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With scientific progress and the development of new genomic techniques
(NGTs), the spectrum of organisms modified for various purposes is rapidly
expanding and includes a wide range of taxonomic groups. An improved
understanding of which newly developed products may be introduced into
the market and released into the environment in the near and more distant
future is of particular interest for policymakers, regulatory authorities, and risk
assessors. To address this information need, we conducted a horizon scanning
(HS) of potential environmental applications in four groups of organisms:
terrestrial animals (excluding insects and applications with gene drives), fish,
algae and microorganisms. We applied a formal scoping review methodology
comprising a structured search of the scientific literature followed by eligibility
screening, complemented by a survey of grey literature, and regulatory websites
and databases. In all four groups of organisms we identified a broad range of
potential applications in stages of basic as well as advanced research, and a
limited number of applicationswhich are on, or ready to be placed on, themarket.
Research onGManimals including fish is focused on farmed animals and primarily
targets traits which increase performance, influence reproduction, or convey
resistance against diseases. GM algae identified in the HS were all unicellular, with
more than half of the articles concerning biofuel production. GM algae
applications for use in the environment include biocontrol and
bioremediation, which are also the main applications identified for GM
microorganisms. From a risk assessor’s perspective these potential
applications entail a multitude of possible pathways to harm. The current
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limited level of experience and limited amount of available scientific information
could constitute a significant challenge in the near future, for which risk assessors
and competent authorities urgently need to prepare.
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1 Introduction

In recent years, new genomic techniques (NGTs), also referred
to as genome editing or targeted mutagenesis, for the development
of genetically modified organisms (GMOs) have attracted significant
attention not only in scientific research, but also in public at large.
The reason is that NGTs, in particular CRISPR based methods, can
be easily applied to an increasing number of organisms ranging from
plants to animals and microorganisms. Moreover, they substantially
expand the spectrum of possible genetic modifications in these
organisms, including directed and undirected genetic or
epigenetic modifications at specific genomic target sites (EC,
2017; NAS, 2017). In addition to modifying single target genes,
NGTs have been developed which allow the simultaneous or
successive modification of several genes at different genomic
sites, e.g., by multiplexing approaches (Broothaerts et al., 2021).
If multiple changes are introduced by NGTs, the resulting organisms
may be considered a product of synthetic biology by the European
Foods Safety Authority (EFSA) (More et al., 2020; Naegeli et al.,
2021; Mullins et al., 2022). Unlike several other countries, in Europe
products of NGTs are considered GMOs (CJEU 2018; CJEU 2023;
see also Spranger (2023a) for a legal analysis). Thus, in accordance
with this ruling of the European Court of Justice, this review covers
all types of modified organisms and the term GMO in this article is
used for all, regardless of the molecular biology techniques used to
achieve the respective modification.

Many experts and policymakers suggest that products developed
by NGTs may contribute to sustainability in various ways, e.g., by
enhancing soil fertility, producing biofuels with GM microalgae,
control of disease agents and vectors for pathogens, or for
bioremediation (OECD, 2015). In addition, they raise
expectations that the application of NGTs, particularly but not
exclusively in plants, will allow or accelerate the development of
organisms for use in agriculture to address an increasing demand for
food and feed or to mitigate adverse effects of climate change (EC,
2021; EC, 2023a; EC, 2023b; EC, 2023c). Similar hopes have been
expressed for genetically modified (GM) animals (Tizard et al.,
2016). However, with respect to GM crops, according to Hüdig
et al. (2022), to date there is little scientific evidence on the extent to
which genome edited crops will realistically express traits that
contribute to sustainability. This is partly due to the fact that
such traits are complex, context dependent and at present not
well defined (e.g., drought tolerance). Traits that could contribute
to sustainability are not abundant among genome edited crops in the
research and development pipeline (Bohle et al., 2023). Also, as
argued by BfN (2021), potential benefits of NGT-based plant
varieties with regard to sustainability goals should be subject to
verification and thus need to be assessed systematically and
following appropriate guidelines.

Similarly, as for transgenic organisms, potential environmental
risks may be associated with the introduction of genome-edited
organisms. The spread of NGT organisms and/or spread of the
modified genes into wild populations and communities may have
unpredictable and possibly adverse consequences for the exposed
ecosystems (Snow et al., 2005; Ellstrand et al., 2013). NGT products
may cause potential adverse effects as a result of intended genetic
modifications and unintended genomic alterations introduced
during their development, in particular ‘off-target’ and
unintended ‘on-target’ mutations (see, e.g., Kawall et al., 2020;
Chu and Agapito-Tenfen, 2022; AK, 2023). While such
unintended genomic modifications may be eliminated in plant
breeding via repeated backcrossing during variety development,
they are considerably less easily removed in animal breeding
when introduced in founder animals. Thus, the risk assessment
conducted for NGT animals and in particular their phenotypic
assessment needs to thoroughly address whether any adverse
effects result from such unintended modifications.

Overall, the increased use of NGTs is expected to lead to a wider
spectrum of GMOs on the market (Broothaerts et al., 2021; Parisi
and Rodríguez-Cerezo, 2021; VKM, 2021). Significant challenges
regarding the assessment of potential negative effects on the
environment and human and animal health have been identified
for GM plants (Naegeli et al., 2021) and GM microorganisms
(GMMs) (More et al., 2020) produced with NGTs. While
evidence for potential applications of NGTs in crop plants has
been gathered (see, e.g., Eckerstorfer et al., 2019; Menz et al.,
2020; Unkel et al., 2020; Gelinsky, 2022; Bohle et al., 2023),
respective work on overviews for other organisms has just started
(EC, 2018; 2022).

The diversity of potential applications and the numeric increase
in developments poses challenges for competent authorities and risk
assessment bodies at EU and national levels. The European
Commission (EC) has considered knowledge on plants produced
with NGT sufficient to develop a regulatory proposal for plants
obtained by certain NGTs (EC, 2021), published in July 2023 (EC,
2023b; 2023c). However, both the study and the proposal have been
contested (BfN, 2021; Spranger, 2023b). In the meanwhile, the EC
has mandated EFSA to produce scientific opinions on GMMs (EC,
2022; Kagkli, 2023) and on new developments in biotechnology
applied to animals (including synthetic biology and new genomic
techniques) (EC, 2018; Ardizzone, 2023), to identify potential novel
hazards compared to established techniques of genetic modification,
and to determine the adequacy of existing guidelines for risk
assessment or need for updated guidance.

An improved overview on current developments concerning
GMOs is thus necessary for the further development of the existing
guidance for risk assessment, in particular for the assessment of
potential environmental effects. The initiative to implement a
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mechanism for a broad and regular horizon scanning to monitor
and assess developments of synthetic biology under the framework
of the Convention on Biological Diversity underlines this need
(CBD, 2018). Conversely, HS as carried out in this study
provides relevant input to ongoing Convention of Biological
Diversity HS and assessment processes on synthetic biology
(CBD, 2023).

Thus, the objective of the HS conducted in the framework of this
study was to identify potential future applications in four groups of
organisms, GM terrestrial animals, GM fish, GM algae and GMMs,
and to provide the necessary overview on the developmental stage and
the various fields of potential applications. Insects and applications
with gene drives were excluded from this HS. No gene drive GMOs
have to date been released into the environment, and there are
significant obstacles to such releases on the technical as well as
societal and regulatory levels. Research on gene drive GMOs and
challenges for their risk assessment have been described, e.g., by the
National Academies of Sciences, Engineering, and Medicine (NAS,
2016), by scientific associations in Europe (CSS, 2019) and (for insects
only) by the EFSAGMOPanel (EFSA, 2020). Significant research and
development also pertains to GM insects without gene drives (Evans
et al., 2019; Pare Toe et al., 2021;Waltz, 2021), which warrant separate
HS studies. Viruses, which are also sometimes considered
microorganisms, were excluded from this HS, because we recently
conducted a separate HS on viruses (Eckerstorfer et al., 2014).

We focused on applications intended for release into the
environment and included GMOs irrespectively of the methods

used to produce them, particularly including GMOs produced by
NGTs like genome editing. We have aimed at identifying ongoing
developments and potential future applications on an individual
level, i.e., a specific trait achieved by genetic modification in a certain
species for a specific purpose. An analysis of the scientific literature
published within the last 10 years (until the end of January 2023)
constitutes the basis of our work. In addition, we have considered
information retrieved from grey literature, official websites,
and databases.

2 Materials and methods

A HS was conducted to identify potential future GM
applications with environmental relevance developed for
terrestrial animals (excluding insects and gene drives), fish,
microalgae and microorganisms. We addressed this task by
focusing on two pillars: A survey of peer-reviewed scientific
articles and an additional search for relevant information
covering grey literature (e.g., reports), publicly available
information of regulatory authorities on market applications and
field trials as well as requests for information addressed to
responsible experts from selected national competent authorities
in non-EU countries. The identified applications were screened for
relevance and evaluated with respect to their development status
according to defined criteria. Figure 1 provides an overview of the
search strategy and the approach for the analyses of the results.

FIGURE 1
Flowchart of the search strategy.
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2.1 Search strategy

The literature search was conducted at the end of January and in
early February 2023 by use of Scopus, an Elsevier’s abstract and
citation database. Separate searches were conducted for each group
of GMOs. All hits were imported into Citavi 6, a software tool for
reference management and knowledge organization, and duplicates
were removed upon import. Selected keywords were arranged in
three to five categories varying between groups of organisms:
‘intervention’, ‘organism’, ‘trait’, ‘application’ and ‘general’
(Supplementary Tables S1–S4). All keywords and synonyms
within a certain keyword category were combined with the
Boolean operator ‘OR’. Each search string had to contain
keywords from at least three keyword categories combined with
the Boolean operator ‘AND’ in order to limit the number of hits to a
manageable number. In addition, the application of filters provided
by the search mask were used in all cases to limit the search to
research (including conference papers) as well as review articles,
articles published between 2012-2022 as well as to English language
articles. With respect to the subject area (e.g., ‘agricultural and
biological sciences’, ‘environmental sciences’), however, filters were
set slightly differently depending on the organism group in order to
focus on environmental applications (see also 2.2).

Review articles were used to complement the scientific literature
search by screening the most recent, i.e., published after 2019, reviews
with focus on the relevant GM applications in order to identify
additional original literature (Deng et al., 2014; Gao et al., 2019; Blix
et al., 2021; Sproles et al., 2021; Tran et al., 2021; Liu et al., 2022; Sproles
et al., 2022; Wani et al., 2023). If review articles contained tables
summarizing GM applications, we abstained from adding these to
our tables, as they are already published in a review format and did not
reveal any new fields of application. This was in particular the case for
applications of GMMs for bioremediation purposes (Pant et al., 2021;
Tran et al., 2021; Sharma et al., 2022; Rafeeq et al., 2023).

In a second step, grey literature from the following information
sources were screened: Reports submitted to or published by the EC
(Cows et al., 2010; van der Vlugt, 2020; Broothaerts et al., 2021;
Parisi and Rodríguez-Cerezo, 2021), reports published by national
scientific academies (National Academies of Sciences, 2017),
national reports of OECD member states to the OECD working
party on harmonization of regulatory oversight in biotechnology
(WP-HROB) and annual WP-HROB updates on relevant
developments in member or observer countries (OECD, 2021;
2022; 2023) as well as information available online, as, for
example, the website of the Genetic Literacy Project (GLP) and
its global gene editing regulation tracker (Genetic Literacy
Project, 2022).

The search results were also complemented with information on
market applications and field trials from regulatory databases and
websites of national competent authorities of selected non-EU
countries. We focused on information from countries which are
known to encourage the development of biotechnology products
and provide public information concerning such products (e.g.,
Australia, Canada, Brazil, US). As publicly available information
varies among countries (with respect to type and detail of
information as well as regarding accessibility and language) and
due the complexity of the different regulatory systems, we chose to
complement and verify the online search with requests for

information addressed to official national experts from the
OCED WP-HROB network (e.g., experts from the US, Canada,
Brazil, Argentina, Japan and Australia). In addition, we screened the
GMO register of the EC on part B notifications on GMOs other than
plants, i.e., experimental releases (EC, 2023a).

2.2 Screening for relevance

For each group of organisms, two experts involved in the HS
independently screened the titles and abstracts of the retrieved articles
according to the chosen relevance criteria. The same criteria were applied
for the screening of review articles and grey literature. The screening was
conducted by experts chosen with regard to their expertise, which
allowed exploitation of the specific expertise of all experts involved,
tominimize expert bias and avoid inadvertentmistakes. Relevant articles
were further classified into two categories: original research and review
articles (Figure 2). In addition, articles dealing with issues of risk
assessment, biosafety, sustainability, regulation, or technology
assessment were marked as specific articles. These mostly include
review articles, but also original research investigating respective
issues. In some cases, uncertainties regarding relevance could be
clarified by analysis of the full text and/or were discussed among
experts until inter-reviewer agreement was reached according to a
consistent use of the relevance criteria listed as follows:

Relevant

• Studies in which either established techniques of genetic
modification or NGTs were used to alter the genome of the
respective organism.

• Studies on respective GMOs with traits of market-relevance,
such as increased growth or disease resistance.

• Studies on respective GMOs targeting the use in the
environment, which are subject to Directive 2001/18/EC
in the EU.

• Studies on respective GMOs available on the market, or
authorized for marketing or field testing (e.g., Atlantic
salmon or Tilapia sp. with enhanced growth characteristics,
hornless or heat tolerant cattle).

Not relevant

• Studies on GMMs for contained use according to Directive
2009/41/EC (e.g., in bioreactors). This includes studies aiming
at the metabolic engineering of GMMs and GM algae with the
aim of producing biological substances (e.g., enzymes, fatty
acids, antigens) in contained facilities, e.g., in the food, feed or
pharmaceutical industry.

• Studies in which DNA sequencing was conducted to elucidate
the genomic diversity of the respective organism group (e.g.,
detection of genomic variation with next-generation
sequencing (NGS) technologies).

• General studies on method development, i.e., the development
of transformation or transfection methods for certain species
or taxonomic groups.

• General gene function studies, i.e., studies or screens with the
purpose to elucidate the function of genes or the functioning
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of certain metabolic pathways (e.g., heavy metal detoxification,
salt tolerance) not specifically targeting a marketable trait.
This also includes studies aiming at the elucidation of
communication and interaction mechanisms between
species (e.g., between plants and microorganisms like
pathogens, mycorrhiza or endophytes).

• Studies concerning the development of detection methods,
i.e., studies dealing with the identification and detection of GM
modifications or biological substances (biosensors like e.g.,
riboswitches).

• Studies on applications in human medicine, e.g., studies with
GM pigs for xenotransplantation purposes. With respect to
veterinary medicine we excluded the application of GM
vaccines as these were included in previous work
(Eckerstorfer et al., 2014). Studies dealing with disease
resistance traits towards animal disease agents were,
however, considered relevant. Other applications in the
field of medicine would most probably be subject to strict
hygiene requirements and thus held in closed facilities
excluding contact with the environment.

• Studies on GM insects and gene drive applications (e.g., GM
mosquitos), which were excluded from the scope of our HS.

However, sometimes it was challenging to evaluate the
environmental relevance of potential applications. Modifications
of GM algae mainly concern composition, in particular the
enhancement of cellular lipid yield. Such traits are relevant for
applications in food industry, e.g., the production of
polyunsaturated fatty acids (PUFAs) as food supplements, as well
as for the production of biofuels. Compared to applications in the
food industry, large scale production of biofuels may involve the
cultivation of GMmicroalgae in open pond systems accompanied by
environmental exposure. Therefore, only applications of GM algae

which were developed for biofuel production as amain purpose were
taken into account in this HS.

2.3 Data analysis and evidence synthesis

The identified articles were independently assessed by two
experts for relevant applications of GMOs, their status of
development and classified according to different fields of
application (e.g., bioremediation, biocontrol, disease control,
reproduction). In this HS a particular application was defined as
a targeted trait within one species. If the same trait was targeted in
two different species, it was counted as two applications. The
application of the same trait in the same species, but at different
stages of development, was counted only once referring to the latest
stage of development. However, sometimes different mechanisms or
modifications within the organisms were targeted, in order to
achieve a certain trait. In these cases, the respective trait/species
combinations were counted as separate applications. For example,
the trait heat tolerance in cattle refers to two different applications:
Laible et al., 2020 edited Holstein Friesian cattle for diluted coat
color for a higher heat tolerance. Another approach for more heat
tolerant cattle is to introduce a single base deletion in the prolactin
receptor (PRLR) gene of, e.g., the Senepol breed into other breeds
like Holstein Friesian. Animals bearing this mutation have a short
and sleek hair coat (SLICK trait) which leads to higher heat tolerance
(Porto-Neto et al., 2018). Also, for other traits, different mechanisms
have been used in order to reach the desired phenotype in the same
species (e.g., enhanced growth, resistance to the porcine
reproductive and respiratory syndrome (PRRS), sex reversal,
sterility). For GM algae and GMMs a differentiation of the
various mechanisms involved to achieve a certain trait was not
always possible. This was encountered, e.g., for biofuel applications

FIGURE 2
Overview on screening of articles for relevance (first column displays number of relevant and irrelevant articles identified); Categorisation of relevant
articles (second column displays original research, review articles and specific articles with a focus on risk assessment/biosafety issues, sustainability,
technology assessment or regulatory aspects).
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aiming at the modification of the fatty acid metabolism. These
applications were counted separately, probably slightly
overestimating the number of applications. In addition, market-
relevant applications identified in additional sources were only
counted if the respective species and the genetically modified
trait could be identified. In case of unspecific information on
species, modification or trait, the respective information was not
taken into account, thus leading to a slight underestimation of the
number of applications of market relevance.

For the assignment of the developmental status to the (potential)
GM application identified in the literature search, we chose to apply
three categories and distinguished research papers dealing with I)
basic research, II) advanced or application-oriented research and
III) (near) market development (see below). The decisive criterion
for the differentiation between category I and II was the
demonstration of the expression of the targeted trait in the
respective organism. However, in particular, for unicellular
organisms, it was difficult to clearly identify proof of concept
studies intended to be assigned to category I. Species like
Chlamydomonas reinhardtii, E. coli and Sacchcaromyces cervesiae
are used as model organisms in basic research as well as in market
applications. However, these ambiguities in our opinion do not
significantly impact the results of the overview on potential GM
applications presented in this study. A common understanding to
ensure consistency was established between all involved experts,
which was later refined after the first and before the second round
of review.

I Basic research
This category covers studies conducted in model expression

systems (e.g., yeast, Escherichia coli), model species (e.g., the
zebrafish, Danio rerio, or Sacharomyces cervesiae), or in cell or
tissue cultures. It comprises studies investigating specific gene
functions or gene regulation mechanisms in relevant organisms
which may be further developed as market-oriented traits. Studies in
this category have more of a scoping character, aiming at exploring
the potential for new developments. This includes proof of concept
studies to identify candidate genes which may be modified for the
development of market-relevant traits at a later stage. For example,
some studies with GM algae or GMMs investigated the involvement
of certain genes in a certain phenotypic characteristic or metabolic
pathways (e.g., lipogenesis and carbon metabolism in microalgae).
We assigned studies which do not fulfil all three criteria indicted for
category II to this category.

II Advanced or application-oriented research
This category includes studies which demonstrate the genetic

modification and the function(s) of genes with the purpose of
development of a market-relevant trait. However, for GM
animals to be assigned to this category, the developed traits had
to be demonstrated at the organism level and not only in cells, tissue
culture or embryos. Studies of GM algae and GMMs comparing the
effect of different genetic modifications on the expression of market-
relevant traits were counted in this category. Studies included in this
category had to meet all of the following three criteria: a) Use of
either established techniques of genetic modification or NGT, b)
addressing a specific market-relevant trait, and c) demonstration of
the expression of the targeted trait in the respective GMO.

III (Near-) Market development
Studies which deal with GMOs that are tested in or released into

the environment are included in this category. These could be
GMOs already released into the environment, e.g., in field trials
or available on the market in EU or non-EU countries. In addition,
we assigned original research articles on GMOs to this category,
which broadly investigated biological parameters of the GMO beside
the intended trait, e.g., growth hormone in GM homozygous and
hemizygous Carp (Zhong et al., 2012), or traits of relevance for the
risk assessment, e.g., specific traits aimed at the biological
containment of the organism like GM algae expressing a
phosphite dehydrogenase (Inoue et al., 2022).

3 Results

We identified a range of articles, which indicate many different
potential future applications of GMOs. Overall, we identified
245 scientific articles on GM terrestrial animals (excluding insects
and gene drive GMOs), 163 on GM fish, 382 on GM algae and
394 on GMMs in the Scopus search (Figure 1). Upon screening for
relevance, about half of the articles retrieved for each group of
GMOs, except for GM algae, were considered as relevant for the
purpose of this study. For GM algae, only slightly more than a third
of the identified articles were determined as relevant for the objective
of the HS (Figure 2).

The HS focused on potential future applications for release into
the environment. Therefore, we excluded applications clearly aiming
at the contained use of GMOs. This concerned in particular research
studies dealing with GM algae and GMMs, the majority of which
report on their use as biorefineries for a range of improved or novel
bio-substances (e.g., enzymes, fatty acids, antigens, pigments) in the
food, feed or pharmaceutical industry. For example, GM
Saccharomyces cervesiae is used in the food industry for
bioethanol and biofuel production (OECD, 2023). These
applications were disregarded as well as GM algae applications
aiming at the production of PUFAs (Songe et al., 2021), phytase
(Erpel et al., 2019), carotenoids (Ren et al., 2021), terpenoids (Zhao
et al., 2020), astaxanthin (Zheng et al., 2017), xylitol (Pourmir et al.,
2013) and squalene (Kajikawa et al. , 2015). Due to uncertainties
regarding the exclusive use of GM algae with modified lipid
metabolism in contained systems, the number of articles of GM
algae aiming at biofuel production from our analysis represents a
conservative assessment (see 2 and Figure 4C). For GM terrestrial
animals, important fields of applications, which are beyond the
scope of this HS, are their use as ‘bioreactors’, i.e., for the production
of biopharmaceuticals (Rehbinder et al., 2009) or as organ donors.

During the screening we classified relevant articles into two
types: original research articles (including conference papers) and
review articles. Articles of both kinds dealing with risk assessment,
biosafety or sustainability aspects were marked (Figure 1). The
majority of research articles was found for GM terrestrial animals
(73) and GMMs (64), the least for GM algae (26). We also retrieved a
significant number of review articles, in particular for GM algae and
GMMs. However, most of the reviews were not useful for our
purposes, because they do not report on GM applications at trait
and organism level or do not allow the assignment of a field of
application to a GMO. In fact, they address a wide range of different
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aspects: specific organism (e.g., exiguobacteria), specific degradation
mechanisms for certain groups of compounds (e.g., polyaromatic
hydrocarbons), specific issues of environmental contamination (e.g.,
arsenic contamination of ground water), or biological control (e.g.,
control of cockroaches). Regarding the engineering of microalgae for
biofuel production various genes of interest (Rock et al., 2021),
strategies for modifications of pathways for improving lipogenesis in
microalgae (Fathy et al., 2022) or of methodological aspects of
genetic manipulation (Shokravi et al., 2021) were reviewed.
However, the level of depth in these reviews did not match our
purpose and thus were of limited relevance for the identification of
potential applications. A substantial number of reviews mentioned
or discussed applications of GMOs (e.g., sex control in animals,
bioremediation) as a potential future option (Tarfeen et al., 2022).
Some articles focused on ethical aspects of GM terrestrial animals or
aspects of societal acceptance of the technology not always referring
to specific developments or applications (Ruan et al., 2017; Bruce
and Bruce, 2019).

Some of the retrieved publications, in particular those on GM
algae and GMMs, dealt with issues related to risk assessment,
biosafety and sustainability rather than with the development of
specific GMOs. Some addressed risk assessment approaches for
GMMs in general (Glandorf 2019) or for certain groups of GMMs
(Henley et al., 2013), while other discussed the monitoring and
regulation of such applications (Chimata und Bharti 2019; Ryder
2017; Wozniak et al., 2012) or focused on biocontainment
(Schmidt und Lorenzo 2012; Mandell et al., 2015; Rovner
et al., 2015; Stirling und Silver 2020; Torres et al., 2016;
Wright et al., 2013; Motomura et al., 2018). These studies
were only taken into account in the analysis if specific
applications of GMOs were reported (Motomura et al., 2018;
Ishikawa et al., 2021).

From the analysis of identified research articles and the
additional information sources we identified overall
70 applications of GM terrestrial animals, 57 of GM fish, 36 of
GM algae and 87 of GMMs that are relevant for this HS (Figures 1,

3). These applications were further analysed regarding their field of
application and status of development and compiled in tables
(Supplementary Tables S5–S25).

3.1 Fields of applications

We classified the identified potential applications of GMOs
according to different fields of applications, naturally varying
depending on the organism group (Figure 4). Detailed tables
listing all identified applications can be found in the
Supplementary Material (Supplementary Tables S5–S25).

3.1.1 GM terrestrial animals
Genetic modifications are particularly performed in farm

animals, including cattle, goat, sheep, pig, horse, rabbit, chicken,
and quail (Supplementary Tables S5–S13). GM terrestrial animals
are generated for various agricultural purposes. Overall, five fields of
application were identified for GM terrestrial animals: disease
control, performance, reproduction, product quality, and animal
welfare (Figure 4A). The by far most often targeted andmost broadly
applied trait within the field of performance, reported for all
livestock species and all stages of development, is enhanced
muscle growth (Figure 5). Other applications are pigs with an
increase in the amount of lean meat (Zheng et al., 2017; Zeng
et al., 2018), increased milk yield in goats (Zhang et al., 2014),
increased fiber yield in Cashmere goats (Wang et al., 2016),
increased wool yield in sheep (Li et al., 2017) extended hair
length in rabbits (Y. Xu et al., 2020) and enhanced weight gain
of piglets due to enrichment of sow milk with human α-lactalbumin
(Ma et al., 2016).

The trait most often targeted within the field of disease control is
the generation of disease resistant or disease resilient animals:
resistance to tuberculosis and mastitis in cattle (Liu et al., 2014;
Gao et al., 2017), resistance to African swine fever in pigs, or
resistance to Avian leukosis virus in chicken (Koslová et al.,

FIGURE 3
Number of identified applications according to level of development.
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2020). The trait targeted the most in a single species is resistance to
the porcine reproductive and respiratory syndrome (PRRS) in pigs
(McCleary et al., 2020; Y; Xu et al., 2020) (Figure 5).

Targeted traits within the field of animal welfare are: the
generation of GM hornless cattle, in order to avoid both painful
dehorning and injuries in densely stocked barn environments
(Carlson et al., 2016), thermoregulation in cattle (Hansen, 2020)
or cold tolerance in pigs (Zheng et al., 2017), and the delay of
adolescence in pigs as an alternative to castration (Flórez et al.,
2022). However, it is controversial whether these applications can
actually increase welfare (Eriksson et al., 2018; De Graeff
et al., 2019).

Livestock species are also modified to increase product quality.
In the identified applications the purpose is to enhance the product
quality of milk, meat, eggs and wool in various ways: the elimination
of β-lactoglobulin in cow and goat milk to achieve lower allergenicity
of milk (Zhou et al., 2017; Wei et al., 2018), cow milk with low
lactose (Su et al., 2018), a higher n-3 PUFAs content (Wu et al.,
2012) or goat milk enriched with human-lactoferrin (Cui et al.,
2015). In order to improve the nutritional value of meat, the content
of n-3 PUFAs is targeted in cattle, sheep and pigs (Cheng et al., 2015;
Tang et al., 2019; Luo et al., 2020), intramuscular fat is increased (Gu
et al., 2021) and an alpha-gal (Galactose-alpha-1,3-glacatose) free

GM pig was developed (Hauschild et al., 2011). Furthermore, the
coat color of sheep (Zhang et al., 2017) and the composition of the
egg white in chicken (Lee et al., 2020) are modified.

Within the field of reproduction, the two most important traits
are sex reversal and sterility. Depending on the species and breed, a
certain sex of the offspring is often preferred and pre-determination
of the preferred sex may be an opportunity to prevent the culling of
animals. Advances are reported in generating all-female offspring in
cattle which is the preferred sex in dairy cattle (Xi et al., 2019) and
the generation of all-male offspring in beef cattle, in order to
produce more meat (Owen et al., 2021). In order to prevent the
castration of pigs, GM male pigs with a female phenotype are
generated using CRISPR (Kurtz et al., 2021). The purpose of the
second trait, sterility, is to generate surrogates for transplantation of
allogenic germ cells into either ovaries or testes. The idea is to
transplant germ cells of animals with more desirable genetics, in
order to enhance production efficiency. This trait is targeted in
cattle, goats and pigs (Ideta et al., 2016; Park et al., 2017; Ciccarelli
et al., 2020). Furthermore, advances are made for pre-determination
of the sex in buffalos (Zhao et al., 2020) and in chicken, in order to
identify the sex pre-hatch (Doran et al., 2018).

Overlaps exist regarding the various fields of applications, as
some applications may serve two purposes. For example, we

FIGURE 4
Number of potential applications identified according to field of application. (A) GM terrestrial animals, (B) GM fish, (C) GM algae, (D) GM
microorganisms.
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classified traits such as sex reversal or sex determination to the
category reproduction. However, they might as well be assigned to
the category animal welfare, because the determination of the sex of
farm animals implies less culling or no castration in case of pigs, if
the offspring is all female. Similarly, assignment to the category
performance is conceivable, as male cattle perform more efficiently.
The trait sterility was assigned to reproduction, but might just as well
be an animal welfare trait, as it aims at the reduction of
castration in pigs.

3.1.2 GM fish
There is research on a wide range of finfish species including

Atlantic salmon, common carp, channel catfish and Nile tilapia
(Supplementary Tables S14–S19). The focus is on GM fish with
enhanced performance traits for aquacultural purposes, enhanced
muscle growth being the dominant trait both with respect to
numbers of identified studies as well as with respect to the
numbers of species modified (Figure 6).

Five different fields of application were identified for GM fish
(Figure 4B): reproduction, product quality, disease control,
pigmentation, and performance. The main trait targeted
within the field of disease control is the generation of disease
resistant or disease resilient fish, which was reported for channel

catfish (Abass et al., 2022; Coogan et al., 2022), grass carp (Ma
et al., 2018), Nile tilapia (Chiang et al., 2020), rainbow trout
(Chiou et al., 2014; Lo et al., 2014), zebrafish (Wang et al., 2014;
Chengfei et al., 2017), Asian sea bass (Yang et al., 2021), Rohu
carp (Chakrapani et al., 2016), and chinook salmon (Dehler
et al., 2019).

The most targeted trait within the field of performance is
enhanced muscle growth, which is reported for various fish
species: Atlantic salmon (Tibbetts et al., 2013), blunt snout
bream (Jiang et al., 2017; Sun et al., 2020), channel catfish (Khalil
et al., 2017; Coogan et al., 2022), common carp (Zhong et al., 2016),
Nile tilapia (Wu et al., 2023) and other species (Supplementary
Tables S14–S19). A trait which is related to enhanced growth, is
improved feed efficiency, which is specifically reported for Atlantic
salmon (Tibbetts et al., 2013), gibel carp (Huang et al., 2021), Nile
tilapia (Wu et al., 2023), and red sea bream (Ohama et al., 2020;
Washio et al., 2021). A behavioural trait targeted in Pacific bluefin
tuna could be identified: GM tuna showed slower swimming
behaviour, which might reduce losses of GM tuna from sea cages
to the open sea (Higuchi et al., 2019). In order to improve product
quality, especially meat quality, the content of n-3 PUFAs is
increased in channel catfish (Xing et al., 2022; Xing et al., 2023).
The same trait is altered in terrestrial farm animals (see previous

FIGURE 5
Number of articles identified for GM terrestrial animals according to traits which have been targeted in more than one animal category + the trait
resistance to PRRS.

Frontiers in Genome Editing frontiersin.org09

Miklau et al. 10.3389/fgeed.2024.1376927

https://www.frontiersin.org/journals/genome-editing
https://www.frontiersin.org
https://doi.org/10.3389/fgeed.2024.1376927


section) and in the model fish D. rerio (Pang et al., 2014). In the
zebrafish model is also the loss of undesirable intermuscular bones is
targeted (Nie et al., 2021).

Within the field of reproduction, we identified two main
targeted traits: sterility and sex reversal. Sterility in fish is
meant to prevent genetic introgression of farmed animals
into wild populations (Wargelius, 2019). It is reported for
Atlantic salmon (Wargelius et al., 2016; Kleppe et al., 2022),
common carp (Su et al., 2014), channel catfish (Qin et al., 2016),
Nile tilapia (Tao et al., 2020), sterlet (Baloch et al., 2019) and the
model zebrafish (Zhou et al., 2018). Sex reversal is especially of
interest to generate the sex which leads to the higher meat yield.
Depending on the fish species this can either be the female, e.g.,
common carp (Zhai et al., 2022) or the male fish, e.g., Nile
tilapia (Stokstad, 2020) or yellow catfish (Dan et al., 2018). This
trait is also reported for the model fish Medaka (Luo et al., 2015)
and zebrafish (Zhou et al., 2018).

Pigmentation is an important economic trait in farmed fish,
because there are certain phenotypes which have a higher economic
value than others (Luo et al., 2021). Applications targeting
pigmentation are reported for Nile tilapia (Wang et al., 2022;
Wang et al., 2023) and yellow river carp (Jiang et al., 2022).
Furthermore, the loss of pigmentation is targeted in Atlantic
salmon (Edvardsen et al., 2014), common carp (Mandal et al.,
2020), large-scale loach (X. Xu et al., 2019), Medaka (Fang et al.,
2018), white crucian carp (Liu et al., 2019) and zebrafish (Irion
et al., 2014).

3.1.3 GM algae
All articles identified reported work on unicellular algae,

i.e., microalgae. Articles on macroscopic algae, e.g., brown
algae, i.e., seeweeds, were not found. GM microalgae include
species like Chlamydomonas sp. and Chlorella sp. as well as a
few diatoms, such as Nannochloropsis sp. and Phaeodactylum

tricornutum (Supplementary Table S20). The focus of our study
was on GM microalgae with the following traits (Figure 4C):
production of lipids or triacylglycerols for use as or in biofuels,
increased CO2 sequestration, increased efficiency of the
photosynthetic capacity and algal biomass productivity,
hydrocarbon production, and wastewater treatment (see
overviews in, Geraldi et al. (2023); Thanigaivel et al. (2023);
Barati et al. (2021); Singh and Ghosh (2021)). At the current
stage it is not foreseeable whether these applications will be
cultivated in open-culture systems or closed photo-bioreactors.
In Europe, both types of cultivation systems are possible
(Enzing et al., 2014), consequently open pond cultivation
(e.g., raceway ponds) cannot be excluded for GM microalgae
applications with the above-mentioned traits in the future.
Open and closed culture systems of microalgae have different
advantages and disadvantages depending on the taxon, the
specific applications and the local conditions (Mata et al.,
2010). However, as the information provided in title and
abstract of articles sometimes lacks information on the
specific purpose of applications (e.g., for studies on algal
metabolism), our data may slightly underestimate the
number of potential biofuel applications (see 2).

Applications of GM microalgae for use in the environment
comprise traits for bioremediation and environmental
restoration, in particular of aquatic ecosystems, as well as for
control of human pathogen vectors or disease control (bacterial
or viral diseases) of aquatic animals (Figure 4C). Specifically,
several applications producing recombinant oral vaccines (e.g.,
antigens, antimicrobials) or double-stranded RNA are being
developed. Only one application assessed GM microalgae under
field conditions in an open pond (Inoue et al., 2022). The GM
microalgae expressed a phosphite dehydrogenase, in order to be
able to utilize phosphite (H3PO3) instead of phosphate (H3PO4)
as a means of biological containment.

FIGURE 6
Number of articles identified for GM fish (green columns) and number of species of GM fish according to traits which have been targeted in more
than one species.
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3.1.4 GM microorganisms
The HS identified applications for GMMs (excluding viruses) in

various species from different groups of organisms (e.g., bacteria,
fungi, and cyanobacteria) (Supplementary Tables S21–S25)
addressing a broad scope of different aims (Figure 4D): use as
biofertilizers, i.e., as plant growth promoting organisms, and for
biocontrol or bioremediation purposes. Several paratransgenesis
applications were found, which target the modification of GMMs
that are associated with or living in symbiosis with animals (mostly
insects) with the purpose to modify relevant characteristics of their
animal hosts, e.g., their ability to vector pathogens.

Overall, most of the identified applications are developed for
purposes of bioremediation, i.e., targeting contaminations of
environmental media such as soil and water. Many employ
different bacteria, including many Enterobacteriacae and
Pseudomonaceae serving the enhanced removal of different kinds
of pollutants. Organic pollutants targeted include pesticides (Gong
et al., 2016; Yi et al., 2016; Xu et al., 2022), antibiotics stemming from
industrial and agricultural sources (Liu et al., 2020), and persistent
organic pollutants like toluene (Ishikawa et al., 2021), nitrobenzene
(Deng et al., 2022), and para-nitrophenol (Huo et al., 2022).
Anorganic pollutants targeted include mercury (Priyadarshanee
et al., 2022), chrome (Zhou et al., 2020), and arsenic (Maleki and
Shahpiri, 2022). Also, fungal species and yeasts are developed, e.g.,
for waste water treatment (Görner et al., 2016), accumulation of
different heavy metals, such as cadmium (Zhang et al., 2021), or to
aid the volatilization of arsenic from contaminated soils (Verma
et al., 2019; Verma et al., 2021). In addition, GM cyanobacteria are
developed for the removal of anorganic waste such as phosphate,
ammonium, nitrate and nitrite from the wastewater of shrimp
aquaculture (Krasaesueb et al., 2023). Some reviews compiling
information on bioremediation, provide tables of GMMs but with
insufficient information on the specific applications. These
applications were not included for further analysis. Thus, our
results are a very conservative estimate of GMMs developed for
this respective purpose.

Biocontrol applications include a number of developments in
bacteria, e.g., Burkholderia pyrrocinia (He et al., 2018) and fungi,
e.g., Beauveria bassiana, Metarhizium acridum, Trichoderma
harzianum, Isaria fumosorosea (Kim et al., 2013; Hu and Wu,
2016; Xia et al., 2018; Tong et al., 2021; Asgari, 2023), which are
modified to enhance the efficacy of known biocontrol agents to
control different pests or pathogens. Some of these applications
express RNAs which trigger a RNAi-based response in the exposed
target pests to achieve a biocontrol effect. Others express different
types of effector molecules like chitinases (Xia et al., 2018),
glycerate-3-kinase (Tong et al., 2021) or bumblebee venom
serin proteases (Kim et al., 2013). However, also bacteria and
fungi that are not commonly used for biocontrol may be developed
into GM biocontrol agents, e.g., Escherichia coli strains with
modifications to express RNA-molecules which trigger RNAi
mechanisms (Xiong et al., 2013; Vatanparast and Kim, 2017;
Niño-Sánchez et al., 2021). Other newly developed biocontrol
agents are expressing compounds that are toxic for the targeted
pest species, e.g., baker’s yeast Saccharomyces cerevisiae
overexpressing saccharomycin (Branco et al., 2019), or Pichia
pastoris expressing Cecropin A to control Alternaria (Zhang
et al., 2015). One application in the cyanobacterium

Synechococcus targets a viral pathogen (White spot syndrome
virus, WSSV) affecting shrimp production by expressing a subunit
vaccine (Xu et al., 2021).

Some of the studies on biofertilizers can be considered
exploratory studies to understand the involved mechanisms (Pai
et al., 2012; Jain and Gralnick, 2021), or to increase the efficiency of
root symbiosis as a decisive aspect for biofertilizer applications
(García-Tomsig et al., 2022). Others target characteristics in
bacteria (Das, 2019; Ambrosio and Curatti, 2021) and
cyanobacteria (Chaurasia et al., 2017) which increase the ability
of the modified microorganisms to be used as plant growth
promoting agents or biofertilizers (Supplementary Tables S21, S24).

The identified paratransgenesis applications explore the use of
different insect- and nematode-associated bacteria as possible
paratransgenic agents (Elston et al., 2021; Lulamba et al., 2021),
in order to control the host animal or pathogens vectored by these
animals (Mysore et al., 2017; Arora et al., 2018; Wang and
Zou, 2019).

3.2 Level of development

All applications of GMOs identified in the Scopus search, or
retrieved from selected review articles and additional sources, were
classified with respect to their application status into three categories
as outlined in chapter 2.3 (Figure 3). Across all groups of organisms,
about a third of the research articles were considered to be basic
research (category I, Figure 3), for GM fish and GM algae a little
more and for GM terrestrial animals a little less. Approximately half
of the number of identified articles for GM algae were assigned to
category II, i.e., early or advanced research developments, and
slightly more than a half in the other groups (Figure 3). Very few
applications were considered to be near-market development
applications, i.e., category III. Slightly more than 10% for GM
terrestrial animal and GM algae and a little less than 10% for
GM fish and GMMs. Information from grey literature and
additional sources could in all cases be assigned to category III.
In the following, the results for the four groups of organisms are
presented with a particular focus on relevant market applications.

3.2.1 GM terrestrial animals
Most applications identified in regulatory databases and

websites of national competent authorities of selected non-EU
countries had already been identified by the literature search.
However, the additional information sources provided
information on the approval of field trials and commercial use of
these applications and this enabled a better determination of their
developmental stage. Overall, nine market-relevant applications
were identified for GM terrestrial animals. In 2016, a trait
conferring resistance of cattle to Bovine respiratory disease was
patented in the US (Office of Commercialization, 2016). In
December 2020, the US Food and Drug Administration (US
FDA) approved transgenic pigs, referred to as ‘GalSafe pigs’, for
pork consumption. These pigs have originally been generated for
potential therapeutic uses, i.e., as a source of medical products, such
as the blood-thinning drug heparin, or as source of tissues for
xenotransplantation. The modified pigs do not express alpha-gal
sugar (Galactose-alpha-1,3-galactose), which is known to cause
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allergenic reactions in humans with Alpha-Gal-Syndrome or may
cause the rejection of transplanted tissues (US FDA, 2020). InMarch
2022, the US FDA published a low-risk determination for products
from genome-edited PRLR-SLICK cattle, i.e., cattle intended to be
heat-tolerant (US FDA, 2022). Other applications for which a risk
assessment has been conducted previously are, e.g., the transgenic
EnviroPig™ with a lower rate of phosphorus excretion assessed by
Canada and genome-edited cattle with enhanced muscle growth in
Brazil (Supplementary Table S13). Furthermore, there have been
some field trials in Argentina with transgenic cattle which express
human growth hormone, human lysozym and lactoferrin or
antibodies against rotavirus in milk (OECD, 2022). An additional
application, which we had overlooked and therefore not included in
our analysis, was the development of five genome-edited male sterile
pigs for breeding purposes in the US. The US FDA has granted an
investigational use authorisation allowing human consumption of
these five animals, excluding commercialisation (OECD, 2023).
Furthermore, a patent was granted for GM hens modified to
produce lethal phenotype in male bird embryos (WIPO, 2023).

3.2.2 GM fish
For GM fish only one study retrieved by the Scopus search could

be assigned to category III, i.e., a transgenic carp modified for growth
enhancement (Zhong et al., 2012). However, no information was
provided regarding future field trials or any plans concerning
commercialisation with this species. Additional research gave
insights into four previously developed and highly advanced
applications, but no additional modified fish species. In 1989, a
transgenic Atlantic salmon, AquAdvantage salmon, was developed
by AquaBounty, which grows almost twice as fast as non-GM
salmon. It is the first GM animal which has been approved for
human consumption in the US, Canada and Brazil (Health Canada,
2016; OECD, 2022; US FDA, 2023). In 2018, a genome-edited
growth-enhanced tilapia produced by AquaBounty with the
CRISPR technique was evaluated and considered eligible for
exemption from GMO regulation in Argentina (The Fish Site,
2018; Genetic Literacy Project, 2019). For the same tilapia a risk
assessment was conducted in Brazil by National Technical
Commission of Biosafety (CTN Bio) in 2019 (CTN Bio, 2023). In
2021, two genome edited fish applications were approved for
commercial sale in Japan: red sea bream and tiger puffer, both
genetically modified for growth enhancement (OECD, 2022). After
our research in spring 2023, an application for field trials with a
sterile Atlantic salmon (VIRGIN® salmon) was submitted in Norway
(EC, 2023c), but turned down by the Norwegian authorities as the
effectiveness of its sterility is contested (VKM, 2023).

3.2.3 GM algae
Field trials and market applications with GM microalgae

comprise applications under strict contained use (e.g., targeting
the productions of high oleic microalgae oil for use as food
supplement) as well as applications for potential cultivation in
open ponds (e.g., for biofuel production). Therefore, similarly as
with research articles, we focused on applications potentially to be
applied in the environment.

Overall, information is available from the US, Australia, and
Brazil concerning the species and traits of four transgenic
microalgae applications for confined field trials. For example, in

the US, an application for experimental release under the Toxic
Substances Control Act (TSCA) was approved by the Environmental
Protection Agency (EPA) for the environmental release of GM
microalgae Acutodesmus dimorphus, which had been modified for
enhanced fatty acid synthethis (Szyjka et al., 2017). In Australia, an
intentional release of the GM microalgae Nannochloropsis oceanica
with altered fatty acid composition and the inability to use nitrate as
nitrogen source was approved by the Australian Office of the Gene
Technology Regulator (OGTR, 2020). Releases of GMmicroalgae in
Brazil potentially aiming at biofuel production are also reported by
the OECD (OECD, 2021).

In Europe, one microalgae species was tested in small-scale
experiments in the context of an EU research project in the
United Kingdom (Hamilton et al., 2015). The GM diatom P.
tricornutum expressed an enzyme to accumulate high-value omega-
3-fatty acids. According to the authors, the GM microalgae were
cultivated in photo-bioreactors (550 L), smaller bubble column
systems (3.5 L) but also in open-pond system (1,250 L). However,
we could not find a respective Part B application, i.e., for
experimental release (EC, 2023a). The research was part of an EU
research consortium under the EC-FP7-KBBE, genetic improvement of
microalgae for value-added products (EC, 2013).

3.2.4 GM microorganisms
In this group of organisms again the majority of applications are

approved for industrial production of, e.g., ethanol or substances of
pharmaceutical interest in contained production facilities (e.g., in
different species of bacteria and fungi such as Saccharomyces sp. and
Pichia sp.). These applications are not intended to be released into
the environment and are thus not included here. Applications of
GMMs were retrieved from risk assessments, notifications or
authorisations in the US, Brazil and Canada. However, our
analysis remains incomplete as sometimes databases could not be
analysed for our purposes due to limited search options (e.g., not at
organism level) or lack of information available (e.g., in English) or
in sufficient detail (e.g., with respect to the field of application). One
application was identified in the Scopus search: a modified yeast, S.
cerevisiae, which is expressing an envelope protein of theWhite Spot
Syndrome Virus (WSSV) anchored to the yeast surface for use as an
oral vaccine agent in shrimp farming (Le Linh et al., 2021).

In Canada, eight fungi and 13 bacteria have been assessed under
the New Substances Notification Regulation (NSNR Organisms)
which requires an environmental risk assessment (ERA) to be
conducted for novel living microorganisms, including GMMs
(Canada, 1999; ECCC, 2023). However, this regulation also
covers microorganisms, which are not modified using
biotechnology and used in agricultural fields as well as modified
microorganisms used or produced in contained systems (e g. GM
E. coli). Only one of these applications falls under the scope of this
study, a transgenic Pseudomonas putida applied on surface soil in a
field trial for herbicide degradation (ECCC, 2016). The other
applications of microorganisms notified in Canada under the
NSNR concern the use of modified microorganisms in contained
systems (GM yeast, GM Trichoderma longibrachiatum, or GM
Trichoderma reesei), for therapeutic uses in humans (e.g., GM
Listeria monocytogenes), as well as notifications for agricultural
field trials with non-GMMs (e.g., Rhynchosporum secalis and
Phlebiopsis gigantea).

Frontiers in Genome Editing frontiersin.org12

Miklau et al. 10.3389/fgeed.2024.1376927

https://www.frontiersin.org/journals/genome-editing
https://www.frontiersin.org
https://doi.org/10.3389/fgeed.2024.1376927


In the US submissions for TSCA Experimental Release Applications
(TERAs) are required for environmental introduction of GMMs for
commercial research and development purposes. In 2020, a TERA for an
Alphaproteobacteria was submitted (OECD, 2021). In 2021, TERAs for
various strains, including those with a bioluminescent marker protein for
investigating microbial colonisation of plants and several strains of bacilli
to affect nitrogen production (OECD, 2022), were also submitted. Sayler
and Ripp report on a controlled field study investigating a transgenic
Pseudomonas fluroescens strain in contaminated soil for naphthalene
degradation (Sayler and Ripp, 2000).

In Brazil 34GMMs and 17 derivatives and enzymes (e.g., tryptophan,
alpha-amylase) for use as feed additive or industrial application (OECD,
2021) are approved (CTN Bio, 2023). Most of all, they comprise yeast
strains, Saccharomyces cervisiae, e.g., for ethanol production, and
microalgae, Prototheca moriformis, for triglyceride production. More
specifically, 27 genome edited products are commercially approved as
‘Innovative Genetic Improvement Technologies’, three of which are of
environmental relevance: a genome-edited Klebsiella variícola modified
for ammonium fixation, a genome-edited E. coli for use as feed
supplement in chicken fattening and a genome-edited Bacillus
thuringiensis israelenses expressing a β-1,4 endoglucanase from Bacillus
subtilis to be used as soil conditioner (Supplementary Table S25).

No licenses for dealings involving intentional release (DIRs)
involving microorganisms were found in Australia (OGTR, 2023).
No commercial approvals of GMMs, only viruses, were reported by
Argentina to the OECD in 2020 and 2021 (OECD, 2021; 2022; 2023).

4 Discussion

The great research interest in NGTs and their potential
applications is reflected in a vast number of scientific
publications. However, the development of marketable products
takes years, in particular for multicellular organisms, which makes
scientific reports on the development of GMOs a fairly good forecast
for future applications. This HS identified a broad range of potential
applications of GM terrestrial animals, GM fish, GM algae and
GMMs for use in the environment, of which only a few are tested or
used in the environment at the moment. However, the variety of
modified organisms and traits as well as the respective range of
applications reveals substantial challenges for regulators, risk
assessors and scientific experts, which need to be addressed urgently.

4.1 Methodological considerations

Only about half of the publications identified during the literature
searches, even less for GM algae, met our relevance criteria. Not all of
those publications were original research articles describing potential
GM applications (Figure 2), only about two-thirds for GM terrestrial
animals, half for GM fish, a fifth for GM algae and a third for GMMs.
Although not directly comparable, as we did not conduct a full text
analysis, these proportions are comparable to literature searches
conducted specifically on genome edited plants (Modrzejewski et al.,
2019; Menz et al., 2020). In a recent scientific report conducted on
NGTs in animals, only about 10% of the articles identified in the
literature search was considered relevant (van Eenennaam, 2023). We
found the majority of relevant articles to be reviews or specific articles

which use the term ‘genetically modified’ or any of its synonyms
(Supplementary Table S1) in the abstract or the indexing of articles,
even though the respective article did not specifically report on concrete
developments of GMOs. In addition, the separation of articles dealing
with applications for use in the environment as opposed to those for use
in contained systems or in food and feed products was not always
unambiguous, especially for unicellular GMOs (GM algae and GMMs).
Overall, the screening of results from literature searches constitutes a
labor-intensive, but significant step which has to be weighed against the
advantage of broadening the basis of literature sources searched (e.g.,
Web of Science, PubMed, CAB Abstracts).

The JRC study on market applications of NGTs focused on a survey
of technology developers, instead of a search in the scientific literature
(Parisi and Rodríguez-Cerezo, 2021). However, this approach has the
disadvantage that for confidentiality reasons the results could not be
presented for single applications, but only in an aggregated form.
Information from industry is highly relevant for a HS, as this more
clearly indicates the direction of market-relevant efforts undertaken.
However, a broad participation of respective companies is not easy to
achieve (Parisi and Rodríguez-Cerezo, 2021) and the information
gathered on the traits and introduced modifications of the GMOs
may not be sufficient to provide risk assessors with appropriate
information on emerging GM applications.

4.2 Emergence of manifold applications of
GMOs in the environment

With respect to GM terrestrial animals, our results show a clear
focus on GM farmed animals, i.e., on livestock species
predominantly used worldwide for food production, i.e., cattle
and pigs, followed by small ruminants, reflecting their worldwide
economic importance. Our HS did not identify GM applications in
wild terrestrial vertebrates or research and development resulting in
respective GMOs within the scope of our study (i.e., excluding gene
drives). In general, such applications are still at a conceptual stage or
at the very early stages of development, which were not picked up by
our search strategy. This also holds for applications pertaining to
scenarios brought forward for GM animals to serve species
conservation (Redford et al., 2014; Redford et al., 2019; Novak
et al., 2018; Kosch et al., 2019; Kosch et al., 2022; Samuel et al.,
2020; Macfarlane et al., 2022; see also BfN, 2022).

Developers of GM animals predominantly target traits which are
relevant to the production of livestock, in particular disease resistance,
performance and reproduction. A Joint Research Centre (JRC) study
which amongst others investigated potential market applications of GM
animals developed with NGTs, also identified applications for increased
biotic stress tolerance and improved meat yield as the focal fields for
development (Parisi und Rodríguez-Cerezo 2021). A recent publication
by EFSA reports similar findings with an additional focus on
reproductive traits (van Eenennaam, 2023). By far the highest
number of publications was identified for enhanced muscle growth,
with developments in many different species, ranging from ruminants
and pigs to chicken, quail, rabbits and even horses (Figure 5). This trait
is usually achieved by genetic modifications, i.e., knock out of the
myostatin gene. Due to its great economic relevance (see, for example,
Nathues et al., 2017) and the enormous challenges of controlling PRRS
at a larger scale (see, for example, Rowland and Morrison, 2012;
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Amadori et al., 2021), resistance to PRRS in pigs is the most frequently
targeted trait in a single species (see Figure 5; Chen et al., 2019;
McCleary et al., 2020; K; Xu et al., 2020). The apparent focus of
work on these GM traits is in line with economic interests driving
genetic modifications in livestock.

In GM fish, most GM applications target traits relevant for
reproduction, e.g., sex reversal and sterility. The development of
sterile fish is considered a prerequisite step for GM applications
involving intended environmental release, in order to prevent or
minimize gene transfer to related wild populations (VKM, 2021).
However, for applications directed to sex reversal, the ultimate
purpose of the modification is achieving a higher meat yield. Taking
this into account, the yield trait enhanced growth was, as for GM
terrestrial animals, the dominant trait in GM fish, modified in various
species (Figure 6). In a recent review, Gutási et al., 20023 particularly
highlight potential applications in fish medicine (Gutasi et al., 2023).
The JRC study, which focused on developments of NGTs in the
industrial sector, identified only seven aquatic animals, including six
fish species and corals (Parisi and Rodríguez-Cerezo, 2021). Reviews of
the scientific literature however revealed far more applications, i.e. 47 of
GM fish in this HS and 56 of genome edited fish in the EFSA scientific
report on NGT animals (van Eenennaam, 2023).

The majority of developments of GM algae aims at biofuel
production. However, substantial challenges of large-scale
production (e.g., in open pond systems) regarding environmental
safety as well as cost-effectiveness still have to be overcome (Abdullah
et al., 2019; Mobin et al., 2022). In addition, applications for other
types of uses in the environment, such as the restoration of water
sources or disease control in aquatic animals, were found.

For GMMs, similar fields of potential applications as in previous
work (van der Vlugt, 2020; Parisi and Rodríguez-Cerezo, 2021; VKM,
2021) were identified. However, we found substantially more
applications, in particular with respect to bioremediation (34) and
biocontrol purposes (31). Van der Vlugt (2020) identified 11 GMMs
and only one commercial application other than for food and feed use,
i.e., a soil bacterium for use as fertilizer (van der Vlugt, 2020). Parisi and
Rodríguez-Cerezo (2021) found applications of the same soil bacterium
and an endophyte fungus, but due to confidentiality reason could not
present applications of other soil bacteria and probiotics. However,
incompletely disclosed by Parisi and Rodríguez-Cerezo (2021), the
limited number of applications of GMMs for use in the environment
identified in these two studies compared to the great number identified
here (78) is astonishing. As far as the JRC study is concerned, these
differences can to some extent be explained by differences in the
methodological approach. It focused on the consultation of experts
and a survey of public and private technology developers, in order to
identify products already being marketed or at a confirmed pre-market
development stage (Parisi and Rodríguez-Cerezo, 2021). Although the
private sector currently predominantly applies GMMs in contained
systems as bio-factories, a field of applications that we excluded, our
results, gained mainly from the scientific literature, point to an increased
research interest in potential environmental applications. Van der Vlugt
et al. (2020) also searched the scientific literature, but focused on the
experimental and marketing stage, i.e., products already tested or used in
the environment, excluding basic and application-oriented research.

More recently, the EC requested a scientific opinion on new
developments in biotechnology applied to microorganisms from
EFSA (EC, 2022). An online survey launched by EFSA in spring of

2023 in preparation for a HS to be conducted in the course of this
mandate mostly identified starter cultures, probiotics and non-purified
products such as enzymes and lipids, but also biopesticides (Kagkli,
2023). Conducted in parallel to our study, this survey found seven
applications of GMMs produced with NGTs to be on the market
worldwide, of which only one consists of GMMs capable of propagation
or transfer of genes (i.e., category 4 according to EFSA guidance, EFSA,
2011). The recently published results of the EFSA HS reveal a focus on
applications as (or as a source of) food or food additives (Ballester et al.,
2023). Interestingly, apart from one application of a microalgae for the
production of aquatic bait with high PUFAs, only one environmental
application was identified, the soil bacterium (Klebsiella variicola)
applied as a supplement to nitrogen fertilisers (Ballester et al., 2023).

In contrast, our HS identified multiple research efforts with
GMMs for use in the environment, highlighting respective
applications for agricultural production in the future. Such
GMMs developed for application as plant protection products or
plant biostimulants in agriculture may, however, also be present in
food and feed products (Mullins et al., 2022) and thus have
implications for food and environmental safety.

Overall, differences in the research focus are apparent between the
four groups of organisms reviewed here. For GM terrestrial animals
including GM fish the emphasis lies on traits with relevance for
production processes, i.e., disease resistance and performance. In GM
fish this also includes modified reproductive traits. Unicellular organisms
however, are modified to be used as biological agents for bioremediation,
biocontrol or biofertilization and as production platforms for biological
substances such as biofuels. Although we did not analyse the identified
applications with respect to the various modification techniques applied
and types of modifications achieved, we noticed that genome editing
approaches are more frequently used in terrestrial animals and fish than
in unicellular organisms, where transgenic approaches still seem to
dominate. In microalgae, for example, technical hurdles exist with
respect to the application of certain genome editing tools (for review
see Doron et al., 2018, Jeon et al., 2017). Overall, in contrast to
transgenesis, which creates gene insertions at random sites in the
genome, genome editing approaches in GM terrestrial animals and
fish mostly result in gene knock-outs and indels at specific sites in
the genome.

4.3 Few market-relevant applications in
the pipeline

Despite high expectations for increased numbers of GMOs caused
by applications of NGTs, the overall number of market-relevant GM
applications identified in our HS was rather low, i.e., nine for GM
terrestrial animals and four for GM fish and GM algae and five for
GMMs. Of those, four terrestrial animals, three fish, no algae and three
microorganisms were developed by genome-editing approaches. A
complete picture of market-relevant developments of GMOs cannot
be obtained exclusively from a HS activity covering the scientific
literature. The product development of any GMO usually takes
years and does not necessarily result in a marketed product, like,
for example, the EnviroPig™ (CBAN, 2023) or is not published in
the scientific literature immediately. We therefore complemented
the literature search with the screening of grey literature, such as
OECD reports, websites and databases of national authorities.
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Publicly available information on authorisations, notifications
and risk assessment reports substantially increased the overall
number of identified market-relevant applications in most
organism groups, except for GM animals (Figure 1).

Relevant information on GM products notified and/or
authorized for deliberate release or placing on the market is
available from online sources of regulatory authorities from
different countries, e.g., Australia (OGTR, 2023), Canada (ECCC,
2023). However, we encountered various hurdles.

• Not all relevant information is available in English, often only in
national languages (e.g., Japanese, Portuguese, Spanish).

• Typically, only limited information on the regulated products
is available. Relevant information, e.g., on the specific genetic
modifications and the traits of particular GM products, is
considered confidential and thus not made publicly available.

• Notifications for approvals and approvals granted are not
indicative of whether the respective applications are indeed
released into the environment or placed on the market. A
permit issued in the US in 2020 for large scale field trials
involving the release of a GM virus in Orange plantations, for
example, was not implemented until April 2023. The Enviropig™
for instance was tested in controlled facilities in 2009 in Canada
(Environment Canada, 2012), but never developed further for use
as human food (CBAN, 2023).

• Typically, regulatory information about granted
authorizations does not provide any details regarding either
the extent or the discontinuation of the marketing of GM
products by consent holders.

• Regulatory frameworks and competences of national authorities
differ considerably between countries with respect to products of
NGTs, the regulation of which is still under discussion in some
countries (for review see Eckerstorfer et al., 2019; Menz et al.,
2020). If products of NGTs are generally not regulated based on
technological criteria (e.g., Japan, Australia) or deregulated after
being considered of low risk following a case-specific scientific
review (e.g., in the US, Canada or Brazil), only restricted
information on the product is available to the public (see for
example, US FDA, 2023 a; b). Thus, information necessary to
determine for example, species and traits modified, the techniques
used and the molecular mechanisms established to achieve the
trait, i.e., information needed to clearly identify a certain product
and also the basis for risk assessment, is not always provided.

Despite these difficulties, in our view a HS profits greatly from
information from national authorities to gain insight into upcoming
market applications and we therefore support personal requests for
information to national experts in regulatory authorities. Similarly,
we think that contributions of scientific experts from academia and
industry would be important for a HS.

4.4 Challenges of novel types of GMOs from
the risk assessors’ perspective

The broad range of GM species, traits and fields of applications
identified in this HS indicates a variety of challenges for the assessment
of potential negative effects for the environment. An environmental risk

assessment–beside information on the organism, themodified trait, and
the intended use–requires information on the genetic modification of
the organisms, at the genomic as well as the phenotypic level (for
overview see, e.g., EFSA, 2010; EFSA, 2013; CBD, 2018). Furthermore,
information on the modified species, its biology, and ecological
interactions is needed. For example, the broad range of potential
applications identified in this HS shows a variety of different
mechanisms of action resulting in a multitude of possible
pathways to harm. Some traits are brought about by gene
knockouts, others by the expression of specific effector
molecules like antimicrobial peptides or proteases, while
others express RNAs triggering an RNAi response in the
modified or in other organisms (e.g., pest species). Every
mechanism of action has different implications for risk
assessment and thus different applications vary in respect to
their level of risk. Risk assessment experience with the new types
of organisms discussed here as well as knowledge about potential
pathways to harm and potential unintended effects are limited.
While detailed knowledge on the species biology is certainly
available for farmed animals, less information is available for
unicellular organisms and their environmental interactions.
While for GM animals EFSA published a first guidance
document for the environmental risk assessment in 2013
(EFSA, 2013), comparable guidance for GMMs is missing.

In addition, it is crucial to consider substantial biological and
ecological differences between unicellular organisms and higher
animals. For example, the small size of microalgae or bacteria, the
higher number of individuals involved in applications, their short
generation time, their ability for horizontal gene transfer and to
form resting stages as well as different pathways of spread and
dispersal pose new questions and challenges for the environmental
risk assessment. Furthermore, these characteristics also have
consequences for practical applications. For instance, the stability of
the modified trait is paramount for the intended use, but might be
challenging tomaintain among a large number of unicellular organisms
with high replication rates. In particular, in case of intended use in the
environment, e.g., in case of biofertilizers, but also if spread occurs into
natural habitats, the genetic and phenotypic stability of these organisms
under variable environmental conditions is questionable with unknown
implications for natural ecosystems. Compared to GM microalgae and
GMMs, the reproduction of GM terrestrial animals identified in this HS
is generally subject to human control and horizontal gene transfer is not
a risk assessment issue.

Furthermore, GMMs to be applied in mixtures or used to fulfill
multiple purposes, for example, biocontrol agents that strengthen plant
health and growth characteristics, i.e., by acting as biofertilizers, would
lead to particular challenges. At present, even applications with
unmodified micoorganisms in the environment using natural or
artificial communities of microorganisms (also called synthetic
microbial consortia, also known by the name effective
microorganisms) targeting the alteration of microbiomes for specific
purposes (e.g., in the soil to enhance fertility or bind toxic pollutants) at
larger scales are only in their infancy, with limited experience on
interactions between MOs and on microbial communities. In the
future soil microbiome engineering may include genome editing of
MOs and may even be based on in situ simultaneous genetic
modification of several microorganism species (also called
community gene editing) (Jansson et al., 2023). Together with
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obvious challenges tomaintain the stability of microbial consortia in the
environment (Grandel et al., 2021), this would substantially increase the
complexity of risk assessments.

In addition to environmental effects, the genetic modification of
animals can also impact animal health and welfare (Weaver and
Morris, 2005; Eriksson et al., 2018; De Graeff et al., 2019), which also
have to be taken into account in the risk assessment (EFSA, 2012;
Kuzma et al., 2023). The trait of main interest identified here,
i.e., enhanced muscle growth, clearly has implications for animal
health and welfare. Knowledge on welfare aspects and criteria for their
assessment is well established for mammals and birds (Broom and
Fraser, 2015), increasingly established for fish (Segner et al., 2019;
Seibel et al., 2020), and also explored for GM animals, including
specifically those developed with NGT (Haskell et al., 2023).

5 Conclusion

An increase in GMOs, in particular products of NGTs, can be
expected on the market worldwide and in the EU in the near future. In
order to ensure safe and responsible use of GMOs in the environment,
regulatory oversight including risk assessment is necessary, and
considerable regulatory oversight has been established worldwide. A
thorough case-by-case assessment of various species-traits-environment
combinations with respect to their potential environmental implications,
however, depends on detailed information on themodified organism, its
traits, its use and environmental interactions as well as appropriate
guidance. We predict that the current limited level of experience and
limited amount of available scientific information will constitute a
challenge in the near future. In our view, this HS clearly underlines
the urgency for risk assessors and competent authorities to prepare for
respective information needs.

EFSA’s scientific opinion on new developments in biotechnology
applied to microorganisms, as mandated by the EC (2022), is expected to
be published in June 2024 (Kagkli, 2023). Additional EC-mandated work
by EFSA is under way on a scientific opinion on new developments in
biotechnology applied to animals, a draft of which is due in January 2025
(Ardizzone, 2023). We believe that the overview presented here provides
valuable input for both tasks, as it can serve as a basis for the identification
of assessment needs in risk assessment. Furthermore, it can help to
identify potential risk issues and assist the review of existing guidance
documents included in the EC mandate (EC, 2022). Further work,
however, e.g., regarding potential environmental effects, will be needed
in order to assist a thorough review of existing risk assessment guidance
on national, EU and international levels.
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