
Making gene editing accessible in
resource limited environments:
recommendations to guide a
first-time user

Shivani Goolab1 and Janine Scholefield1,2,3*
1Bioengineering and Integrated Genomics Group, Future Production Chemicals Cluster, Council for
Scientific and Industrial Research, Pretoria, South Africa, 2Department of Human Biology, Faculty of
Health Sciences, University of Cape Town, Cape Town, South Africa, 3Division of Human Genetics,
Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa

The designer nuclease, CRISPR-Cas9 system has advanced the field of genome
engineering owing to its programmability and ease of use. The application of
these molecular scissors for genome engineering earned the developing
researchers the Nobel prize in Chemistry in the year 2020. At present, the
potential of this technology to improve global challenges continues to grow
exponentially. CRISPR-Cas9 shows promise in the recent advances made in the
Global North such as the FDA-approved gene therapy for the treatment of sickle
cell anaemia and β-thalassemia and the gene editing of porcine kidney for
xenotransplantation into humans affected by end-stage kidney failure. Limited
resources, low government investment with an allocation of 1% of gross domestic
production to research and development including a shortage of skilled
professionals and lack of knowledge may preclude the use of this
revolutionary technology in the Global South where the countries involved
have reduced science and technology budgets. Focusing on the practical
application of genome engineering, successful genetic manipulation is not
easily accomplishable and is influenced by the chromatin landscape of the
target locus, guide RNA selection, the experimental design including the
profiling of the gene edited cells, which impacts the overall outcome
achieved. Our assessment primarily delves into economical approaches of
performing efficient genome engineering to support the first-time user
restricted by limited resources with the aim of democratizing the use of the
technology across low- and middle-income countries. Here we provide a
comprehensive overview on existing experimental techniques, the significance
for target locus analysis and current pitfalls such as the underrepresentation of
global genetic diversity. Several perspectives of genome engineering approaches
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are outlined, which can be adopted in a resource limited setting to enable a higher
success rate of genome editing-based innovations in low- and middle-income
countries.
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genome engineering, genetic diversity, Africa, chromatin landscape

1 Introduction

Clustered regularly interspaced short palindromic repeat
sequences (CRISPR), was first discovered as an uncharacteristic
prokaryotic DNA repeat element then later identified as the bacterial
adaptive immune system and subsequently harnessed or repurposed
as a versatile reprogrammable gene-targeting platform (Ishino et al.,
1987; Jansen et al., 2002; Adli, 2018). The versatility of CRISPR-
based genome editing has enabled a myriad of genetic perturbations
in eukaryotic cells (Cong et al., 2013; Jinek et al., 2013; Mali et al.,
2013). This includes insertions and deletions (indels) to disrupt gene
function, precise base alterations and fragment deletion or insertion
to restore gene function (Sander and Joung, 2014). The Cas9-gRNA
complex inspects the genome for protospacer adjacent motif (PAM)
sequences within the targeted site, inducing conformational changes
of Cas9 to mediate a double stranded break (DSB) by the nuclease
domains of Cas9 (Jinek et al., 2013; Sternberg et al., 2014). It is the
double stranded break (DSB) that prompts the primary (commonly
known) endogenous repair pathways, non-homologous end joining
(NHEJ, Box 1), microhomology mediated end joining (MMEJ,
Box 1) and homology directed repair (HDR, Box 1), exploited by
CRISPR-Cas9 in single guide RNA (gRNA)-dependent manner to
mediate these perturbations (Jeggo, 1998; Jinek et al., 2012; Cho
et al., 2013; Mali et al., 2013; Hsu et al., 2014; Sander and Joung,
2014; Graham and Root, 2015). Compared to older generation
endonucleases such as TALENs, which require challenging
protein engineering at 3-6 fold greater cost per reaction (Gene-
Editing Could Modify and Cure Disease: CRISPR vs. TALENs, 2017),
the sequence specific base-pairing nature of the CRISPR gRNA lends
itself to be more flexible, simpler to use and multiplexable (Cong
et al., 2013; Jinek et al., 2013; Cox et al., 2015).

CRISPR-Cas9 genome engineering technology can address
global health challenges, for example, efforts aimed at eradicating
malaria and challenging the burden of HIV, which is realized in the
Global North. Barriers to adopting genome engineering studies in
the Global South include the low prioritization of resources and
research budgets for science and technology, the lack of accessibility
and affordability for these reagents including infrastructure
generated in the Global North, and the dearth of expertise in
utilizing this tool (UNESCO Institute for Statistics; OECD Main
S&T Indicators; DSI/HSRC 2019/20 R&D Survey Report). In a
2022 report on accelerating the access to genomics for global
health the WHO argued, “It is not justifiable ethically or
scientifically for less-resourced countries to gain access to such
(genomic) technologies long after rich countries do,” and this
statement holds truth in the field of gene editing (WHO, 2022).
An analysis of literature published globally on the topic of “CRISPR
gene editing” technology was summarized by Abkallo and colleagues
(2024). It is evident from these findings that high-income Countries

have the highest impact with a wide network of existing
collaborations, which is lacking but proliferating in low- and
middle-income countries (LMIC) and upper middle-income
countries (Gao et al., 2021). It is imperative for LMICs to gain
the same benefits acquired with the utility of this genome
engineering platform. This could be solved by collaborative
efforts both nationally and internationally, providing training,
more private and governmental funding and alignment with
existing genome engineering strategies used by the Global North
to create a more cost-effective approach. Whilst these key
recommendations to overcome the challenges for genome
editing-based innovations are discussed elsewhere, including
detailed regulatory and ethical issues (Caelers, 2023; Abkallo
et al., 2024), the purpose of this review is to highlight theoretical
and practical considerations aimed at reducing the cost of
performing efficient and precise genome engineering in vitro,
which can be easily implemented by a first-time user based in
any molecular biology laboratory with limited resources. The
considerations provided in this review are not aimed towards
improving the cost effectiveness of direct therapeutic applications
using CRISPR-Cas9 genome editing, as the financial resources
presiding over treatment development for gene therapy remains

Box 1 genome engineering terminology

HDR an endogenous, less efficient (activity is cell cycle restricted) repair
pathway mediated after DNA damage, DSB formation, in the presence of a
homologous repair template, thereby permit precise modifications to the target
sequence.

NHEJ an endogenous, more efficient (activity is unrestricted throughout
the cell cycle) yet error-prone repair performed after DSB formation, in the
absence of a homologous repair template that involves the ligation of DNA
ends perfectly or with indels.

MMEJ an endogenous, less efficient (activity is cell cycle restricted)
alternative to NHEJ repair that involves the ligation of DNA between
identical micro homologous sequences flanking the DSB site.

NMD is considered a translation dependent surveillance system, which
degrades aberrant transcripts containing PTC to prevent the synthesis of
truncated proteins.

Internal ribosome entry sites are secondary mRNA structures, which
recruit the ribosomal subunit to prompt translation initiation. These
elements can be inserted between multiple genes allowing for the co-
expression of multiple genes from a single mRNA transcript.

Self-cleaving peptides (18–20 amino acids in length) produce equivalent
ratios of multiple genes from the same mRNA by ribosome skipping.

Serine recombinases create genetic modifications as specific DNA sites and
recombination crossovers can occur between attachment, attP (acceptor) sites
which are landing pads, a prerequisite for integration at the target locus and the
attB (donor) sites residing in DNA cargo cassette to be inserted.

Cre-Lox recombination mediates the rearrangement of DNA by inversion,
excision and translocations, whereby Cre recombinase recognizes specifically
located and orientated loxP sites on DNA.
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challenging even for the Global North. Here, we discuss the necessity
of democratizing this genome engineering technology for LMICs as
a molecular tool for researchers limited by resources. In addition, we
take inventory of CRISPR-Cas9 based mutagenesis studies to
provide cost effective strategies that keep pace with the required
efficacy and precision if this cutting-edge technology is to realize its
potential within a resource limited setting.

2 Understanding and dissecting the
target locus

2.1 The need for genetic diversity to
empower bioinformatic tools for
representative research

The underrepresentation of genomic data from the African
continent has biased global studies, for example, by extrapolating
genetic risk from studied, European populations less relevance has
been provided to this population (Sirugo et al., 2019). The ‘homing
mechanism’ of Cas endonucleases is coordinated by the gRNA,
making it a core component that is easily optimised by in silico
algorithms at no cost. Existing computational algorithms for the
design of these CRISPR components including the gRNA, repair
template and primers make use of existing reference genome
sequences (e.g., GRCh38), which primarily represent the
European population and lack genetic diversity. This lack of
representation within these existing databases biases the outcome
of the gene edit generated in African cell lines, which are genetically
diverse and harbour unique or highly prevalent variants that are
absent in reference genomes (Canver et al., 2018; One pangenome to
bind them all, 2022; Misek et al., 2024). Reduced experimental
efficiency and greater cost is incurred when inaccurate gRNAs are
designed against a less inclusive reference genome sequence. This
results in low, or absent cleavage at the target locus and/or cleavage
at loci of high sequence similarity referred to as off-target sites,
which may lead to negative confounding effects and therefore would
require additional design and experimental analysis (Cancellieri
et al., 2023).

Mismatches in the gRNA sequence proximal to the PAM restrict
Cas9 endonuclease cleavage by greater than 2000-fold, achieving
20% cleavage activity in comparison to a gRNA sequence without
such mismatches to the target locus (Bravo et al., 2022). As an
example, a gRNA was predicted to mediate high editing efficiency,
using the existing GRCh38 sequence, at the target locus, CYP3A5 in
cells of African origin. The variant, rs4646450 G>A located within
CYP3A5 exists in 97% of the African population compared to 17%
prevalence in the European population. However, this variant
resides proximal to the PAM of a predicted gRNA and may
potentially ablate Cas9 cleavage in the cells of African origin.
This disadvantages studies involving targeted regions with
unknown/or rare variants. For this reason, it is imperative when
selecting optimally active CRISPR components for genome
engineering studies that the reference sequence used accurately
represents this genetic variation to achieve the required outcome
(Kwart et al., 2017; Canver et al., 2018).

Several publications have demonstrated the importance of
including genetic variation in genome editing design strategies

(Lessard et al., 2017; Cancellieri et al., 2023; Li et al., 2023; Misek
et al., 2024). Users can find relevant variant information from
accessible public databases such as gnoMAD. In addition, whilst
there is a dearth in extensive computational expertise required to
manipulate large variant datasets, computational tools for gRNA
design such as CRISPOR provides support for researchers to import
alternative sequencing datasets (by direct correspondence)
(Haeussler et al., 2016; Concordet and Haeussler, 2018).
Furthermore, a recently developed computational tool,
CRISPRme, predicts gRNA off-target sites by integrating human
genetic variant datasets (Cancellieri et al., 2023). However, as a
simple solution, one would always recommend sequencing the
region of interest from the cell type of intended modification,
which provides a baseline sequence with which to design
accurate and population relevant gRNAs.

2.2 Chromatin landscape impacts gene
editing efficiency and the balance of
repair pathways

Achieving enhanced editing efficiency comes at increased
reagent costs and time required to perform research (CRISPR
Benchmark survey HubSpot, 2020). However, this can reduce
time associated with the successful isolation of an edited clone.
This is most easily measured by assessing the level of edits in a global
population of cells prior to clonal expansion. If the global population
of editing is low (<10%), hundreds of clones must be screened to
identify multiple isogenic clones.

Therefore, understanding and dissecting the chromatin
landscape of the target locus is crucial to improving gene editing
efficiencies, as it dictates the “searching and binding” function of
Cas9-gRNA to the target site shown in Figure 1 (Wu et al., 2014;
Chari et al., 2015). Heterochromatin regions consist of tightly
packed DNA, which generally occludes access of Cas9 to the
target DNA, due to the constrained accessibility of the DNA to
Cas9 binding and cleavage, (left schematic, Figure 1) (Kallimasioti-
Pazi et al., 2018; Klemm et al., 2019; Schep et al., 2021).
Consequently, the outcome of CRISPR-Cas9 gene editing
efficiencies is dependent on the accessibility of the chromatin at
the specific loci targeted (Verhagen et al., 2022; Schep et al., 2024).
Accumulating evidence has shown the relative abundance of indels
generated by MMEJ (Figure 1, right schematic) or NHEJ (McVey
and Lee, 2008), with larger indel sizes attributed to MMEJ, is
modulated by the chromatin landscape, which influences the
indel profile of the targeted site (Chakrabarti et al., 2019). These
profiles are dictated by differences in both histone acetylation levels
and cell types (Schep et al., 2021; 2024). This can be mitigated by
decompacting heterochromatin at targeted loci with epigenetic
drugs (histone deacetylase inhibitors).

Chromatin remodelling compounds such as tubastatin A and
trichostain A have been employed to enhance editing efficiency
where chromatin state may be refractive to editing. HDAC
inhibitors regulate various cellular pathways; therefore, careful
evaluation is required in the use of these compounds. Tubastatin
A regulates several cellular processes, including activation of cell
cycle arrest and is considered a therapeutic for several diseases, such
as cancer, ischaemic stroke and Alzheimer’s disease (Falkenberg and

Frontiers in Genome Editing frontiersin.org03

Goolab and Scholefield 10.3389/fgeed.2024.1464531

https://www.frontiersin.org/journals/genome-editing
https://www.frontiersin.org
https://doi.org/10.3389/fgeed.2024.1464531


Johnstone, 2014; Fan et al., 2018; Ling et al., 2020; Shen et al., 2021).
In vitro models implicate this HDAC inhibitor as a regulator of
neurogenesis, altering the dominance of emerging neuronal and glial
cell types during differentiation (Iaconelli et al., 2017). Furthermore,

it was shown that the developmental potential of mouse embryos
was negatively impacted by tubastatin A treatment (Wang et al.,
2019). Exposure of trichostatin A to cells induces activation of
ataxia-telangiectasia mutated kinase, which acts on various DNA

FIGURE 1
The chromatin environment of the target locus impacts the performance of CRISPR-Cas9 to influence the outcome of the gene edit. (A) Schematic
of CRISPR-Cas9 mediated DSB cleavage of a target locus with accessible chromatin, under gRNA guidance. This elicits the endogenous repair pathways,
whereby a homologous sequence (sister chromatid), repair template could be precisely inserted via HDR. Alternatively, in the absence of a repair
template, deletions flankingmicrohomologous sequences in proximity to the DSB aremediated byMMEJ, and example of error-prone repair, which
may disrupt the coding region and incorporate a PTC. Aberrant transcripts escape the mRNA surveillance pathway, Nonsense-mediated decay (NMD) to
form truncated protein, whereas transcripts that meet the criteria for NMD are degraded leading to a gene knockout. (B)Chromatin immunoprecipitation
sequencing data sets, for example, of open chromatin associated histone marks at the target locus could be examined, at no cost to the user to ensure
optimal gRNA efficiency. Epigenetic drugs may improve CRISPR-Cas9 editing efficiency by chromatin decompaction (C) Examples of computational
gRNA design tool to nominate gRNAs, which will ensure gene knockout and to evaluate on-target and off-target sites by including genetically diverse
variants in the design. Created with BioRender.com.
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damage responses, including induction of cell cycle checkpoints,
DNA repair, and apoptosis (Maya et al., 2001; Bakkenist and Kastan,
2003; Lee, 2007). Although this compound activates global histone
acetylation and DNA methylation effects, its function represents
both locus specificity and site selectivity. Additionally, this inhibitor
indirectly triggers demethylation in nondividing cells, a function
considered specific to DNA methyltransferases inhibitors (Ou
et al., 2007).

Tubastatin A and trichostain A cost $218 and $652 for 5 mg,
respectively, these compounds may be beyond the financial limits of
researchers based in LMICs. However, the compounds are generally
used at low concentration (in the nM–uM, range) during chromatin
remodelling studies and can be stored long term; therefore, this may
be a prudent long-term investment. Tubastatin A was shown to
increase editing efficiency by 1.2-fold at 15 loci in retinal pigment
epithelial cells (Schep et al., 2024), while trichostatin A supported
Cas9 editing in HepG2s led to a 2-fold increase at four loci with
repressive chromatin environments but was not as effective at two
other loci that have higher H3K27ac levels (Chakrabarti et al., 2019).
Consequently, a decision to use chromatin modulators should
balance a) cost, b) efficacy at different target loci and cell types,
with c) potential detrimental downstream effects on global
transcription (Riesenberg and Maricic, 2018; Sandonà et al.,
2023). At present, a cost-effective approach would be to evaluate
the maps of euchromatin or heterochromatin features from available
genome wide Chromatin immunoprecipitation sequencing (ChIP-
seq) (Johnson et al., 2007) data, providing a genome-scale map of
DNA-protein interactions such as nucleosome positioning, histone
modifications, DNAmethylation and transcription factors. Profiling
DNA-protein interactions such as the H3K27ac, histone
modification can significantly improve the selection of an
“optimal” target loci for CRISPR-Cas9 gene editing, (Figure 1,
right schematic). Not all gRNA selection algorithms consider the
effect of the chromatin landscape on CRISPR-Cas9 performance
and gRNA binding, further restricting a first-time user. Yet, by
allocating sufficient time to the design aspect of the gene edit and
incorporating an assessment of the chromatin landscape to ensure
the target loci displays open chromatin status (Zhang et al., 2021),
these pitfalls can be navigated. These strategies underscore the
importance of pre-empting high costs and reduced efficiencies by
meticulous examination of the target loci. This involves dissecting
the chromatin status of the target, accounting for diverse genetic
variants and negating potential negative consequences, which may
arise post genome editing, thereby impacting the design of CRISPR
components.

2.3 Examples of harnessing bioinformatic
gRNA design tools for efficient editing

2.3.1 Widely used gRNA design tools
Existing gRNA selection algorithms factor Cas9 binding and

hence cleavage of closely matched target loci, high gene editing
efficiencies with reduced off-target effects (Fu et al., 2013; Hsu et al.,
2013; Doench et al., 2016). The target loci are screened to identify
PAM sites in the vicinity of the desired edited region. CRISPOR
provides scores on the specificity, efficiency, knockout and off-target
sites of several gRNA sequences based on several PAM sequences at

the target locus provided by the user. Additionally, primers
sequences for cloning the gRNA into widely used plasmids are
provided, along with primer sequences for clone screening and off-
target sites analysis, post gene modification (Haeussler et al., 2016;
Concordet and Haeussler, 2018). An alternate computational gRNA
design tool, CHOPCHOP, allows for the gene modification, such as
gene knockout and knockin as an input. Similarly, gRNA scores,
homology arm design for the repair template to generate gene
knockin and off-target sites are provided (Montague et al., 2014;
Labun et al., 2019). Comprehensive overviews of other available
gRNA design tools for gene editing have been reviewed elsewhere
(Liu et al., 2019; Alipanahi et al., 2023).

2.3.2 gRNA design to achieve gene knockout
In the absence of a precise repair template, the primary repair

mechanism, following a DSB, is error prone repair (e.g., MMEJ/
NHEJ), which is frequently exploited to create indels, leading to
frameshift inducing premature termination codons (PTCs). These
can potentially elicit nonsense-mediated decay (NMD, Box 1)
(Lykke-Andersen et al., 2000; Brogna and Wen, 2009), a
common strategy employed to generate gene knockouts,
Figure 1 (left schematic). However, Tuladhar and colleagues
(2019) showed that indels can induce internal ribosome entry
sites (IRES, Box 1), (Terenin et al., 2017). This differential
translation caused by the presence of indels produces alternative
mRNA transcripts or induce exon skipping producing aberrant,
truncated proteins which may escape NMD to exert a dominant
negative function (Green et al., 2003). This study developed a free-
to-use computational tool for gRNA selection to avoid these events
by providing a prediction of exon skipping at on-target and off-
target sites to select for PTC that elicit NMD for generating a true
gene knockout as shown in Figure 1 (right schematic) (Tuladhar
et al., 2019). The computational tool has been successfully used in
combination with the conventional gRNA design algorithms at
MIT, www.crispr.mit.edu (Ran, et al., 2013b) and the CHOP-
CHOP algorithm (http://chopchop.cbu.uib.no/) (Montague et al.,
2014) to select for optimal gRNA when creating gene knockouts
(Burckhardt et al., 2021; Seumen et al., 2021).

2.3.3 gRNA design for MMEJ-based gene
modifications

The MMEJ repair pathway is typically of use as an alternative
method to HDR, to mediate gene knockin termed Precise
Integration into Target Chromosome (PiTCH) system. Multiple
DSBs are induced to allow microhomologies to anneal and
incorporate the donor vector. Detailed vector cloning and design
strategies including donor vector construction, are described to
perform these modifications (Sakuma et al., 2016). Furthermore,
this repair pathway is commonly used to generate relevant deletion
mutations using paired gRNAs. The joining of microhomologous
sequences flanking DSBs is exploited to generate predictable and
precisely sized deletions (McVey and Lee, 2008). Deletion mutations
account for 25% of genetic variation, which may be flanked by
microhomologous sequences, making them amenable to MMEJ
based editing. The gRNA design tool, MHcut predicts targetable
microhomologies, which are used to create biologically relevant
deletion mutations for disease modelling and aid in drug screening
platform development (Grajcarek et al., 2019). Similarly, MMEJ-KO
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allows for the design of paired gRNAs to take advantage of MMEJ-
based genomic deletions (Xie et al., 2021).

2.3.4 Considerations for repair template design
The HDR repair mechanism mediates precise modifications,

such as incorporating a SNP. To enhance HDR efficiency, the DSB
generated by CRISPR-Cas9 must occur within 10 bp from the
modification to achieve homozygous mutations and within
5–25 bp from the DSB site to create heterozygous mutations
(Paquet et al., 2016). The number of correctly edited HDR reads
generated after targeting the PSEN1 locus, increased from 40%,
when the DSB was mediated 20 bp from the mutation, to >90%
when this distance (DSB tomutation) occurred within 5bp, in iPSCs.
A comparable improvement in HDR efficiency was observed at the
same locus in HEK293Ts, suggesting a general DSB to mutation
distance governs HDR efficiencies in these cells. Furthermore, to
prevent CRISPR-Cas9 from recutting the modified site and
generating NHEJ-mediated indels, silent mutations are
introduced in the designed repair template to mutate the PAM
recognition sequence or gRNA binding sequence. For example, the
PAM recognition site for SpCas9 can be altered from AGG to CGA,
as both code for arginine (Paquet et al., 2016; Kwart et al., 2017).
PAM blocking mutations improved HDR efficiencies at the
PSEN1 locus in HEK239T and iPSCs by 4-fold and 2-fold,
respectively, which suggests a dependency on cell type. This
improvement in the efficiencies increases the probability of
obtaining accurately modified cells, reducing the cost of reagents
required for both cell culture and validation of the gene
modification. Care must be taken in repair template design as the
non-canonical PAM sequences (NAG and NGA) can be recognized
by SpCas9 though less effectively, and must thus be avoided (Hsu
et al., 2013). In addition, the incorporation of silent mutations
within the repair template, which introduce restriction enzyme
recognition sites can expedite the selection of precisely edited
clones (Botstein et al., 1980; Chen et al., 2011; Jinek et al., 2012;
Ran, et al., 2013a, 2013b). CRISPRcruncher is an algorithm that
considers codon degeneracy to identify silent restriction enzyme
recognition sites, which are ideally introduced in proximity of the
precise mutation (Fay et al., 2021). CRISPR Knock-in Designer is
another web-based tool that requires information on the target site
of interest, gRNA sequence and gene ID as the input, to create a
repair template with optimized silent mutations for the target locus.
In addition, this computational tool provides primer sequences for
the screening of clones (Prykhozhij et al., 2021). These strategies
described for repair template design can be implemented at no cost
and will save significant experimental time and resources.

2.3.5 Off-target mitigation strategies by altering
gRNA sequence length and composition

Higher-fidelity Cas9 variants have been engineered to reduce
off-target effects, but this strategy does not completely eliminate the
unintended effects and furthermore result in reduced on-target
cleavage activity (Kleinstiver et al., 2016; Slaymaker et al., 2016;
Chen et al., 2017; Vakulskas et al., 2018). A cost-effective alternative
to reducing off-target effects and cytotoxicity caused by DSBs
involves the direct modification of the gRNA. GUARD RNAs are
14–16 bp with an intact PAM sequence. The GUARD RNA
sequence is positioned 12–25 bp downstream of the conventional

gRNA sequence, which binds with complete homology to off-target
loci, thus forming catalytically inactive complexes with
Cas9 rendering these genomic regions inaccessible for cleavage
(Dagdas et al., 2017; Coelho et al., 2020). CRISPR Guide RNA
Assisted Reduction of Damage (GUARD) Finder was developed
from this study as a free access online tool to increase specificity at
targeted loci (Coelho et al., 2020). Despite the ease in
implementation, this strategy poses drawbacks such as optimizing
the molar ratios of the conventional gRNA and GUARDRNA added
to target cells to ensure off-target binding by the GUARD RNA.
Another tunable system aimed at restraining CRISPR-Cas9 activity
was created by the insertion of cytosine stretches to the 5′-end of the
gRNA sequence to decrease off-target effects. This safeguard-gRNA
strategy reduced p53-mediated cytotoxicity in iPSCs. The addition
of shorter cytosine stretches is required to increase biallelic
modifications and longer stretches enhanced monoallelic editing
at the Cdh1 and VEGFA1 loci in mouse hepatoblast cells and human
adipose derived stem cells, respectively (Kawamata et al., 2023). The
strategies can be implemented to improve the safety of gene editing
but reduce on-target efficiencies.

2.3.6 Off-target analysis by integrating
genetic variation

The lack of equitable genetic representation and the negative
implications thereof on the efficiency of CRISPR-Cas9 technology
on has been discussed above (Canver et al., 2018; Misek et al., 2024).
Researchers are making concerted efforts to address this barrier, for
example, with the development of computational tool, CRISPRme,
which (Figure 1, right schematic) predicts potential off-target sites
by accounting for population-level genetic variants (Cancellieri et al.,
2023). Predesigned gRNA sequences, using CRISPOR (as an example)
are required as an input. This software was used to predict potential
off-target sites for the gRNA mediating the disruption of an
enhancer, which is a regulatory element that substantially
activates gene expression by establishing long interactions with
the promoter (Banerji et al., 1981). Targeting this B-cell
lymphoma/leukemia 11A (BCL11A) enhancer, reactivates fetal
hemoglobin expression and is a therapeutic strategy for patients
with sickle cell disease. The candidate off-target site, with
3 mismatches to this gRNA sequence, is produced by a SNP
common in one of twenty people of African ancestry and
introduces a PAM recognition site (Cancellieri et al., 2023). Prior
preclinical evaluation, using the reference genome, lacking in genetic
diversity, showed no off-target effect of the gRNA (Frangoul et al.,
2021). However, a 4% indel efficiency was generated at the
homologous gene in hematopoietic stem cells of a donor
heterozygous for the SNP. It should be noted that the data
generated using CRISPRme are not transferred or stored online,
thus respecting genomic privacy and settings and variants can be
reported by the user (Cancellieri et al., 2023). Despite efforts towards
optimising in silico gRNA design, several predicted gRNAs yield low
or absent activity at the targeted locus with a dependency on cell
type, thus reiterating the importance of experimental evaluation (Xu
et al., 2015; Haeussler et al., 2016; Chakrabarti et al., 2019). The use
of the described, next-generation software tools (Tuladhar et al.,
2019; Cancellieri et al., 2023) illustrates the importance of target
locus examination during preliminary design strategies to scrutinize
the target locus to achieve successful gene manipulation.
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3 Consideration for CRISPR-Cas9
delivery format

3.1 The cost implications and caveats of
CRISPR-Cas9 delivery modalities for in vitro
application

Transfection is a conventional method employed to deliver
molecular cargo into eukaryotic cells. Cas9-gRNA components
can be transfected using DNA (plasmid), mRNA or
ribonucleoprotein (RNP) formats. It should be noted that the
packaging of genes into vectors, in vitro transcription and
protein translation is not specific to CRISPR-Cas9 delivery.
However, the selection of the delivery format may be dictated by
the availability of resources allocated to perform genome
engineering. Table 1 guides a first-time user (attempting to
reduce reagent use and equipment costs) on selecting a CRISPR-
Cas9 gRNA delivery format that is centred on the cost effectiveness,
transfection efficiency, constraints, and advantages.

RNPs are commonly used since transcription and translation is
not required, and Cas protein can be administered with the gRNA
directly into the nucleus by nucleofection. Furthermore, reduced off-
target effects are incurred owing to the shorter lifetime of Cas
protein to accomplish “hit and run” gene editing (Kim et al.,
2014; Liang et al., 2015). However, the drawback of RNP delivery
is the high cost to purchase a single synthetic gRNA and Cas protein
or the labour and resources to purify Cas protein in-house.
Cas9 mRNA is synthesized by in vitro transcription and is
delivered to the cytoplasm (efficiently by electroporation) for
translation (RNP formation) and nuclear uptake (Glass et al.,
2018). These formats (mRNA and ribonucleoprotein) incur low
to moderate off-target effects (Yang et al., 2013a; Kim et al., 2014;
Liang et al., 2015; Zuris et al., 2015) but are generally more costly
(Figure 2A). Cost-effective CRISPR-Cas9 delivery, including
theoretical and practical solutions are provided in Figure 2.

Dual expression plasmids encoding Cas9 and gRNA are the
most widely used since this was the first format introduced for
mammalian gene editing (Ran, et al., 2013b). This method is stable,
easily constructed through simple, well established cloning protocols
making it the affordable alternative to produce on a low budget
compared to the alternatives, specifically when multiple genes are
targeted. However, developing the plasmid cloning strategy, primer
design followed by the cloning procedure, bacteria transformation,
plasmid purification and sequencing requires sufficient time and
resources. Commercially available bacteria competent cells cost
approximately $10 per reaction, as an cost-effective strategy,
chemically- and electro-competent cells can be generated in-
house using existing protocols (Sambrook and Green, 2012;
Green and Sambrook, 2021). Low-funded research but
resourceful labs have minimized costs associated with cloning
plasmids by developing homemade plasmid miniprep solutions,
including in-house RNase A overexpressed from a bacterial
system, which are the core components generally supplied in
commercial silica based columns kits. This homemade kit yielded
comparable purity compared to a commercial kit. Additionally, the
molecular marker (DNA ladder) for performing gel electrophoresis
was developed by the amplification of the purified plasmid DNA
using seven primer pairs producing PCR products ranging from
100 to 1500 bp (Elnagar et al., 2022). These implementable strategies
can release financial resources for essential reagents that are
more expensive.

The RNP and mRNA formats supplied in quantities of 10 nmol
synthetic gRNA combined with either 250 µg of Cas 9 protein or
25 µg Cas9 mRNA costs approximately twice as much compared to
dual expression plasmid DNA. Every locus targeted requires the
synthesis of a custom gRNA and therefore, in our experience it is
more costly to purchase synthetic gRNAs coupled with the RNP and
mRNA formats compared to annealing gRNAs purchased from an
oligo synthesis provider. However, the former will reduce the time
required for plasmid cloning and purification to ensure high

TABLE 1 Selecting a format for CRISPR-Cas9-gRNA delivery.

SpCas9 Plasmid (excluding viral
vectors)

mRNA RNP Companies and
References

Cost Low, varying from $150-$ 350 with
unlimited use of purchased plasmid

Moderate, varying from $400-
$1000 with limited use of purchased
reagents

High, varying from $500-$1400 with
limited use of purchased reagents

Sigma-Aldrich
Addgene
ThermoFischer Scientific
Integrated DNA technologies

Efficiency Prone to off-target effects (long term
Cas expression)

Low- moderate off-target effects
(long term Cas expression)

Minimal off-target effects (short
term Cas expression)

(Kim et al., 2014; Liang et al., 2015;
Zuris et al., 2015)

Stable Poor stability, prone to degradation Prone to degradation (Kim et al., 2014; Liang et al., 2015)

Prolonged activity Transient intermediate activity Transient, rapid activity (Kim et al., 2014; Liang et al., 2015)

Easily multiplexed Multiplexable Multiplexable (Cong et al., 2013; Esvelt et al., 2013;
Kurata et al., 2018; McCarty et al.,
2020; Verhagen et al., 2022)

Labor-molecular cloning (transfection
with low endotoxin purified
plasmid DNA)

No labor for production
(commercial products)

No labor for production
(commercial products)

(Butash et al., 2000; Addgene: CRISPR
References and Information, 2023)

Cytotoxic (foreign DNA) Low cytotoxicity Low cytotoxicity (Sun et al., 2013; Kim et al., 2014;
Hendel et al., 2015)

Approximate cost of reagents in July 2024 with a dollar to ZAR, exchange rate of 18.19.

Disadvantageous Average Advantageous.
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FIGURE 2
A comparative overview of common CRISPR-Cas9 delivery formats for mammalian cell transfection and enrichment strategies aimed at improving
gene editing efficiency with a cost comparison of these strategies. (A) Schematic of electroporation and lipid-based import of CRISPR-Cas9 delivered as
RNP, plasmid DNA or mRNA into the cell. The cost effectiveness of these methods is compared to assist a first-time user with constrained resources. Of
importance is the half-life of Cas9, which will impact the gene editing outcome (yellow box). (B) A GFP (FACS), surface marker (MAGECS) and/or
antibiotic resistance gene could be used to facilitate the selection of gene edited cells. (C) The cost effectiveness including less laborious factors the
choice of enrichment strategy selected to enhance efficiencies of obtaining correctly edited clones. Created with BioRender.com.
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quantity and quality (presence of low endotoxin) Cas9-gRNA
expressing plasmids are produced, as described in Table 1 and
Figure 2. Higher Cas9 longevity is achieved using the plasmid
format compared to RNP, which limits Cas9 exposure
(Figure 2A, yellow box). This poses a caveat for the first-time
user selecting an affordable delivery format, as the delivery
format impacts the outcome and efficiency of precise gene edits
(Richardson et al., 2016; Kosicki et al., 2017; Brinkman et al., 2018a).
Consequently, the disadvantage of the most cost-effective plasmid
format is an increased risk of off-target effects, as expression is
detected 72 h post transfections, which prolongs Cas9 activity at the
DSB site (Kim et al., 2014; Hendel et al., 2015; Bloomer et al., 2022).
This increases the adverse off-target effects, deleterious on-target
genomic deletions, p53 mediated cytotoxicity and cell cycle arrest
(Merkle et al., 2017; Haapaniemi et al., 2018; Ihry et al., 2018; Kosicki
et al., 2018). Several studies have thus focused on regulating
Cas9 activity for safer editing, yet the on-target efficiency is
generally compromised (Kawamata et al., 2023).

Reduced gene editing efficiencies obtained in a cell population
can be mitigated by enriching for cells that have incorporated the
desired edit by co-expression of fluorescent tags (e.g., GFP) or
antibiotic (e.g., puromycin) resistance genes. This indirectly
improves the efficiency by increasing the frequency of selecting
an edited cell whilst significantly reducing the labour cost and time
involved for clonal expansion (Ran, et al., 2013b; Steyer et al., 2018).
While chemical transfection (including lipofection and calcium
phosphate transfection) and electroporation are standard
methods employed for the delivery of components into a cell, in
a resource limited environment the cost is restrictive (Figure 2A).
Calcium phosphate co-precipitation mediates endocytic uptake of
DNA, which is inexpensive, requiring only calcium chloride solution
and HEPES-buffered saline supplemented with sodium phosphate.
This method is simple to perform, requires no specialized
equipment and the chemical components are easily resourced
(Karra and Dahm, 2010; Kwon and Firestein, 2013). Lipid based
transfection is less cytotoxic owing to the endocytic uptake of Cas-
gRNA complex making it more economical with an approximate
cost of $0.5 per transfection performed, but a drawback of this
method is reduced editing efficiencies, influenced by cell type
incompatibility (Cong et al., 2013; Zuris et al., 2015; Wei et al.,
2020). Electroporator permit efficient transfection of cells (HSCs,
T-cells), which are less amenable to transfection (Kim et al., 2014;
Stadtmauer et al., 2020; Verhagen et al., 2022). However, the
disadvantages include high post-transfection mortality and higher
expenses varying from $13 000 to $30 000 for equipment,
consumables and reagents (Yip, 2020), a challenging feat for a
research group with a constrained research budget.
Electroporation buffers developed and optimized in-house and
the ability to regenerate electroporation tips, provide cost-
effective strategies to allow the adoption of this equipment for
researchers in LMICs (Chicaybam et al., 2013; Brees and
Fransen, 2014). This has been shown through the electroporation
of Cas9-gRNA plasmid in peripheral blood mononuclear cells and
HEK293FT cells using an in-house developed glucose-based buffer
mediated the disruption of the gene encoding inhibitory receptor
PD-1 (Chicaybam et al., 2017). Despite chemical transfection, for
example, lipofection achieving low to moderate efficiencies for
difficult to transfect cells such as stem cells and cardiomyocytes

derived from induced pluripotent stem cells (iPSCs) (Giacalone
et al., 2018; Tan et al., 2019; Roig-Merino et al., 2022), its
affordability makes it a common choice in resource limited settings.

3.2 The enrichment of precise gene edited
clones: methods of selection

Clonal selection is required to increase the frequency (accuracy
and quantity) of obtaining precisely edited cells from a population
consisting of edited and unedited cells, examples of the enrichment
of gene edited cells (Figure 2B). This crucial process of improving
the editing efficiency is performed either by supplementing cultures
with antibiotics, sorting via fluorescence activated cell sorting
(FACS) or magnetic bead separation, (Figure 2C). Co-expression
of selection markers such as GFP or antibiotic resistant genes
significantly enhances clonal selection. This can be accomplished
by using plasmids with selectionmarkers tagged via an IRES element
or a self-cleaving 2A peptide (Box 1) to ensure the same cells
expressing the genome engineering components express the
selection marker, which is particularly useful in cells refractive to
transfection. GFP expressing cells can be selected via FACs or
microscopy, whilst antibiotic selection effectively eliminates cells
that have not been transfected (Ibrahimi et al., 2009). The
enrichment of individual clonal cell lines with the incorporated
genetic modification is advantageous, as this will reduce the
resources required to validate genetically edited clones, which
generally involves the laborious process of screening over
hundreds of clones per edit in the absence of an enrichment
method (reviewed extensively by Mikkelsen and Bak, 2023).

Limitations to be considered when selecting an enrichment
method include sorting efficacy, time, labour and cost
(Ramachandran et al., 2021). Antibiotic selection (Figures 2B, C,
right column) is considered a cost-effective strategy for screening
iPSC edited cells without the requirement of expensive cell sorting
instruments (Yadav and Thelma, 2022). FACS (Figures 2B, C, left
column) implements automated single, live cell collection based on
the expression of a fluorescent reporter system, which is costly and
causes significant cell stress (Kim et al., 2014). Yet, it is this
automation of cell sorting by FACS that would generally be
favoured over manually selecting edited clones from a population
in instances where a large number, for example, 384 clones are
required to be screened (Caillaud et al., 2022). However, to bypass
this technique in the absence of the skills and costly infrastructure, Li
et al. performed limited dilutions to implement a multiplex prime
editing strategy to allow for single cell clonal expansion and
screening (Li et al., 2022).

A standard FACS instrument without reagents (primary or
secondary antibodies) costs approximately $185 000 and the
operation of such an instrument requires specialized training.
The combined analysis, generating qualitative and quantitative
data with the ability to enrich for cell populations by this
powerful technique is advantageous, yet for the purpose of
selection there are more cost-effective strategies available.
Magnetic-activated genome edited cells sorting (MAGECS,
Figures 2B, C, center column) is an efficacious cost-effective
technique to enrich for edited cells engineered with a surface
marker such as CD19. In this study, a SpCas9- CD19 co-
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expression plasmid was delivered by lipofection into HEK293T and
iPSCs achieving a 4-fold and 3-fold improvement in reporter
efficiency post MAGECS compared to cells pre-sorting as
evaluated by immunofluorescence microscopy (Ramachandran
et al., 2021). Unlike antibiotic selection and FACS, experimental
optimization that traditionally require laborious ‘kill curves’ and
specified instrument parameters for FACs, respectively, are not
necessary for enrichment with MAGECS (Ramachandran et al.,
2021). Multiplexing with several surface markers and the reusability
would be a key consideration for future development of the
MAGECS technology. With the sole purpose of enriching for
edited clonal lines, antibiotic enrichment may be the most
economical solution for the first-time user with limited research
funding followed by MAGECS, which was found to cost twice in
comparison.

Newer bioengineering technologies, which are derived from the
CRISPR-Cas9 system have improved precise editing by creating
large template knockins (1–100 kb) and reduce genotoxicity without
invoking the endogenous cellular repair pathways arising from
DSBs. However, reduced integration efficiencies obtained in
iPSCs with the use of these technologies have been mitigated by
enrichment methods imparted by the expression of antibiotic
resistance genes or fluorescent protein encoding genes (Blanch-
Asensio et al., 2022; Wang et al., 2022; Lampe et al., 2023; Yarnall
et al., 2023). Blanch-Asensio and colleagues devised a
multiparameter reporter (̃14 kb in length) and multiplexed
genetic variants (a 50 kb DNA sequence for twelve variants
associated with cardiac arrhythmic disorder) in iPSC lines using
antibiotic enrichment to improve integration efficiencies (of the
integrase landing pads) from 2.0% to > 99.4% post enrichment
(Blanch-Asensio et al., 2022; 2023). This integration of large
payloads can be achieved by site-specific integrases (Box 1),
applied to mammalian cells a decade prior to CRISPR
technologies (Groth et al., 2000). Compared to the conventional
means of gene insertion that is reliant on HDR after DSBs, the
efficiency of integration decreases with an increase in repair
template size. These integrases function independent of the
endogenous repair pathways and DSBs to integrate large
payloads (Byrne et al., 2015). In this study, recombination is
mediated between attachment, attP sites, which are pre-installed
using CRISPR-Cas9 at the target locus and the attB sites residing in
DNA cargo cassette (Thorpe and Smith, 1998; Blanch-Asensio et al.,
2022). In conjunction with this selection, iPSCs were clonally
isolated using FACS instrumentation using co-expression of
mCherry and zeocin in the reporter iPSC lines generated. Near
scarless genomic integration was achieved bar the incorporation of
loxP sites, which is required for Cre-Lox (Box 1) mediated
recombination to excise the genes expressing the selection
markers post enrichment (Sternberg and Hamilton, 1981; Davis
et al., 2008; Brandão et al., 2022). The drawback of the lengthy
molecular cloning process orchestrated to generate the plasmids in
this study, is however compensated for by an improvement in
integration efficiency achieved, which is a challenge when using
recombinase technologies (Fichter et al., 2023). Another study
demonstrated the enrichment of cells that have undergone HDR
by developing a split puromycin reporter system engineered with a
cloning site lodged between a prematurely terminated 5′ puromycin
coding sequence and the full-length coding sequence (Flemr and

Bühler, 2015). Similar to this split puromycin system, precise
integration of the repair template corrected the reading frame of
the selection marker to promote zeocin resistance gene expression in
correctly integrated iPSCs (Blanch-Asensio et al., 2022). These
studies emphasize the benefit of improving genome engineering
efficiency particularly in a resource constrained setting to reduce
both expense and time required to obtain clonal edited lines.

4 Cost constrained profiling of a
genome engineered cell population

Amyriad of simplified techniques can be applied to evaluate the
effects of CRISPR-Cas9 mutagenesis at targeted loci. In aligning with
the focus of this review, indel detectionmethods, which are both cost
constrained and easily implementable are provided here. In depth
insights that surveys the available methodologies for precise indel
detection have been reviewed elsewhere (Sentmanat et al., 2018;
Bennett et al., 2020). Semiquantitative validation by PCR allows for
the detection of large deletions generated by multiple gRNA
excision, mismatch heteroduplex cleavage (Mashal et al., 1995;
Oleykowski et al., 1998) and restriction fragment length
polymorphisms is used to assess for the absence or presence of
restriction enzyme site incorporation subsequent to precise repair
(Botstein et al., 1980). These methods are generally coupled with
sequencing technologies varying from less costly, Sanger sequencing
to more costly, NGS. However, only a select number of research labs
have the required expertise and resources to accomplish the more
costly yet sensitive, deep coverage sequencing used for identifying
rare editing events. Table 2 summarizes these cost-effective
strategies, outlining the purpose, sample input required, ease of
use, cost, limitations, and the process to be followed for clone
profiling (if deemed necessary).

4.1 Cost constrained pre-screening of the
targeted locus by heteroduplex analysis

Figure 3 depicts the experimental workflow from transfection to
clonal expansion (Figure 3A), the profiling of clones (Figure 3B) and
end point identification by sequencing (Figure 3C). The seminal
publications introducing CRISPR-Cas9 genome engineering probed
for minor indels in the targeted loci resulting from the error prone
repair of DSBs made use of the Surveyor nuclease assay, whereby Cel
I endonuclease cleaves mismatched DNA (Cong et al., 2013; Jinek
et al., 2013; Hsu, et al., 2013b). Similarly, high performance gRNAs
have been traditionally selected by using these mismatch cleavage
assays (Vouillot et al., 2015). The mismatch cleavage assays
(Figure 3B) are reliant on the cleavage of heteroduplexed PCR
products formed by the rehybridization of WT-mutant sequences
and un-cleaved homoduplex PCR products, which are produced by
the rehybridization of WT-WT or mutant-mutant sequences)
visualised with gel electrophoresis. The assay is subject to bias, as
densitometry of band intensities (using gel electrophoresis) is
estimated by imaging software to provide editing frequency. T7EI
demonstrates higher sensitivity in the detection of deletion products,
whereas Cel I outperforms in single nucleotide change detection
(Mashal et al., 1995; Qiu et al., 2004; Vouillot et al., 2015).
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TABLE 2 Cost constrained, implementable functional assays for evaluation of a genome engineered population.

Assay Genetic
modification

Sample
input

Time and
throughput
ease, speed
and suitability
of a technique
for profiling

Simple to
more
laborious

Cost Reliability
and
limitation

Precision Next step
required

Multiple
excision

Deletion products for
KO generation

PCR amplified
samples assessed
by gel
electrophoresis

Medium throughput
and rapid method

Simple Low Reliable for multiple
gRNA excision to
pre-screen deletion
mutants
Monoallelic
deletions are
indistinguishable

All products
amplified by PCR

Bacterial
cloning and
Sanger
sequencing of
dominant
mutations to
identify
monoallelic and
biallelic
modifications

Cel I On-target editing and
estimates indel
efficiencies

gDNA (1x
confluent 96-well)
PCR purified,
Denatured +
reannealed

Low throughput and
labor-intensive
4 h (Cleaving
heteroduplex and
separation by PAGE)

More laborious Low, if crude
Cel I from
celery extract
is prepared

Limit of detection of
3% Requires spike
treatment to ensure
efficient cleaving of
heteroduplexes
using crude Cel I
extract

-Semi-
quantitative
-Identifies
transition and
transversion
mutations
-Cannot
distinguish
homozygous WT
or homozygous
mutant
-Cannot resolve
monoallelic and
biallelic
modifications
-False positives
arising from
endogenous SNPs

As above

T7EI On-target editing and
estimates indel
efficiencies

gDNA (1x
confluent 96-well)
PCR purified,
Denatured +
reannealed

Low throughput and
labor-intensive
4 h (Cleaving
heteroduplex and
separation by PAGE)

More laborious Medium Detection limit
at 1%

As above
Specifically
identifies indels
mutations

As above

RFLP
RFLP cont

On-target editing and
estimated HDR
efficiency OR On-
target, loss of RE site

gDNA (1x
confluent 96-well)
PCR purified

Low throughput and
labor-intensive
4 h (Cleaving and
separation by gel
electrophoresis)

More laborious Medium Higher
concentrations of
restriction enzyme
required to induce
sufficient cleavage
thereby avoiding
false negative results
Restriction enzyme
site within repair
template to be
installed within
10 bp of DSB to be
effective or Indel
must destroy RE site

-Presence or
absence precisely
defined
-Recognizes the
WT from mutant
and monoallelic
mutants

As above

Sanger
sequencing

On-target from 1bp
indels

As above High-throughput and
labor-intensive.
Ensure forward or
reverse primers is
situated >50 bp
from DSB

More laborious High, all
(unedited/
edit)
sequenced
increasing
cost

-Access to
sequencing facility
-Requires a
homogenous cell
population that
have been expanded
clonally to
distinguish
monoallelic events
-Potentially not
sensitive to detect
rare/less frequent
mutations

-Limit of
detection for large
insertions (>1 kb)
or small deletions
present in low
abundance are
undetected
-First 50 bp of
read can be
unresolved,
biasing trace peak
analysis
-Bacterial cloning
required for
allelic analysis in
a mixed
population

Data analysis
requires
experience.
TOPO cloning
of mixed
population
followed by
additional
sequencing

(Mashal et al., 1995; Qiu et al., 2004; Huang et al., 2012; Yang et al., 2013b; Brinkman et al., 2014; Paquet et al., 2016; Brinkman et al., 2018b).
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Owing to the ease and cost effectiveness (<$5 for 1 kg of celery),
methods (homogenized extract prepared with a juice extractor) of
isolating Cel I from kilogram quantities of celery, crude Cel I extracts
are effective for distinguishing unedited and edited clones that are
isolated from a genome engineered population (Oleykowski et al.,
1998; Yang et al., 2000). T7EI is recombinantly produced using the
heterologous expression host, Escherichia coli with several methods
aimed to improve yields and negate the resultant toxicity (of
expression system) and is therefore, considered costly at $250
(1.25 mL of which 1 µL is generally used to digest <100 ng
DNA) for high throughput screening of clones (Hadden et al.,
2001). This pre-screening approach allows a researcher to screen
a multitude of clones in a cost-effective manner. A cost comparison
of Cel I extract produced in the lab and commercially purchased
T7EI is shown in Figure 2B. For example, ten clones are sequenced
from an initial fifty clones, thereby justifying the need for fewer
Sanger sequencing reactions and hence lower cost to identify the
precise nucleotide sequence and indel size (Figure 2C).

4.2 Cost-constrained assessment of pre-
screened edited clones by sequencing and
computational tools

Sanger sequencing is the gold standard for profiling a gene
edited clone (Figure 2C) yet remains costly owing to the labour
intensity of sample preparation, requirement for reagents,
sequencing equipment and is therefore outsourced to core
facilities. This method achieves <1 kb fragment read lengths at a
cost of approximately $10 sequencing in forward and reverse
directions and $15 for primer pair synthesis that is sourced from
local sequencing facilities based in South Africa. In comparison to
international genomic services rates this costs 10x more ($1 per kb)
(The Race for the $1,000 Genome | Psomagen, 2015) as an example in
South Africa. An ambitious research budget and resources would be
required for deep sequencing technologies that are aimed at routine
indel detection for institutions based in LMICs. Furthermore,
Kingsmore and colleagues estimated the cost of NGS for an
LMIC to be $23 per individual genome over a decade ago and
this would decline by 10-fold every 18 months (Kingsmore et al.,
2012). However, this reduction in Sanger sequencing let alone NGS
sequencing costs has not been realised for LMIC countries.

Sequencing data representative of an edited population can be
evaluated using several freely accessible, web applications (TIDE,
CRISP-ID, TIDER, DECODR and ICE) that deconvolute Sanger
trace reads to establish an alignment window between the isogenic
control, reference unedited sample and the mutated edited sample
(Figure 2C). The reference sequence and themutated edited sequences
are obtained from expanded clones from the user’s global edited
population to provide a reliable assessment of editing outcomes. These
online tools require gRNA sequence input and report the identity of
indels and frequencies in genome engineered populations with some
reporting on precise editing generated byHDR (Brinkman et al., 2014;
Dehairs et al., 2016; Brinkman et al., 2018b; Bloh et al., 2021; Conant
et al., 2022). These web applications provide rapid and efficient insight
into the mutation spectrum of a cell population at no cost and can be
beneficial to implement for all investigators performing gene
editing research.

5 Discussion

The insights we have attempted to convey here are aimed
towards first-time users with limited available resources and
research funding. This is contextualized by the commonly
followed workflow to undertake genome engineering research,
which involves scrutinizing the target loci and implementing
essential controls (transfection control, gRNA controls, etc.). We
have attempted to outline how to implement CRISPR technology in
a limited R&D funding environment, that in our experience, might
be helpful to those with capability but limited resources.

The reasons for low editing efficiency could potentially be the
result of an occluded chromatin landscape, or the crucial nature of
the targeted gene, in cell survival (Gluecksohn-Waelsch, 1963; Hart
et al., 2014; Shalem et al., 2014; Wang et al., 2014). Databases such as
the UCSC genome browser, http://genome.ucsc.edu (Kent et al.,
2002) provide valuable information on the gene transcript by
considering gene expression levels in the assigned cell type (e.g.,
genotype-tissue expression, GTEx (Lonsdale et al., 2013)). In
addition, low gene expression levels as a consequence of an
occluded chromatin could also be conclusively validated by
qPCR. Similarly, the change in protein production levels
measured by Western blot may provide a functional readout of
the genetic modification engineered, for example, a gene knockout.
The current experimental workflow remains a constant, published
about a decade ago (Ran, et al., 2013b). These can be structured into
3 categories, firstly free-to-use, in silico evaluation for the design of
CRISPR components (Figure 1), secondly the optimization of
transfection and enrichment of edited clones (Figure 2) and lastly
the validation of the edit (Figure 3). The first category involves
meticulous, preliminary analysis of the target loci, followed by
selecting the delivery format, gRNA design including the repair
template for HDR dependent gene/SNP correction, and gene editing
assay development, which requires primer design, restriction
enzyme selection for screening of edited clones. The second
category necessitates the optimization of transfection and
selection by transient expression of an antibiotic resistance gene.
Transfection efficiency dictates whether the CRISPR components
are delivered into the cell, and this is visualized by a fluorescent tag
subsequently followed by the selection of high-performance gRNAs.
An equilibrium between cytotoxicity caused by the transfection of
CRISPR components and antibiotic treatment is then achieved to
obtain the desired genome engineered cell line. The last category is
the evaluation of the gene editing outcome by mismatch cleavage
assays and sequencing of the targeted locus and providing a
definitive readout (validation) of the bioengineered phenotype,
using proteomics, metabolomics.

The recommendations provided are for performing CRISPR-
Cas9 genome engineering in vitro. Established cell lines, particularly
iPSCs may acquire genetic changes over prolonged cell culture
periods, which may, for example, confer altered growth rates that
are repeatedly caused by mutations in the TP53 gene (Merkle et al.,
2017). In addition, the p53-mediated DNA damage response
mediated by CRISPR-Cas9 DSBs triggers tumorigenic potential to
modified lines, and numerous researchers recommend the
evaluation of functional p53 prior and subsequent to gene editing
(Ihry et al., 2018). A p53 reporter assay was developed to assure the
integrity of the p53 pathway in the established iPSC reference lines
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to be utilized for future research endeavors (Pantazis et al., 2022).
Aside from the off-target effects, another concern is the deleterious
on-target editing events that are frequently overlooked by
conventional locus sequencing that negatively impact the study
reliability (Weisheit et al., 2020). “DSB-free” renditions of
CRISPR-Cas9 are promising to negate the challenges observed,
however recent studies have uncovered genotoxic effects,
observing DSBs with deletions and translocations mediated by
base editing and prime editing although at lower frequencies
compared to Cas9 mediated DSBs (Fiumara et al., 2023).

Whilst the field of genome engineering technology continues to
expand exponentially, the underrepresentation of diverse genomic
data from Africa precludes such a region from realizing the true
potential CRISPR genome engineering holds. A serious flaw resides
in the gRNA design platforms, whichmake use of reference genomes
that do not represent these diverse genomes (Misek et al., 2024). The
gap in health disparities is being bridged by reference consortiums
such as the human pangenome and others that aim to include
ethnically diverse populations to identify unreported variants
(Auton et al., 2015; Fan et al., 2023; Liao et al., 2023). Inclusion

FIGURE 3
The experimental outline of a genome engineering experiment using the CRISPR-Cas9 system. (A) CRISPR-Cas9 based mutagenesis of a global
edited population are clonally expanded to be (B) profiled using the cost effective, crude Cel I endonuclease extract for indel detection. (C) Prescreened
clones are sequenced to confirm the identity of precisemutations attained, which can be supported by web application tools providing a % of sequences
that contain either deletion, insertion compared to the reference sequence. Created with BioRender.com.
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of diverse genomic data fromunder-represented regionswill ensure that
all off-target effects are taken into account, thus mitigating undesired,
deleterious outcomes and providing equitable gene editing efficacy
across all populations (Lessard et al., 2017; Canver et al., 2018;
Misek et al., 2024). Other barriers hindering the widespread use and
implementation of genome engineering include the lack of
infrastructure, skilled researchers, theoretical and practical initiatives
(that keep abreast with global research), adequate funding and
sustainable global and national collaborations. As researchers in this
field, with limited funding and resources we will continue in our
endeavours to democratize the utility of genome engineering
technology for LMICs, thereby providing solutions aimed at
improving the livelihood of the Global South. It is an encouraging
assumption that as sequencing costs for high income countries were
once considered expensive but through the years has become affordable,
gene editing reagents will most likely become cost effective for LMIC
and readily available, thereby remedying the dearth in its utility within
African countries and others with limiting resources. In the interim–we
hope this review will assist the first-time user to effectively navigate the
hurdles imposed by unjustifiable cost barriers to achieve affordable and
efficient gene editing.
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