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Parasitic plants pose a significant threat to global agriculture, causing substantial
crop losses and hampering food security. In recent years, CRISPR (Clustered
Regularly Interspaced Short Palindromic Repeats) gene-editing technology has
emerged as a promising tool for developing resistance against various plant
pathogens. Its application in combating parasitic plants, however, remains
largely unexplored. This review aims to summarise current knowledge and
research gaps in utilising CRISPR to develop resistance against parasitic plants.
First, we outline recent improvements in CRISPR gene editing tools, and what has
been used to combat various plant pathogens. To realise the immense potential of
CRISPR, a greater understanding of the genetic basis underlying parasitic plant-
host interactions is critical to identify suitable target genes for modification.
Therefore, we discuss the intricate interactions between parasitic plants and
their hosts, highlighting essential genes and molecular mechanisms involved in
defence response and multilayer resistance. These include host resistance
responses directly repressing parasitic plant germination or growth and
indirectly influencing parasitic plant development via manipulating
environmental factors. Finally, we evaluate CRISPR-mediated effectiveness and
long-term implications for host resistance and crop improvement, including
inducible resistance response and tissue-specific activity. In conclusion, this
review highlights the challenges and opportunities CRISPR technology provides
to combat parasitic plants and provides insights for future research directions to
safeguard global agricultural productivity.
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1 Introduction

Plant pests and pathogens significantly threaten global food security, causing substantial
yield losses (Savary et al., 2019). Climate change exacerbates the issue by altering pathogen
assemblages (Chaloner et al., 2021). Efficient plant disease management is essential to
sustainably meet global food demand. Current disease management methods include
chemical control, which is efficient but can have adverse environmental impacts and
promotes resistance (Yin and Qiu, 2019). On the other hand, biological control, while
more environmentally friendly, often exhibits relatively limited consistency and cost-
effectiveness (Gerbore et al., 2014). However, successful examples of utilizing biological
controls and natural resistance varieties have demonstrated their potential in effectively
managing plant pests and diseases (Sauerborn et al., 2007; Gerbore et al., 2014). This
indicates that leveraging host resistance could offer a promising and more sustainable
alternative solution.
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Therefore, harnessing knowledge about plant-pathogen
interactions and defence responses is crucial for developing
successful disease management strategies (Veillet et al., 2020).
Developing disease-resistant crops relies on comprehending
multi-dimensional defence mechanisms, including pattern-
triggered immunity (PTI) and effector-triggered immunity (ETI),
to combat invading pathogens (Langner et al., 2018). Introducing
host resistance through conventional breeding is hindered by
linkage drag and limited genetic diversity within elite germplasm
(Tester and Langridge, 2010). Mutation breeding introduces
variation but also genome-wide undesired mutations (Toker
et al., 2007). Genome editing, particularly CRISPR-Cas, enables
precise gene modifications without off-target detrimental effects
(Menz et al., 2020).

In this review, we summarise the role of CRISPR in developing
resistance against parasitic plants, outlining its improvements and
applications against pathogens. Understanding the genetic basis of
plant-host interactions is vital for targeted gene modification. We
explore essential genes and mechanisms for defence and resistance,
evaluating CRISPR’s effectiveness in enhancing crop resistance. We
outline the challenges and opportunities of CRISPR technology for
safeguarding agricultural productivity.

2 CRISPR editing tools and recent
technological advances

Applications in plant biology have been no exception to the
promise of targeted genome manipulation provided by CRISPR/Cas
systems (Gao, 2021). While some of the earliest examples of
CRISPR/Cas utility in plant biology were gene knockouts in
model organisms, the technology has now been expanded to a
wide variety of applications including large-scale editing screens,
base editing, targeted insertions, and transcriptomic and epigenomic
modifications (Gaillochet et al., 2021; Pan et al., 2021; Ren et al.,
2021; Zong et al., 2022). In parallel, improvements have been made
in the delivery of CRISPR/Cas and other plant genome engineering
reagents to plant cells, particularly for non-model and crop species
(Ellison et al., 2020; Maher et al., 2020; Che et al., 2022; Demirer
et al., 2023). Together, advancements in genome editing technology
with efficient delivery of reagents provide great promise for gene
discovery and functional genome modification.

RNA guided endonuclease systems, such as CRISPR/Cas,
provide incredible precision for modifying specific targets in the
genome. CRISPR systems utilize a guide RNA (gRNA) comprised of
a constant repeat sequence and spacer sequence specific to a desired
target site (Jinek et al., 2012). The only requirement for this target is
an adjacent protospacer adjacent motif (PAM), which for S.
pyogenes Cas9 (SpCas9) consists of a simple 5′-NGG-3′ sequence
(Jinek et al., 2012). Minimal target sequence requirements, ease in
reagent design, and robust cleavage has quickly established CRISPR
as a highly effective tool for targeted genetic modification.

Many examples of CRISPR application in plants prioritize
targeting protein coding sequences, using indels to induce a
frameshift mutation (Zsögön et al., 2018). This approach has
been employed for large scale screens in which dozens to
thousands of unique mutants are generated to uncover novel
gene function and epistasis (Gaillochet et al., 2021). The

adaptation of CRISPR systems from other species, such as
CRISPR/Cas12 from Lachnospiraceae bacterium ND 2006 which
recognizes TTTV (V = A, C, and G) PAM sequences, has provided
greater flexibility in target site requirements (Zhang et al., 2021).
Greater precision inmodification type is provided by base editing via
cytidine or adenine deaminases fused to Cas9 nickases which can be
exploited for specific nucleotide or amino acid changes (Ren et al.,
2021). This precision is expanded by the recent development of
prime editors for targeted sequence modification, deletion, or
insertion (Zong et al., 2022). In other applications, CRISPR is
used to modify or disrupt noncoding or regulatory elements
resulting in quantitative variation (Rodríguez-Leal et al., 2017).
Modifications to gene regulation, however, are not limited to
genetic changes. By using a catalytically inactive Cas protein
tagged with transcriptional or epigenomic regulators, gene
expression can be regulated in a target-specific manner without
inducing double-stranded breaks (Pan et al., 2021). We recommend
a recent review for a more comprehensive discussion on recent
developments in CRISPR/Cas plant genome engineering reagents
(Capdeville et al., 2023).

3 CRISPR applications in disease and
parasite resistance

Recent advancements in genome editing technology provide
powerful tools to address various agricultural challenges, including
creating disease and pest-resistant crop lines (Langner et al., 2018;
Karmakar et al., 2022). CRISPR/Cas systems have demonstrated
remarkable efficiency in combatting virus infections, as well as
fungal and bacterial diseases across diverse plant species
(Boubakri, 2023). This versatile technology holds immense
promise for revolutionising agricultural practices and bolstering
crop resilience against pathogenic threats.

Engineering host resistance in plants has long been anchored in
the classical “gene for gene” hypothesis. This principle revolves
around the interaction between host R (resistance) genes and
pathogen Avr (avirulence) genes, determining the outcome of
resistance or disease occurrence. One approach for broad-
spectrum resistance is through the modification of R genes by
CRISPR/Cas reagents (Dangl et al., 2013). Precisely mutating the
leucine-rich repeat (LRR) domain within R genes enables alterations
in elicitor recognition specificity and confers resistance against
diverse pathogens. However, relying solely on a single R gene for
resistance may prove inadequate due to pathogen mutations that
might enable them to circumvent specific resistance mechanisms,
necessitating the exploration of alternative strategies. Concurrently,
host susceptibility (S) genes are potential targets for engineering host
resistance (van Schie and Takken, 2014). CRISPR/Cas editing of S
genes results in durable, broad-spectrum resistance against fungal
and bacterial pathogens.

In summary, the transformative potential of CRISPR/Cas
tools in engineering disease resistance in plants presents
exciting opportunities in agricultural research. While several
review articles have discussed the application of CRISPR in
plant disease resistance (Langner et al., 2018; Yin and Qiu,
2019; Boubakri, 2023), it is crucial to recognise that plant
pathogens, such as viruses, bacteria, and fungi, are not the sole
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FIGURE 1
Utilizing CRISPR Techniques to Enhance Pre-attachment and Post-attachment Defence Mechanisms against Parasitic Plants. (A) Overview of a
CRISPR-based approach to reinforce the host plant’s resistance mechanisms against stem parasitic Cuscuta species during and after attachment. The
cellular receptor CUSCUTA RECEPTOR 1 (CuRe1) is a leucine-rich repeat (LRR) receptor-like protein (RLP) responsible for recognizing Cuscuta-derived
factors at the cell surface (Hegenauer et al., 2016; Hegenauer et al., 2020). Teaming upwith the coreceptor SlSOBIR1, this recognition event initiates
downstream defensive reactions, including hypersensitive responses. In resistant tomato cultivars, the Cuscuta R-gene for lignin-based resistance 1
(CuRLR1) is an N-terminal coiled-coil (CC)-nucleotide-binding site (NBS)-LRR protein (Jhu et al., 2022a). CuRLR1 might be involved in sensing specific
signalling pathways or even function as a receptor for identifying unknown signals or effectors produced by Cuscuta. Activation of CuRLR1 sets off
subsequent signalling sequences, leading to the activation of genes participating in the lignin biosynthesis pathway. Consequently, there is a buildup of
lignin in the cortex region of the tomato stem, acting as a physical barrier to hinder haustorium penetration. Transcription factors like Lignin Induction
Factor 1 (LIF1; an AP2-like transcription factor) and MYB55 positively regulate enhanced resistance based on host lignin. Conversely, WRKY16, which
experiences upregulation upon infestation byCuscuta campestris, plays a critical role as a negative regulator of lignin production and the function of LIF1.
Based on previous research, one hypothesis suggests that WRKY16 acts as a connecting link (indicated by a dashed arrow) between CuRe1 and the
lignification response. By employing CRISPR technology to target and knockout WRKY16 precisely, a sustained accumulation of lignin is achieved,
thereby reinforcing the plant’s resilience against C. campestris. (B) Overview of CRISPR Applications for Reinforcing Pre-attachment Resistance by
Impeding SeedGermination of Root Parasitic Plants. The biosynthesis of strigolactones (SLs), orchestrated by the carotenoid pathway involving genes like
More Axillary Growth 1 (MAX1), is a pivotal mechanism explored for enhancing pre-attachment resistance. The MAX1 genes encode cytochrome
P450monooxygenases of the CYP711A subfamily, acting as carlactone (CL) oxidases responsible for converting CL into carlactonoic acid. CRISPR-based
knockout generated max1 mutant lines demonstrate heightened resilience against the root parasitic plant Phelipanche aegyptiaca. This resilience is
attributed to reduced SL levels due to max1 mutant. LOW GERMINATION STIMULANT 1 (LGS1), encoding a sulfotransferase enzyme, is pivotal in SL
biosynthesis. In susceptible sorghum host plants, the principal SL in root exudates is 5-deoxystrigol, a potent stimulant for root parasitic plant Striga seed
germination. In contrast, orobanchol, an SL with an opposing stereochemistry to 5-deoxystrigol, fails to induce Striga seed germination. By leveraging
CRISPR technology, targeted mutations in LGS1 facilitate a shift in the dominant SL composition within host plant root exudates. This composition
changes from 5-deoxystrigol to orobanchol, significantly reducing parasite seed germination rates. Consequently, these altered root exudates enhance
pre-attachment resistance in the host plants. The three-dimensional structural representations of carlactone, carlactonoic acid, orobanchol, and 5-
deoxystrigol are from PubChem. Text highlighted in red indicates the key reinforced resistance responses, while text highlighted in blue signifies the
potential trade-off side effects associated with constitutively activated resistance responses. This figure was created with https://www.biorender.com/.
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threats to food security. Parasitic plants also significantly impact
agricultural productivity worldwide (Jhu and Sinha, 2022).
According to a stochastic model that has been published, it is
projected that the yearly economic losses attributed to all parasitic
weeds will likely reach approximately US $200 million, with an
annual rise of roughly US $30 million (Rodenburg et al., 2016).
Compared to abundant studies on plant pathogens, research and
discussion on host resistance mechanisms to combat parasitic
plants are relatively limited. The application of CRISPR
technologies to improve crops’ defence against parasitic plants
is still in its early stages and lacks a systematic review. Therefore,
this review will focus on the importance and significance of
utilising CRISPR to resist parasitic plants, highlighting past
successful examples and proposing potential future research
directions to foster resilient and sustainable crop protection
measures.

4 Notorious parasitic weeds and global
food security

Parasitic plants pose a significant risk to food security globally,
approximately affecting millions of hectares of croplands and
targeting vital cereal crops and vegetables (Lanini and Kogan,
2005; Ejeta, 2007). These parasitic weeds develop specialised
organs, haustoria, to invade host vascular systems and hijack
water and nutrients (Yoshida et al., 2016), leading to substantial
reductions in agricultural productivity and, in some cases,
complete crop failure (Lanini and Kogan, 2005; David et al.,
2022). Based on the host tissue invaded, parasitic weeds can be
classified as stem or root parasites (Yoshida et al., 2016). Host-
dependence further categorises them into obligate hemiparasitic,
facultative hemiparasitic, or holoparasitic. A well-known example
of stem holoparasitic plants is the Cuscuta species (dodders)
(Figure 1), which parasitises numerous critical vegetable and
fruit crops. Conversely, root hemiparasitic plants, like the Striga
species, commonly known as witchweed (Figure 1), parasitise a
broad spectrum of cereal crops. More detailed classification
descriptions have been well discussed in previous review articles
(Yoshida et al., 2016). These diverse classifications highlight the
complexity of parasitic weed interactions with host plants and
ecosystems. Controlling parasitic plants is challenging due to their
well-adapted life cycles, high seed production, and genetic
diversity. For example, Striga can produce up to 0.5 million
seeds per plant, with seeds remaining viable in the soil for
extended periods (David et al., 2022). Their ability to disperse
seeds widely and adapt to various environments makes eradication
problematic.

Various methods have been attempted to manage parasitic plant
infestations, including agricultural practices, chemical or
bioinoculant applications, and host resistances (Sauerborn et al.,
2007). However, none of these methods alone provides a sustainable,
long-term solution. Conventional practices like hand weeding and
crop rotation have shown limited success (Kanampiu et al., 2018),
often due to factors such as continuous monocropping, which create
favourable conditions for the spread of parasitic plants. For a more
effective and sustainable approach to controlling Striga, utilising
multiple-layer defence and resistance mechanisms and integrating

parasitic plant-resistant or -tolerant cultivars with current
agricultural practice can provide more promising results
(Abdullahi et al., 2022).

5 CRISPR applications in enhancing
resistance against parasitic plants

5.1 Identifying targets for CRISPR: pre-
attachment and post-attachment resistance

Understanding how host plants defend against parasitic plants is
crucial for effectively utilizing gene editing to enhance host
resistance. Recent research has highlighted similar host-parasitic
plant defence response to interactions seen in other host-pathogen
relationships (Fishman and Shirasu, 2021; Jhu and Sinha, 2022). The
initial response involves pathogen-triggered immunity (PTI),
activating physical and biochemical defences within host plant
cells upon detecting parasite presence. However, parasitic plants
can counter PTI by introducing effectors into host cells, thus
promoting parasitism (Li and Timko, 2009; Su et al., 2020).
Should the host possess resistance, this leads to effector-triggered
immunity (ETI), causing programmed cell death and thwarting
further parasite development.

Host resistance mechanisms can be divided into pre-attachment
and post-attachment categories based on whether these defences
occur before or after parasitic plants establish themselves on hosts
(Fishman and Shirasu, 2021; Jhu and Sinha, 2022). The strategies of
pre-attachment and post-attachment resistance against root
parasitic plants are briefly introduced in the following sections.
More comprehensive insights into the underlying mechanisms can
be found in prior review publications (Fishman and Shirasu, 2021;
Jhu and Sinha, 2022).

5.2 CRISPR applications in enhancing pre-
attachment resistance

Pre-attachment resistance encompasses a range of strategies
employed by host plants to prevent the attachment and invasion
of parasitic plants before direct contact occurs. These mechanisms
include inhibiting the germination of parasitic plant seeds.
Strigolactones (SLs), a class of plant hormones, play a crucial role
in triggering the germination of root parasitic plants in the family
Orobanchaceae (Yoneyama et al., 2010) and signalling mycorrhizal
associations in soil (Waters et al., 2017; Kodama et al., 2022).
Various types of SLs have been identified as inducers for
parasitic plant growth. For instance, mutations affecting SL
production or composition in Striga species lead to diminished
germination rates (Gobena et al., 2017).

In addition to inhibiting parasite seed germination, some host
plants release toxic compounds through their root exudates,
hampering the development of parasitic plant seedlings (Serghini
et al., 2001; Echevarría-Zomeño et al., 2006). For example, certain
resistant sunflower varieties produce toxic coumarins that impede
Orobanche development (Serghini et al., 2001). On the other hand,
some hosts interfere with haustorium initiation: a vital first step for
establishing a connection between host and parasite. Similarly,
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specific sorghum variants disrupt the haustorium formation of
Striga asiatica, potentially through the release of inhibitory
substances in root exudates (Rich et al., 2004). These diverse
defence strategies of host plants against parasitic plants offer
promising avenues and targets for CRISPR approaches in
tackling parasitic plant infestations and advancing agricultural
sustainability.

In recent studies, genetic manipulation techniques such as
CRISPR-Cas9 have been employed to target genes responsible for
strigolactone biosynthesis and parasitism, resulting in resistance
against parasitic plants in crops respectively (Bellis et al., 2020; Bari
et al., 2021). For example, mutations affecting the LOW
GERMINATION STIMULANT 1 (LGS1) gene within resistant
Sorghum plants bring changes in the composition of
strigolactones (SLs) found in root exudates, resulting in a
decrease in the stimulatory impact on Striga germination
(Figure 1) (Gobena et al., 2017). LGS1 encodes a sulfotransferase
enzyme, and its functional loss leads to a shift from the potent Striga
germination stimulant, 5-deoxystrigol, to orobanchol, an SL with
differing stereochemistry (Figure 1) (Gobena et al., 2017).

However, these alterations in SLs have broader effects. Recent
CRISPR/Cas9 edited sorghum experiments emphasize that the
benefits of LGS1-based resistance are influenced by parasite
genotype and environmental conditions (Bellis et al., 2020). LGS1
knockout lines may exhibit increased susceptibility to S.
hermonthica genotypes sensitive to orobanchol. Additionally,
LGS1 mutant lines demonstrate a trade-off of diminished
expression of photosystem-related genes (Bellis et al., 2020). The
systemic reduction in these genes within LGS1 knockout lines
corresponds to the known role of SLs in enhancing light
harvesting (Mayzlish-Gati et al., 2010). Consequently, relying
solely on these CRISPR knockout lines and widespread
deployment could present challenges in sorghum cultivation.

Similarly, SL biosynthesis is also a target for CRISPR/Cas
mediated resistance. SLs are produced through the carotenoid
pathway involving Carotenoid Cleavage Dioxygenase (CCD) 7,
CCD8, and More Axillary Growth 1 (MAX1) genes (Alder et al.,
2012; Seto et al., 2014). Through CRISPR/Cas9-mediated gene
knockout in tomato, MAX1 disruption renders resistance against
the root parasitic weed Phelipanche aegyptiaca (Bari et al., 2021)
(Figure 1). TheseMAX1-Cas9 mutant lines demonstrate heightened
resistance to P. aegyptiaca due to reduced levels of SL (specifically
orobanchol). However, this genetic alteration influenced the
expression of the carotenoid biosynthesis gene phytoene
desaturase-1 (PDS1) and overall carotenoid levels compared to
their wild-type counterparts. Noteworthy, MAX1-Cas9 plants
exhibited morphological shifts, such as increased growth of
axillary buds, decreased plant height, and the emergence of
adventitious roots, diverging from the wild type (Bari et al., 2021).

The intricate mechanisms underlying pre-attachment
resistances remain largely unexplored. The identification of Striga
resistance genes plays a vital role in the development of genotypes
boasting lasting resistance. Fortunately, recent studies have
leveraged population structure analysis and genome-wide
association studies (GWAS) to pinpoint promising candidates
(Adewale et al., 2020; Kavuluko et al., 2021). The application of
CRISPR knockout techniques can help dissect the function of these
candidate genes and pathways. However, it is essential to

acknowledge that genetically modified plants generated through
CRISPR knockout may face growth/defence trade-offs. Relying
solely on CRISPR knockout lines could potentially pose
agricultural challenges. Therefore, to tackle this concern, the
integration of advanced CRISPR technologies with meticulous
regulation mechanisms like inducible systems or tissue-specific
expression becomes pivotal for effectively deploying this
approach in agriculture without compromising yield potential.

5.3 CRISPR applications in enhancing post-
attachment resistance

Following attachment, post-attachment resistance unfolds as a
plant’s defensive strategy, activated upon detection of parasitic
plants affixed to the host. This defence repertoire encompasses
various mechanisms, such as hypersensitive responses (HRs),
hormone-driven signalling pathways, fortification of cell walls,
and accumulation of defensive secondary metabolites (Fishman
and Shirasu, 2021; Jhu and Sinha, 2022).

Among these post-attachment resistance responses, modifying
cell walls has been prominently observed and reported in prior
research as a crucial strategy. Various host plants resistant to root
and stem parasitic plants have harnessed this mechanism
(Fishman and Shirasu, 2021; Jhu and Sinha, 2022). For
instance, investigations reveal that specific Heinz tomato
cultivars exhibiting resistance manifest inducible lignin-based
defence responses upon encountering the stem parasitic plant
Cuscuta campestris (Jhu et al., 2022a). Using CRISPR to target
and knock out the key negative regulator of this lignin-based
response yields a state of constant lignin accumulation,
bolstering the host plants’ resilience against C. campestris
(Figure 1). However, this fortification comes at the expense of
compromised vegetative growth (Jhu et al., 2022a).

Further exploration of different mechanisms in post-attachment
resistances and their integration into plant genetic engineering is
essential. While identifying pivotal elements within defence
mechanisms marks progress, it is evident that this information
alone falls short. It is imperative to delve into the facilitators of
inducible responses and strategically integrate these
systems—encompassing potential promoters, regulators, and
receptors—into plant genetic engineering (Zaidi et al., 2020).

6 Discussions and future perspectives

Many current and future applications of CRISPR-mediated
editing prioritize induction of genomic modifications followed by
segregating away lines with active CRISPR systems. This is valuable
when considering near-term agricultural incorporation and public
acceptance (Pixley et al., 2022). While CRISPR-mediated gene
modifications provide a valuable resource, it is crucial to
recognize that constitutively activated defence responses can
potentially result in a growth trade-off. Other future applications
of CRISPR-mediated editing may retain active CRISPR systems,
incorporating synthetic biology to balance trade-offs between
modifying defence responses and safeguarding crop productivity.
In addition to gene knockouts discussed previously, Section 6.1
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FIGURE 2
Enhancing Parasitic Plant Resistance using new CRISPR Technologies. (A) Protein engineering of receptors or transcription factors via CRISPR base
and prime editing modifies parasite perception and protein binding affinity. Susceptibility of certain host plants to parasitic plants results from signal or
effector non-recognition, hampering immune responses. CRISPR base and prime editing on receptors allows pathogen/effector perception, initiating
defence signalling. In parallel, susceptibility in some host plants arises from the inability to activate downstream resistance due to a missing link in
transcriptional activation. CRISPR base and prime editing adjusts transcription factor binding affinity, bridging connections and promoting downstream
defence responses. (B) Conditional immunity with inducible or cell/tissue-specific activation via CRISPR-mediated transcriptional regulation. Inducible
defence responses against parasitic plants are achieved through tailored promoters that express Cas enzymes and single-guide (sg) RNAs upon sensing
parasitic signals or effectors. Inactive dCas enzymes are unable to cleave DNA but can still bind specific sequences via guide RNAs. dCas proteins fused
with transcriptional activators (TA) trigger resistance-associated gene expression. Cell and tissue-type-specific promoters driving dCas enzymes and
sgRNA expression can confer localized defence responses. Therefore, the activation of particular target genes can be directed with CRISPR-based

(Continued )
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below presents the use of CRISPR systems for more precise
modifications and has potential for near-term impact. Sections
6.2–6.4 present broad future approaches for utilizing CRISPR
systems to directly regulate host or pathogen response and
defence, with implications for biological discovery. In all of these
directions, the integrated implementation of emerging CRISPR
technologies emerges as a promising avenue for advancing crop
productivity.

6.1 Precise modification of amino acid
sequence

Constitutive resistance responses can be engineered through
gene knockout of negative regulators, though it may entail a
growth trade-off. On the other hand, targeted defence
necessitates precise modification of amino acid sequences on
specific receptor-ligand binding sites or protein-protein
interaction sites. Recognition of parasitic plant signals and
effectors is the critical first step in host immunity. CRISPR base
editors or prime editors offer a promising strategy to modify
peptide sequences responsible for detecting pathogenic effectors
while preserving signal transduction motifs (Ren et al., 2021; Zong
et al., 2022). Flexible PAM base editors enhance the adaptability of
this approach, allowing gRNA targeting to any codon of interest
(Ren et al., 2021).

The vulnerability of specific host plants to parasitic plants results
from the failure to recognize signals or effectors, impeding effective
immune responses (Hegenauer et al., 2020). For example, CuRe1, a
typical LRR-RLP gene, is found in the genomic DNA of S.
lycopersicum but is missing in S. pennellii, which is susceptible to
Cuscuta reflexa. Notably, CuRe1 in S. lycopersicum has two closely
related genes, sharing 82% and 72% amino acid sequence similarity.
However, these paralogs do not induce ethylene production when
exposed to the Cuscuta factor. Similarly, other Solanaceae species,
like N. benthamiana and S. tuberosum, have CuRe1-like genes with
amino acid identities ranging from 70% to 80%, but also do not
confer responsiveness to the Cuscuta factor in these species
(Hegenauer et al., 2016). It’s worth mentioning that within the
1121 amino acid length CuRe1 protein, there are only 18 potential
N-glycosylation sites (NxT/S) in the LRR ectodomain (Hegenauer
et al., 2016). These sites could play a pivotal role in protein folding
and influence ligand binding. These NxT/S sites might serve as
potential candidate targets for CRISPR base or prime editing to
engineer receptor structure, potentially enhancing their ability to
detect parasite signals or effectors and thus initiating resistance
signalling (Figure 2A modified receptor). Similarly, susceptibility in
certain host plants emerges from the incapacity to trigger

downstream resistance due to a deficiency in transcriptional
activation (Jhu et al., 2022a). In this context, CRISPR base or
prime editing can fine-tune the binding affinity of transcription
factors, bridging the gap and fostering subsequent defence reactions
(Figure 2A modified TF).

6.2 Inducible defence responses

Inducible defence responses are an adaptive mechanism triggered
by plants upon detecting threats such as pathogens, herbivores, or
parasites. This mechanism optimizes resource allocation, thereby
bolstering survival and reproductive success (Shudo and Iwasa,
2001). Prior research suggests many post-attachment resistance
reactions against parasitic plants leverage inducible mechanisms
that precisely activate in the presence of such parasites (Jhu et al.,
2022a). This intricate host-parasitic plant interplay likely guides the
co-evolution of resistance strategies, explaining the diverse gene
expression profiles and resistance responses among different crop
genotypes cultivated across various African regions (Kavuluko et al.,
2021; Mutinda et al., 2023). Embracing inducible defence responses
holds critical significance in genetic engineering and breeding
endeavours geared towards developing improved future crops
(Gurr and Rushton, 2005).

CRISPR technologies are well poised to enable inducible defence
response. Expression of Cas enzymes by inducible promoters
enables genome manipulation only in response to specific stimuli
including pathogens and parasites (Ji et al., 2018; Wang et al., 2020).
Of particular interest is the use of CRISPR/Cas-based artificial
transcription factors in which Cas enzymes are tagged with
enzymes repressing or promoting the transcription of a particular
gene (Pan et al., 2021). Using multiplexed gRNA expression, entire
pathways can be artificially regulated as an adaptive immunity
mechanism. For example, inducible defence responses can be
achieved by utilizing promoters that can be activated upon
perceiving parasitic plant signals or effectors to drive the
expression of Cas proteins and guide RNAs (Figure 2B). This
CRISPR-based synthetic transcriptional regulation fuses a Cas
protein to a transcriptional activator, which can then activate
downstream genes involved in resistance responses (Figure 2B).
This multifaceted approach to resistance enables broad-spectrum
resistance, utilizes preexisting inducible multilayer resistance
responses (Yoshida and Shirasu, 2009; Fishman and Shirasu,
2021; Jhu and Sinha, 2022) by expression of Cas from
endogenous host promoters and will not be easily overcome by
parasitic plants. Furthermore, inducible expression of CRISPR/Cas
reagents reduces potential off-target or pleiotropic effects of defence
response (Ji et al., 2018).

FIGURE 2 (Continued)
synthetic transcription factor complexes. This CRISPR-mediated transcriptional regulation strategy offers conditionally activated transcription for
parasitic plant resistance. (C)Hypothetical illustration of syntheticmobile CRISPR application for enhancing host resistance against parasitic plants. Based
on previous studies, parasitic plants haustorium not only can transport water and nutrients but can also transport miRNA, mRNA, and small peptides
bidirectionally, and thesemobileC. campestrismolecules might act as trans-species regulators of host-gene expression andmay act as effectors or
virulence factors to promote parasitism. CRISPR can be applied in plant host resistance by directly targeting genes of parasitic plants. Recent
advancements offer compact CRISPR-Cas variants like CasΦ and CasMINI, under half the size of traditional Cas9. These compact forms could serve as
candidates transported through haustoria to directly modulate parasitic plant genes. Leveraging CRISPR KO for targeted mutation and Cas13 for highly
precise transcriptional regulation. This figure was created with https://www.biorender.com/.
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6.3 Cell-type or tissue-type specific defence
mechanisms

Cell-type-specific barriers and defence mechanisms at the
host and parasite interface constitute a pivotal aspect of plants’
repertoire to counteract parasitic plant incursions (Hu et al.,
2020; Jhu et al., 2022b; Kawa and Brady, 2022). These
mechanisms encompass diverse facets, such as epidermal
barriers that physically redirect or impede parasitic plant
structures, cortex barriers fortified with substances like lignin,
or callose, and endodermal barriers fostering lignin, silica, or
phenolic compound accumulations that thwart parasitic plant
penetration (Yoshida and Shirasu, 2009; Yoder and Scholes,
2010; Mutuku et al., 2019). Such cell-type-specific defence
mechanisms decisively curtail the invasion, establishment, and
subsequent development of parasitic plants.

Similar to inducible defence response, cell-type-specific
promoters can limit CRISPR activity to desired cell types
(Decaestecker et al., 2019). Cell-types and tissue-types-specific
promoters driving Cas enzymes and guide RNA expression can
confer localized defence responses (Figure 2B). We anticipate the
continued use of single-cell RNA sequencing technology (Cole et al.,
2021; Cuperus, 2022) and spatial transcriptomics (Giacomello et al.,
2017; Pour and Yanai, 2022) will facilitate the discovery of cell-type
specific gene regulatory elements which can be exploited for genome
engineering applications.

6.4 Direct targeting of parasitic plant genes
and miRNAs

Based on prior research, haustoria of parasitic plants serve
not only as conduits for water and nutrients but also facilitate the
bidirectional transport of miRNA, mRNA, and small peptides
(Kim et al., 2014; Shahid et al., 2018; Liu et al., 2020). Recent
investigations have demonstrated inter-species small RNA
trafficking through haustoria between C. campestris and its
host and prompted the hypothesis that mobile miRNAs from
C. campestris might function as cross-species regulators,
influencing host gene expression and potentially acting as
virulence factors that enhance parasitism (Figure 2C) (Shahid
et al., 2018; Wu, 2018; Johnson and Axtell, 2019). On the other
hand, multiple earlier studies have employed host-induced gene
silencing (HIGS) to combat parasitic plants by generating
transgenic host plants that produce specific small RNAs
targeting genes of the parasitic plant (Tomilov et al., 2008;
Alakonya et al., 2012; Farrokhi et al., 2019; Jhu et al., 2021;
Jhu et al., 2022b). In a similar role, CRISPR may be applied for
plant host resistance by directly targeting genes, mRNAs, and
miRNAs of parasitic plants (Figure 2C). A distinct advantage of
this approach is the ability to easily express multiplexed gRNAs
to confer multilayer defence responses (Zhan et al., 2023).
Indeed, multiplexed targeting of essential viral protein regions
successfully reduced viral pathogen accumulation by 99%
(Ji et al., 2018). Furthermore, by using inducible promoters
this study was not able to detect statistically significant off-
target mutations in transgenic plants (Ji et al., 2018). gRNAs

designed for this approach should specifically recognize pivotal
parasite effectors or virulence factors, including mobile miRNAs,
while avoiding targets also present within the host plant.
Harnessing Cas enzymes targeting RNA, such as Cas13
(Abudayyeh et al., 2017), allows highly specific and
multiplexed regulation of parasitic plant gene expression at
the transcriptional level. Utilizing multiple methods to directly
regulate parasitic gene expression, including both CRISPR and
proven HIGS targeting, is likely to be critical for broad spectrum,
effective host immunity. A pivotal aspect of adopting this
approach is the optimization of CRISPR reagents, ensuring
enhanced mobility and high specificity. The foremost
challenge revolves around delivering CRISPR/Cas components
effectively. The widely utilized CRISPR Cas9, a 160-kDa protein
(Jinek et al., 2014), poses delivery hurdles due to its substantial
size. Notably, previous research indicates that the majority of
mobile proteins transported via haustoria range from 20 to
70 kilodaltons (kDa), though a noteworthy 20% exceed
70 kDa, with the largest reaching 611 kDa (Liu et al., 2020).
Moreover, technological advancements have yielded smaller
alternatives such as CRISPR CasΦ or CasMINI (Pausch et al.,
2020; Xu et al., 2021), each less than half the size of conventional
Cas9. These compact Cas variants hold promise as potential
candidates that can be transported via haustorium and target
parasitic plant genes directly (Figure 2C). Also promising is the
inclusion of mobile RNAmotifs to promote cell to cell mobility of
gene editing reagents (Ellison et al., 2020). Mobile RNAs have
been utilized to move CRISPR reagents across graft junctions
from transgenic rootstock to wild-type meristematic cells (Yang
et al., 2023). Investigating transport mechanisms and
incorporating mobile motifs into Cas proteins will be pivotal
in future research directions to facilitate their transport.

7 Conclusion

In harnessing the potential of CRISPR technologies for
enhanced crop protection, the intricate balance between
modifying defence responses and preserving crop yield becomes
apparent. Through high-throughput gene editing, targeted
nucleotide modifications, and synthetic gene regulation, CRISPR
systems have been shown to provide immense power in gene
discovery and crop improvement. CRISPR knockout in
bolstering pre-attachment resistance by targeting strigolactone
pathways and enhancing post-attachment defences through cell
wall fortification offers promising avenues for combating parasitic
plants. However, the trade-offs of genetic modifications impacting
plant growth and physiology, underline the need for precise
regulatory approaches. Inducible defence responses through
innovative synthetic transcriptional regulation offer adaptive
immunity, while cell-type specificity empowers localized
defences. The precise modification of amino acid sequences
using CRISPR base and prime editing presents a future of
tailored immunity. The convergence of these strategies embodies
a promising avenue for bolstering crop productivity and resilience,
underpinning a transformative shift in agricultural practices
towards more robust and sustainable solutions.
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