBio cancer
genome portal, and CNCDatabase now catalog these sequenced variants (Cerami
et al., 2012; Tate et al., 2019; Liu et al., 2021).
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• Single nucleotide polymorphisms (SNPs) identified by Genome-
wide association studies (GWAS): By comparing the allelic
frequency in large populations of patients and controls using
genotyping arrays, GWAS have identified many inherited
cancer-associated SNPs, including breast cancer, ovarian
cancer and prostate cancer (Turnbull et al., 2010;
Michailidou et al., 2013; Michailidou et al., 2015;
Michailidou et al., 2017; Milne et al., 2017; Zhang et al.,
2020). Like somatic mutations, many GWAS SNPs are also
enriched in non-coding parts of the genome (Corradin and
Scacheri, 2014). Public resources for cancer-relevant GWAS
SNPs include the GWAS Catalog and PLCO (Ruan et al., 2022;
Sollis et al., 2023).

Somatic variants and GWAS variants have different
implications for cancer development. First, GWAS variants are
associated with increased cancer risk while somatic variants can
drive cancer development. GWAS variants are derived from
comparing the blood samples from patient and control
populations, which are mostly inherited, but somatic mutations
compare the tumor and non-tumor samples from the same patient,
reflecting personalized acquired variation. Second, somatic

mutations precisely point to single base pair change of function
during cancer development while most GWAS variants indicate a
risk locus. Although somatic mutations are at single-base resolution,
the sample size is smaller than cancer GWAS studies, which makes it
difficult to distinguish passenger mutations and driver mutations.

While numerous cancer-associated variants have been identified
by different studies (Table 1), elucidating the role of the majority,
especially those in non-coding regions, remains a challenge. Unlike
coding variants with predictable effects on amino acids, non-coding
variants pose unique challenges. First, non-coding variants impact
diverse elements in the genome with unique functions. Thus, non-
coding variants can influence cancer development through different
mechanisms, for example by altering the activity of regulatory
elements, modifying gene splicing, and altering miRNA function
(described in the next section). Second, the number of non-coding
variants far surpasses that of coding variants (Figure 1 (ICGC/
TCGA Pan-Cancer Analysis of Whole Genomes Consortium,
2020)). Problematically, many non-coding variants could be
passengers rather than drivers. Functionally distinguishing the
two possibilities is of utmost importance and will require new
approaches for systematic functional analysis. Third, while many
non-coding variants influence disease by modifying the expression

TABLE 1 Public resources for cancer variants.

Coding somatic mutations Non-coding somatic mutations GWAS SNPs

TCGA (Bailey et al., 2018; Ding et al., 2018) PCAWG (ICGC/TCGA Pan-Cancer Analysis of Whole Genomes
Consortium, 2020; Rheinbay et al., 2020; Dentro et al., 2021)

GWAS Catalog (Sollis et al., 2023)

ICGC (Hudson et al., 2010; Zhang et al.,
2011; Zhang et al., 2019)

CNCDatabase (Liu et al., 2021) Prostate, Lung, Colorectal and Ovarian (PLCO)
Genetic Atlas project (Ruan et al., 2022)

cBio cancer genome portal (Cerami et al.,
2012; Gao et al., 2013)

All of Us Research Program (Ronquillo and Lester, 2022; All of Us
Research Program Genomics Investigators, 2024)

COSMIC (Tate et al., 2019)

FIGURE 1
Distribution of somatic variants in the genome (source: PCAWG) (ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium, 2020).
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of cancer genes, the assignment of variants to cancer genes may not
be straightforward. For example, non-coding variants often localize
to intergenic regions, which complicates efforts to understand how
they link to cancer-relevant genes, pathways, and phenotypes.
Addressing these challenges to a functional understanding of
non-coding variants will be important to personalized medicine
in cancer.

This review describes current challenges to non-coding variant
interpretation in cancer and introduces recent technological
innovations that will decode the non-coding landscape of
cancer genomes.

Diverse functions of non-coding
variants in cancer

Non-coding cancer variants can be found at broad classes of
regulatory elements including promoters, enhancers, and
microRNAs. This functional diversity presents complicates efforts
to understand their impact on cancer development.

Promoter activity alteration

Gene expression is regulated by promoters, which recruit
transcription factors and RNA polymerase to initiate
transcription. Promoter variants may alter transcription factor
binding sites to impact the rate of transcriptional initiation and/
or elongation (Perera et al., 2016). One notable example is the
telomerase reverse transcriptase (TERT) promoter, which is a
hotspot of mutation in multiple cancer types (Landa et al., 2013;
Vinagre et al., 2013; Borah et al., 2015). In melanoma, TERT
promoter mutations lead to increased transcription due to the
generation of new binding motifs for ETS transcription factors
(Horn et al., 2013). The mutant TERT promoter also harbors
epigenetic features of activity, including decreased DNA
methylation and increased enrichment of the histone
modification H3K4me3 (Stern et al., 2017). Another example is
the SNP309 variant located in theMDM2 promoter, which increases
the affinity of transcription activator SP1 (Bond et al., 2004). Since
MDM2 is a negative regulator of tumor suppressor p53, this variant
indirectly leads to a lower level of TP53, and is associated with
accelerated tumor formation. These examples highlight the impact
of promoter variants on cancer development.

Enhancer activity modification

Non-coding variants are especially enriched at transcriptional
enhancers (Corradin and Scacheri, 2014), which are promoter-distal
regulatory elements that serve as a platform to bind transcription
factors and activate gene expression from a distance (Schoenfelder
and Fraser, 2019). Since enhancer activity is exquisitely cell type and
tissue type specific (Heintzman et al., 2009; Visel et al., 2009), these
regulatory elements drive the diverse expression patterns of different
cell types. Genome-wide mapping of enhancers through chromatin
profiling have consistently illustrated the strong enrichment of
enhancers with GWAS variants across many disease contexts

including cancer (Visel et al., 2009; Creyghton et al., 2010; Rada-
Iglesias et al., 2011; Pradeepa et al., 2016). Several examples
underscore the important roles that enhancers play in cancer
development (Mansour et al., 2014; Morton et al., 2019; Huang
et al., 2021; Leeman-Neill et al., 2023). For example, a gain-of-
function non-coding variant in leukemia creates a newMYB binding
site, activating a new enhancer that induces the oncogene TAL1
(Mansour et al., 2014). As another example, the FOXC1 enhancer
regulates invasion in triple negative breast cancer cells (Huang et al.,
2021). Non-coding mutations convert this enhancer to target a
different gene (ZCCHC7), which contributes to cancer
development by rewiring protein synthesis (Leeman-Neill et al.,
2023). Finally, a more dramatic mechanism of enhancer
dysregulation in cancer is enhancer hijacking, where
chromosomal rearrangements cause enhancer-mediated activation
of oncogenes such as MYC (Xu et al., 2022). In summary, genetic
variants can alter enhancer activity or enhancer position, propelling
cancer development.

Transcript splicing alternation

Non-coding variants can also drive cancer through alternative
splicing. Abnormal splicing widely occurs in multiple cancer types
(Jung et al., 2015; Jayasinghe et al., 2018). For example, mutations of
BCL2L1 gene induce apoptotic resistance in breast cancer and
prostate cancer through up-regulating the anti-apoptotic form of
alternative splicing transcripts (Boise et al., 1993; Bauman et al.,
2010; Sveen et al., 2016). Another mechanism is that abnormal
splicing leads to intron retention of tumor suppressor genes such as
ARID1A, PTEN and TP53, which further inactive the function of
those tumor suppressor genes (Jung et al., 2015).

miRNAs dysfunction

Non-coding variants in miRNAs can also contribute to cancer
development. miRNAs fine tune gene expression post-
transcriptionally by binding to the 3′UTR of target mRNA with
complementary sequence, with impacts on translation inhibition or
transcript degradation (Lujambio and Lowe, 2012; Bartel, 2018).
Cancer associated variants can alter miRNA seed sequences or
miRNA binding sites on the 3′UTRs of target transcripts.
Systematic analysis has identified cancer mutations enriched in
specific miRNAs, which are strongly correlated to cancer gene
programs (Urbanek-Trzeciak et al., 2020). One example is hsa-
let-7d, which is implicated in breast cancer, ovarian cancer and
colorectal cancer (Jiang et al., 2018; Wei et al., 2018; Chen et al.,
2019; Urbanek-Trzeciak et al., 2020). hsa-let-7d post-
transcriptionally regulates multiple oncogenes and tumor
suppressors. In breast cancer, has-let-7d negatively regulates the
expression of Jab1, a proliferation pathway regulator. In ovarian
cancer, has-let-7d blocks the p53 signaling pathway
through HMGA1.

In summary, non-coding mutations affect cancer development
through several mechanisms. Linking non-coding variants to cancer
genes and pathways is a key step to understanding how they
contribute to cancer.
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FIGURE 2
Summary of biological links, and the technologies to understand the links. (A). Summary of technologies to understand the function of non-coding
variants/regulatory elements. (B). An overview of perturbations and readouts for high throughput technologies.
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High throughput approaches to
functionally annotate cancer variants

The abundance of non-coding mutations in cancer necessitates
advanced technologies for comprehensive functional studies
(Figure 1). Here, we summarize contemporary technologies for
the high-throughput analysis of non-coding variants, with a focus
on characterizing the impact of variants and regulatory elements,
particularly promoters and enhancers (Figure 2).

Assessing the impact of non-coding variants
on promoter/enhancer activity

Massive Parallel Reporter Assays (MPRA) can simultaneously
quantify the activities of millions of promoters and enhancers to
drive gene expression (Kircher et al., 2019; Shigaki et al., 2019; Choi
et al., 2020; Long et al., 2022). MPRAs are carried out by high
throughput cloning of synthetic elements (typically <300 bp)
together with transcribed genetic barcodes into a plasmid with a
reporter gene, followed by transduction into cells and RNA readout
of barcode expression. Importantly, since MPRAs compare the
activities of synthesized sequences, they are compatible with the
high throughput assessment of non-coding variants compared to
control sequences. Although the throughput of MPRAs can be
extremely high, one disadvantage is the lack of genomic context.
For example, one study applied MPRAs to several hundred
melanoma variants and verified multiple variants regulating
MX2 activity (Choi et al., 2020). Another study examined more
than 1,000 multiple myeloma variants and identified causal variants
at six loci (Ajore et al., 2022). Like MPRAs, STARR-seq also
quantifies the transcriptional activity of regulatory elements
through high throughput reporter assays, with the key difference
being that tested sequences are isolated using a biochemical assay
like ChIP-Seq or ATAC-Seq (Arnold et al., 2013; Hansen and
Hodges, 2022). One study used STARR-seq to systematically
identify hundreds of SNPs with the ability to regulate gene
expression and to verify that the rs11055880 SNP regulates
ATF7IP in breast cancer (Liu et al., 2017). Another recent study
applied STARR-seq to find that transposable elements have
functional enhancer activity in cancer (Karttunen et al., 2023).
The strength of MPRAs and STARR-Seq is the low cost to
functionally examine non-coding sequences, which enables large-
scale studies of enhancers, promoters, and their variants. However,
one key disadvantage is that MRPAs test sequences outside of their
native genomic context.

Chromatin accessibility quantitative trait loci (caQTL) studies
test the association of genetic variants and chromatin accessibility by
performing ATAC-Seq in a large cohort of genetically diverse
individuals (Tehranchi et al., 2019; Ajore et al., 2022; Wang
et al., 2022). By profiling the chromatin accessibility from cancer
patients, one can test if SNPs at promoters and enhancers are
associated with gain or loss of function. The approach can be
applied with somatic mutation as well. One study in bladder
cancer patients identified a somatic variant that generates new
binding sites for NKX2-8 with a dramatic increase in open
chromatin accessibility, which results in FGD4 upregulation and
low patient survival rate (Corces et al., 2018).

Assessing the impact of variants/non-coding
regulatory elements on gene expression

Non-coding variants that alter the activity of promoters and
enhancers (previous section) can lead to downstream changes in
gene expression and pathway activity to influence cancer
development (Bauer et al., 2013). For example, one study
documented a non-coding cancer variant that converts an
enhancer to target ZCCHC7, leading to protein synthesis rewiring
and cancer development (Leeman-Neill et al., 2023). In this section,
we discuss both computational and experimental approaches to
dissect the impact of variants or non-coding regulatory elements to
genes and pathways.

While non-coding variants are enriched within enhancers
(Corradin and Scacheri, 2014), a key unresolved question is: what
are the target genes of these enhancers? Several computational
approaches have been developed to address this question. One
approach uses three-dimensional chromatin confirmation
information, for example with genome-wide HiC data
(Lieberman-Aiden et al., 2009), to link enhancers to target genes.
One study used HiC to demonstrate that the chromatin structure of
the androgen receptor (AR) locus is altered in prostate cancer (Rhie
et al., 2019). HiC with single-cell resolution has also been developed
to identify cell type specific enhancer regulation (Zhang et al., 2022).
One computational approach, the ABC (Activity-by-contact) model,
predicts enhancer target genes across the genome as a function of
enhancer strength and the 3D chromatin contact frequency (Fulco
et al., 2019; Ying et al., 2023). One study demonstrated that an
enhancer with variant rs4810856 regulates PREX1, CSE1L and
STAU1 expression and activates p-AKT signaling in colorectal
cancer (Ying et al., 2023). A recent advance is the development
of ENCODE-rE2G, an improved algorithm for predicting enhancer
to gene activity with supervised machine learning (Gschwind et al.,
2023). However, despite these innovations, current computational
approaches are not perfect and are limited by available datasets. As
such, the prediction of enhancer targets remains an open problem.

Advances in genome engineering and genomics have catalyzed
the development of new approaches to evaluate the functions of
non-coding regulatory elements. CRISPR activation (CRISPRa) and
repression (CRISPRi) has been frequently employed as a robust tool
to modulate the activity of non-coding regulatory elements. One key
readout is how these regulatory perturbations impact the expression
of target genes and the activity of pathways, by profiling the
expression of specific genes, gene subsets, or whole
transcriptomes. Perturb-seq combines CRISPRa/i and single cell
RNA-seq to measure the impact of non-coding regulatory element
perturbation at high throughput (Adamson et al., 2016; Xie et al.,
2017; Xie et al., 2019; Gasperini et al., 2019). Perturb-seq has also
been applied in cancer cells to facilitate the construction of gene
regulatory networks (Dietlein et al., 2022; Ursu et al., 2022; Wang Y.
et al., 2023). By measuring whole transcriptomes, Perturb-Seq also
enables the exploration of secondary effects from enhancer
perturbation. These indirect linkages between disease associated
enhancers and disease genes may explain how genetic variants
that are far from disease-causing genes can influence complex
diseases (Boyle et al., 2017; Wang Y. et al., 2023). For example,
we have shown that variants associated enhancers regulate the cell
cycle pathway globally in breast cancer (Wang Y. et al., 2023).
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Another study demonstrates that enhancers within breast cancer
risk loci regulate cell proliferation (Tuano et al., 2023).

While Perturb-Seq is a powerful tool, one disadvantage is its
high cost. To address this issue, Targeted Perturb-seq (TAP-seq) has
been developed to specifically enrich and sequence a subset of genes
in Perturb-seq experiments (Schraivogel et al., 2020). This approach
reduces cost and increases the sensitivity to detect lowly expressed
genes. However, one disadvantage is that loss of transciptome-wide
readout precludes unbiased analyses, which could be addressed by
expanding the pool of enriched transcripts (Estilo et al., 2009). An
even more specific approach is CRISPRi-FlowFish, which perturbs
regulatory elements and uses FACS to sensitively measure changes
in gene expression (Arrigucci et al., 2017; Fulco et al., 2019). One
study identified five non-coding regulatory elements of XBP1 in
breast cancer cells, which are the hotspots of breast cancer mutations
(Dietlein et al., 2022). The sensitivity of FlowFish is high, which
enables the analysis of lowly expressed genes. In addition, this
method reduces the cost of sequencing. However, disadvantages
include being limited to analyzing a handful of genes at a time and
the need to optimize and validate the FISH probes used to detect
transcript expression.

Recent advances have enabled a new suite of tools to examine
non-coding functions at nucleotide resolution. Computationally,
eQTL analysis can infer the impact of variants on genes, and has
been widely used in the cancer setting (Li et al., 2013; Nica and
Dermitzakis, 2013; Gong et al., 2018). By correlating variant status
and nearby gene expression levels across a large cohort of patients,
eQTL analysis assigns non-coding variants to the genes likely being
misregulated. For example, ESR1, MYC and KLF4 have been linked
to three different risk loci in breast cancer with eQTL analysis (Li
et al., 2013). Experimentally, traditional reporter assays and higher
throughput MPRAs have been widely used to test the impact of non-
coding variants on the expression of a reporter gene in vitro
(Pomerantz et al., 2009; Long et al., 2010; Dietlein et al., 2022).
Finally, variant editing methods such as prime editing/base editing
combined with target gene measurement provide a means to
precisely quantify the effects of genetic variants in an endogenous
genomic context (Canver et al., 2015; Dixit et al., 2016; Martyn et al.,
2023). These methods directly edit the genome and measure gene
expression, offering a more accurate reflection of variant function.
By directly knocking-in disease variants, these experiments can give
more relevant insights on the impact of variants compared to
approaches like CRISPRa or CRISPRi. For example, correcting
TERT promoter mutation using base editing can inhibit the
cancer phenotype in vivo (Li et al., 2020). In parallel, new
developments in saturation genome editing are enabling the
functional characterization of all possible single-nucleotide
genetic variants of cancer genes such as BRCA1 (Findlay
et al., 2018).

Assessing the impact of variants/non-coding
regulatory elements on cellular phenotypes

Cancer cells exhibit multiple hallmarks, and studies have used
these features as cellular readouts to quantify the impact of variants
(Hanahan and Weinberg, 2000; Hanahan and Weinberg, 2011;
Hanahan, 2022). One study has shown that cellular morphology

correlates with cancer hallmarks such as metastasis, and
morphology can be a predictive marker of cancer cell state
(Alizadeh et al., 2020; Wu et al., 2020). There are several
methods to measure the morphological phenotype such as Cell
Painting and COSMOS (Bray et al., 2016; Salek et al., 2022). Both
methods can evaluate cellular morphology in a high-throughput and
high-content way. For example, high throughput Cell Painting
experiments are able to capture variant phenotypes in lung
cancer, and are highly correlated with transcriptional phenotypes
(Caicedo et al., 2022). Integrating perturbation and morphological
measurement could be a powerful tool to understand the variant
impact on cellular level (Way et al., 2021; Haghighi et al., 2022).

An alternative method for assessing cellular phenotype involves
a focus on biological phenomena, particularly cancer-associated
processes such as proliferation, migration, and apoptosis. For
example, traditional (bulk) CRISPR screens (Tsherniak et al.,
2017). Identify genetic perturbations that either increase or
decrease the proliferation of cancer cells. DepMap contains whole
genome CRISPR screens across a wide panel of diverse cancer cell
lines (Tsherniak et al., 2017). Extending this approach to individual
variants, PRIME uses prime editing to install variants into cancer
cells and then identify the variants that accelerate proliferation in a
cancer context (Ren et al., 2023).

Perspectives

The challenges and future prospects of
functionally characterizing enhancer
variants in cancer

Mapping the variant-gene-pathway-disease network is an active
area of current research. But several key challenges remain.

• First: effect size. Numerous studies confirm the limited impact
of one single cancer-associated variant (Park et al., 2010;
Freedman et al., 2011). The vast majority of variants
exhibit low penetrance, contributing to the “missing
heritability” problem. This phenomenon extends beyond
cancer to complex traits (Purcell et al., 2009; Yang et al., 2010).

• Second: population diversity. Large-scale efforts like whole
genome sequencing (WGS) and genome-wide association
studies (GWAS) to profile genetic variants have been biased
toward certain ancestral populations. Increasing cohort
diversity will expand the catalog of variants linked
with disease.

• Third: indirect regulation. Many studies have shown that non-
coding regulatory regions can regulate genes indirectly (Bauer
et al., 2013; Wang Y. et al., 2023). Variant-associated
regulatory regions may regulate cancer genes indirectly,
through non-obvious mechanisms. New studies using
Perturb-Seq and related approaches are needed to
comprehensively map these regulatory interactions.

• Fourth: the synergistic variant effects. Multiple non-coding
variants can synergistically act on the same gene, complicating
variant functional studies. Studies have shown that multiple
enhancers can synergistically co-regulate the same target gene
(Corradin et al., 2014). Since a single enhancer usually does
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not fully control a target gene’s expression, it is likely that
multiple variants across multiple enhancers are required to
alter expression, with each individual variant contributing a
mild effect. These attributes add to the difficulty of
functionally mapping variant effects. Addressing this
challenge requires simultaneous characterization of multiple
variants, which is extremely difficult due to the combinatorial
complexity of this analysis.

• Fifth: cell type specificity. A tumor is a heterogeneity entity.
Variants in non-cancerous cells like fibroblasts and immune
cells can also impact therapeutic outcomes by altering the
tumor microenvironment (Dhainaut et al., 2022). Thus, it is
also important to examine variant functions across cellular
contexts. Recognizing the intrinsic heterogeneity of tumors,
understanding cell-cell interactions within the tumor
microenvironment becomes pivotal. Importantly, current
studies have mainly studied variant functions in cancer cell
lines and mouse models. Future efforts will need to leverage
co-culture or 3D cancer organoid models consisting of
multiple cell types, which enhances the likelihood of
identifying hits in crucial cancer pathways such as
angiogenesis, migration, and immune response (Yuan et al.,
2022; Polak et al., 2024).

The omnigenic model posits that a disease or a trait is controlled
by a small number of ‘core genes’, and many ‘peripheral genes’
(Boyle et al., 2017; Wray et al., 2018). Core genes directly lead to
disease progression, such as tumor suppressors and oncogenes in
cancer. Peripheral genes influence core genes, and can include genes
like transcriptional regulators. Viewed in this way, variants integrate
into the omnigenic model by directly or indirectly influencing core
genes or peripheral genes. In this way, the omnigenic model can be
readily extended to cancer development. This complex variant-gene
regulatory network could possibly explain the small effect size of
most cancer variants.

Concluding remarks

Interpreting non-coding variants remains a significant problem
in cancer genetics. Powerful new technologies will facilitate the
systematic functional characterization of non-coding variants.
However, increases in experimental throughput alone will not be
sufficient to understand the function of all cancer variants across all
cell states. New computational approaches that learn from these

datasets to derive accurate predictions will also be an integral
component to a comprehensive understanding of how non-
coding variants contribute to cancer (but are outside the scope of
this review) (Ostroverkhova et al., 2023; Wang Z. et al., 2023).
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