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There is a wide range of application for nanotechnology in agriculture, including
fertilizers, aquaculture, irrigation, water filtration, animal feed, animal vaccines,
food processing, and packaging. In recent decades, nanotechnology emerged as a
prospective and promising approach for the advancement of Agri-sector such as
pest/disease prevention, fertilizers, agrochemicals, biofertilizers, bio-stimulants,
post-harvest storage, pheromones-, and nutrient-delivery, and genetic
manipulation in plants for crop improvement by using nanomaterial as a carrier
system. Exponential increase in global population has enhanced food demand, so
to fulfil the demandmarkets already included nano-based product likewise nano-
encapsulated nutrients/agrochemicals, antimicrobial and packaging of food. For
the approval of nano-based product, applicants for a marketing approval must
show that such novel items can be used safely without endangering the consumer
and environment. Several nations throughout the world have been actively
looking at whether their regulatory frameworks are suitable for handling
nanotechnologies. As a result, many techniques to regulate nano-based
products in agriculture, feed, and food have been used. Here, we have
contextualized different regulatory measures of several countries for nano-
based products in agriculture, from feed to food, including guidance and
legislation for safety assessment worldwide.
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Introduction

The security of food, nutrition, and energy has come under intense strain due to the
climate problem, population growth, a scarcity of arable land, diminishing crop yields, and
growing crop use as raw materials for industry (Rosenzweig et al., 2020). According to
United Nations 2019, the demand for food will increase as the world population increases by
34% by 2050 (www.un.org). The developed crops with enhance phenotypes through
conventional plant breeding methods (classical and mutational) will not be enough to
meet the immediate availability of food and fodder globally. However, these methods were
unable to introduce features that are not currently present in many plant species (Arya et al.,
2020). Despite of setbacks, there is time to choose modern, scientific and technical

OPEN ACCESS

EDITED BY

Sagar Arya,
Khalifa University, United Arab Emirates

REVIEWED BY

Poonam Sashidhar,
Iowa State University, United States
Hakim Manghwar,
Lushan Botanical Garden (CAS), China

*CORRESPONDENCE

Binod Kumar Mahto,
krvinod09@gmail.com

†These authors have contributed equally
to this work

RECEIVED 05 April 2023
ACCEPTED 09 June 2023
PUBLISHED 21 June 2023

CITATION

Kumari R, Suman K, Karmakar S, Mishra V,
Lakra SG, Saurav GK andMahto BK (2023),
Regulation and safety measures for
nanotechnology-based agri-products.
Front. Genome Ed. 5:1200987.
doi: 10.3389/fgeed.2023.1200987

COPYRIGHT

© 2023 Kumari, Suman, Karmakar,
Mishra, Lakra, Saurav and Mahto. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Genome Editing frontiersin.org01

TYPE Review
PUBLISHED 21 June 2023
DOI 10.3389/fgeed.2023.1200987

https://www.frontiersin.org/articles/10.3389/fgeed.2023.1200987/full
https://www.frontiersin.org/articles/10.3389/fgeed.2023.1200987/full
https://www.frontiersin.org/articles/10.3389/fgeed.2023.1200987/full
http://www.un.org/
https://crossmark.crossref.org/dialog/?doi=10.3389/fgeed.2023.1200987&domain=pdf&date_stamp=2023-06-21
mailto:krvinod09@gmail.com
mailto:krvinod09@gmail.com
https://doi.org/10.3389/fgeed.2023.1200987
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genome-editing
https://www.frontiersin.org
https://www.frontiersin.org/journals/genome-editing
https://www.frontiersin.org/journals/genome-editing#editorial-board
https://www.frontiersin.org/journals/genome-editing#editorial-board
https://doi.org/10.3389/fgeed.2023.1200987


advancement to redress the agricultural insufficiencies. To meet the
demand, several crops were successfully improved/enhanced against
biotic and abiotic stresses through plant genetic engineering via the
genetic modification or genetic alteration of plants by using
advanced biotechnological technique like RNA interference
(siRNA and miRNA) and genome editing (CRISPR/Cas:
Clustered Regularly Interspaces Palindromic Repeats/CRISPR
associated protein). Nanobiotechnology has the potential to
revolutionize the field of plant genetic engineering, specifically by
leveraging nanocarriers to transport biomolecules into plant cells
(Arya et al., 2021a). Recently, nanotechnology emerged as an
advance technique for the improvement of agricultural products
and play a significant impact on the world’s economy and industries
(Haris et al., 2023).

Although seeds were set for this field’s research about 50 years
ago, history reveals that applications of nanotechnology to
agriculture have only just begun to appear (Mukhopadhyay,
2014; Chhipa, 2019; Sashidhar et al., 2019; Pramanik et al., 2020;
Usman et al., 2020). In last decade, for the sustainable agriculture,
several nanotechnology-based mechanisms were developed for the
improvement of crops using nanomaterials (NMs) or engineered
nanomaterials (ENMs) against various biotic and abiotic stresses
such as nanopesticides, nanobiofertilizers, nanobiosensor and soil
decontamination (Usman et al., 2020; Sonawane et al., 2021; An
et al., 2022). As a result, recent years have seen a considerable
increase in interest in studies pertaining to uses of nanotechnology
in agriculture and, the use of nanomaterials is necessary to enhance
the fertilization process, raise yields through nutrient optimization
and reduce the need for plant protection agents (Huang et al., 2015;
Parisi et al., 2015; Kah et al., 2019). For the delivery of nanomaterials
and engineered nanomaterials in to the plant cells, the cell wall act as
a physical barrier to delivering functional biomolecules due to its
size exclusion limit (5–20 nm) (Zhang H. et al., 2019; Arya et al.,
2021b). Conventional biomolecule approaches in plants have
significant limitations such as low transgenes efficiency, a small
species spectrum for application, a small variety of cargo types, and
tissue injury. Cunningham et al. (2018), suggested that the
advancement in nanotechnology have made it possible to get
beyond constraints in traditional methods: Nanoparticles (NPs)
show promise for the passive transfer of DNA, RNA, and
proteins across species by enhance genetic engineering (GE) via
targeted and an efficient delivery. The constraints of designing an
ideal NC with a broad host range, high cargo loading capacity, and
efficiency are thus the subject of great attention, to access plant cells
and the potential to move inside a plant’s system without the need
for external mechanical aid (Jinek et al., 2012; Burlaka et al., 2015;
Cunningham et al., 2018; Demirer et al., 2019).

Nano carrier based genetically modified crops has been
successfully introduced in several plants such as rice, tobacco,
rapeseed, maize, wheat, onion, cotton, cowpea, spinach and
arugula (Demirer et al., 2019). These nano-based agri-products
need to be addressed with different disciplines and strategies to
meet or evaluate any kind of hazardous (physico-chemical
parameters) or negative effects in humans, animals and
environment. Various countries including the United States of
America, Europe, India, China, Canada, Australia, and others
have developed regulatory frameworks to address genetically
engineered agricultural products using nanocarriers. These

regulations focus on overseeing nano-based products in the field
of plant genetic engineering on a global scale. So, in the current
review discussed about different regulatory measures of several
countries for NC-based products in agriculture including their
guidance and legislation for safety assessment throughout the world.

Advanced approaches for biomolecules
delivery

Methods based on nanotechnology have been suggested as low-
cost, simple, and reliable ways to transfer genes or other compounds
into plants with great efficacy and minimal harm (Chandrasekaran
et al., 2020). Biomolecules and chemicals have been successfully
delivered into cells in both plant and mammalian cell systems using
nanotechnology-based techniques (Ahmar et al., 2021). Genetic
engineering was frequently employed in plant improvement to
increase productivity and crop fitness, including yield
enhancement, nutritional quality enhancement, herbicide
tolerance, drought resistance, insect resistance, and viral
resistance (Altman and Hasegawa, 2011; Chang et al., 2013;
Wang et al., 2014; Mahakham et al., 2017; Fortuni et al., 2019;
Mahto et al., 2020). According to the base material, NPs for gene
delivery can be categorized as carbon nanotube-based (DNA and
RNA), silicon-based (DNA and protein), metallic-based NPs (only
deliver DNA as genetic cargo), or polymer-based NPs (encapsulated
RNA, DNA and proteins) (Silva et al., 2010; Bates and Kostarelos,
2013; Moon et al., 2014; Kafshgari et al., 2015; Karimi et al., 2016;
Zhao et al., 2017; Zhou et al., 2018; Su et al., 2019; Sashidhar et al.,
2021) (Supplementary Table S1; Figure 1). The size, concentration
and types of nanomaterials plays a crucial role to decide the level of
toxicity. The increased surface area of the nanomaterials with
decreased size shows a positive correlation with the uptake
efficiency by the plants which might be responsible for the
adverse effects in the system (Nel et al., 2006). It has been
reported that size less than 5 nm and 20 nm can easily
translocate through the pores of cell wall and plasmodesmata,
respectively. This reflects that, the decreased size of nanoparticles
can easily be taken up by the plant system which ultimately leads to
the toxicity in the plants after accumulation (Ma et al., 2010; Rico
et al., 2011; Sashidhar et al., 2021). Besides size and concentration,
nanomaterials should possess few properties for its positive outcome
and interaction with the plant system such as reactivity and light
confinement, etc. Due to these properties, composition of
nanomaterials maybe categorized as carbon nanomaterial, metal-
based nanomaterial, quantum dots and nano polymers (Sun et al.,
2019; Yan et al., 2021). The toxicity level of such nanomaterials can
be assessed during the germination period and growth period in
which the carbon nanomaterials (fullerene, carboxyfullerene,
graphene oxide, etc.) and metal-based nanomaterials (Cerium,
titanium, zinc oxide, etc.) had showed the desirable results in the
plant system by reducing the level of toxicity as well as the negative
effect. Its effects had been recorded in Arabidopsis, Nicotiana, bean,
flax, etc. (Liu et al., 2010; 2013; Clement et al., 2013; Anjum et al.,
2014; Cunningham et al., 2018). Another strategy to make a superior
plant which is capable to cope up with the biotic as well as abiotic
stress, is possible through the nano-priming technology. This
technique involves the treatment of desired seeds with the
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nanoparticles and priming is done in nanoparticles solution. The
resultant nanoprimed seeds then produces a nanoprimed plants
such as Zea mays, Oryza sativa and Triticum aestivum with the
enhanced properties at molecular, chemical and physiological level
(Wang Z. et al., 2019; Afzal et al., 2021; Shah et al., 2021; Imtiaz et al.,
2023). Overall, NPs should have the ability to crossing the cell wall
and localise to organelles.

Nanotechnology-based agriculture product

In recent years, various tools and devices created by
nanotechnology, such as nanodevices and nanocapsules have

been utilized to improve, diagnose and treat plant diseases,
transport active ingredients to specific target areas, purify waste
water, and improve plant nutrient absorption. With the increasing
global population, climate change and burden on pests and diseases
of agricultural crops, food security is a major concern especially in
the developing nations. Nano-based agriculture products are
designed and developed with aim of enhancing food security
around the world. Nanotechnology is being used for synthesizing
and delivering; fertilizers, pesticides, plant growth regulator,
transgenic plants with disease resistance, high yield and more
nutritional values (Oliveira et al., 2015; He et al., 2019) (Figure 2).

Nanofertilizers
Conventional fertilizers are being used indiscriminately in

agriculture to keep pace with ever increasing demand of food for
increasing population as conventional chemical fertilizers have
lower nutrient uptake capacity and suffer high losses.
Nanofertilizers (<100 nm in size) are outstanding alternative to
overcome negative impact of conventional fertilizers because they
reduce nutrient loss from fertilizers and application rate of fertilizers
(Dimkpa and Bindraban, 2017; Babu et al., 2022). Research and
development of nanofertilizers is skewed towards plant
micronutirents like iron, zinc, manganese, copper, Nickel and
molybdenum (Supplementary Table S2) (Dimkpa and Bindraban,
2017; Sashidhar et al., 2020; Al-Mamun et al., 2021; Arya et al., 2022;
Soni et al., 2023). Nano-carbons (Biochars), carbon nano-onions
and Chitosan NPs have reported to boost growth and quality of
agricultural crops (Saxena et al., 2014; Tripathi et al., 2017; Khalifa
and Hasaneen, 2018; Arya et al., 2022). When tomato plants were
treated with Cu NPs at 250 mg L−1 resulted in significant increase in
fruit quality and bioactive compound, whereas treatment at
500 mg L−1 had negative effect on bioactive compound of tomato
fruits (López-Vargas et al., 2018). Joint application of silica
nanoparticles (SiNPs) at 250 mg L−1 and 600 mg L−1 through soil
and foliage respectively, resulted in enhancement of flowering
characteristics, growth and flowering period in marigold, Tagetes
erecta L. (Attia and Elhawat, 2021). ZnO NPs at 100–200 mg/kg

FIGURE 1
Various approaches for the delivery of biomolecules, DNA, RNA and protein using nano-/peptide-carrier. This figure was drawn by using BioRender
(https://www.biorender.com).

FIGURE 2
Several applications of nanotechnology in agri-food sector.
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improves photosynthesis of cilantro (Coriandrum sativus), though
at 400 mg/kg affected the nutritional components of the cilantro.
ZnO NPs also showed less toxicity than bilk and ionic counterparts
(Pullagurala et al., 2018). CuO and ZnO NPs can traverse through
many chemical and biochemical processes which could damage
plant cells, affect soil biota and nitrogen fixation and even could
result in critical health problem (Rajput et al., 2020). Thus,
nanofertilizers have the ability to transform the agriculture, but
nanoparticle related toxicity at high concentration, their
accumulative effect and biosafety related comprehensive study
must be done before commercialization nanofertilizers (Tripathi
et al., 2017; Khalifa and Hasaneen, 2018; He et al., 2019).

Nanopesticides
Different types of pesticides has been used indiscriminately

worldwide, owing to the growing demand of agriculture-based
food product. This indiscriminate use of different pesticides, has
been associated with unprecedented environmental damage due to
contamination of soil, water and food, leading to harmful effect on
non-target pest species and humans (Guillette et al., 2012; Oliveira
et al., 2015). Thus, it is important to develop a novel technique to
minimize harmful effect of pesticides, without lowering production
of agricultural crops.

Nanopesticides (nanometer size range) provide a solution with
its three characteristic features; to increase solubility, slow/targeted
release and protection against premature degradation (Kah et al.,
2013). Nanopesticides can be based on nanoemulsion,
nanodispersion, solid liquid nanoparticles and nano metals
(Supplementary Table S2). Silica Nanoparticles (SiO2-NPs, 2 g/kg
of stored grain) showed 100% mortality against four stored product
insects; Rhizopertha dominica, Tribolium castaneum, Sitophilus
oryzae, and Orizaephilus surinamenisis (El-Naggar et al., 2020).
Temperature-responsive mixed micelle (MMs–Pys–7) of
pyrethrins exhibited higher larvicidal activity against Culex
pipiens pallens at 26 °C (Zhang Y. et al., 2019). Carboxymethyl
chitosan (CMCS) modified mesoporous silica nanoparticles
(MSN), when loaded with azoxystrobin results in better
fungicidal effect against tomato late blight Phytophthora infestans
(Xu et al., 2018). Nanopermethrin based on nanoemulsion are more
potent larvicidal than bulk permethrin (Anjali et al., 2010).
Nanometal based imidacloprid has shown significantly high
toxicity against Martianus dermestoides than aqueous formulation
(Guan et al., 2008). Thus, nanopesticides are better alternative of
pesticides as they more potent and required in low dosages than
traditional pesticides with high toxicity against target organism and
low toxicity in aquatic medium.

Nano-based plant growth regulators
Plant growth hormones like auxins, cytokinins, gibberellins,

nitric oxide, abscisic acid, and ethylene (either synthetic or
natural) are used in various ways in agriculture to improve crop
production (Pereira et al., 2017). Various nanoparticles system is
used for control release of plant growth hormones for most
efficient and justified use as these result in sustained release of
active agent as well in protecting against degradation processes
(Supplementary Table S2). Nitric oxide (NO)-releasing chitosan
nanoparticles (CS NPs) containing the NO donor S-nitroso-
mercaptosuccinic acid (S-nitroso-MSA) allow a sustained NO

release resulting in increase of NO bioactivity under salt stress
in maize plants (Oliveira et al., 2016). It has been observed
that when tomato plants are grown on multi-walled carbon
nanotubes (CNTs) supplemented soil, they bear twice flower
and fruit as compared with control plants thus CNTs acted as
plant growth regulators (Khodakovskaya et al., 2013). In
another study, poly (γ-glutamic acid) (γ-PGA) and chitosan
(CS) polymers nanoparticles encapsulated gibberellic acid
(GA3) showed increase biological activity, rate of seed
germination and leaf area in Phaseolus vulgaris as compared to
free GA3 (Pereira et al., 2017).

Nanosensors
Nanosensers has many beneficial aspects in agriculture such as

real time monitoring of environmental conditions and stress, crop
growth and diseases, pest attack and nutrient efficiency
(Supplementary Table S3) (Chen and Yada, 2011; He et al.,
2019). Development and advancement in the nanosensers
technology had great contribution towards sustainable agriculture
by real time monitoring of fertilizers and pesticides in the field,
thereby reducing their excess use. Many different nanomaterials
haven been used for development of nanosensors for pesticides
detection; various nano composites with polymers, Carbon
nanotubes (CNT), gold nanoparticles (Au NP) and quantum dots
(QD). Nanosensors based on enzymes acetylcholinesterase (AChE)
and/or choline oxidase (ChOx) enzyme as biological receptors for
detection of organophosphorus and carbamate pesticides in smaller
amount and are very sensitive in these pesticides detection (Zheng
et al., 2011; Cesarino et al., 2012; Liu et al., 2012; Talarico et al., 2016;
Telarico and Georgiev, 2016). Soil nutrients like nitrate have been
successfully detected in lower concentration in the direct filed setting
using Cysteamine modified gold nanoparticles and graphine oxide
based nanosensors (Mura et al., 2015; Pan et al., 2016). Graphene-
based nano-antenna integrated carbon nano-tubes sensed volatile
organic compound (VOCs) emitted by plant during insect attack,
hence can be used for insect attack monitoring (Afsharinejad et al.,
2016). Nanosensors have been utilized for detection of water tension
of soil in real time, soil pH and nutrient, prediction of nitrogen
intake and detection of pathogen in soil (Bellingham, 2011; Fraceto
et al., 2016).

Nanotechnology in transgenic plant development
For sustainable agriculture, plant genetic engineering is crucial

for enhancing crop output, quality, and resilience to abiotic/biotic
stressors (Shaheen and Abed, 2018). Plant genetic engineering
frequently makes use of Agrobacterium, biolistic bombardment,
electroporation, and poly (ethylene glycol) (PEG)-mediated
genetic-transformation systems. These methods do, however,
have drawbacks, such as species dependence, loss of plant
tissues, ineffective transformation, and high cost (Fiaz et al.,
2021). Methods of gene delivery based on nanotechnology have
recently been developed for plant genetic modification (Altpeter
et al., 2016; Wang J. W. et al., 2019; Zhang Y. et al., 2019). Excellent
transformation efficiency, strong biocompatibility, acceptable
exogenous nucleic acid protection, and the potential for plant
regeneration are all demonstrated by this Nano strategy. Yet, the
gene-delivery mechanism in plants that is mediated by
nanomaterials is still in its infancy, and there are several
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obstacles to its widespread usage. The traditional methods of
genetic modification applied to plants. The advancement of the
development of gene delivery methods based on nanomaterials is
then taken into consideration. The use of plant nanotechnology in
conjunction with CRISPR-Cas-mediated genome editing is being
addressed (Puchta et al., 1993; Wright et al., 2005; Christian et al.,
2010). The conceptual advancements, techniques, and real-world
applications of nanomaterial-mediated genetic transformation
will help advance plant genetic engineering in contemporary
agriculture.

Several nanoparticle-mediated transgenic delivery techniques
and the plant biotechnology industry’s crowded field of existing
methods. Together with a mix of the many newly created
technologies, some other intriguing approaches, such the CRISPR
technology, might be used in the processes of changing crops.
Unfortunately, a number of significant problems still need to be
fixed (Supplementary Table S4). The majority of these problems
might be resolved by combining several approaches for the efficient
delivery of various genomes, the design and production of
contemporary hybrid NMs, and the advancement of pollen
magnetofection and CRISPR techniques (Watson et al., 2018;
Ahmar et al., 2021). In conclusion, while nanotechnology
applications may take some time to join the area, sustained
support for and knowledge of these challenges will guarantee that
the field is not negatively impacted in the future.

Safety and regulations for nanotechnology
based agri-products around the world

Nanotechnology has been increasingly used in the agricultural
sector for various purposes, such as enhancing crop growth,
improving soil quality, and developing more efficient and targeted
pesticide delivery systems (Prasad et al., 2014; Prasad et al., 2017;
Hassani et al., 2020; Singh et al., 2021). However, the use of
nanotechnology in agri-products raises apprehensions about the
possible environmental and health risk factors related to their use
(Khot et al., 2020; Mishra and Singh, 2021).

To address these concerns, regulatory bodies around the world
have developed guidelines and regulations to ensure the safe use of
nanotechnology in agri-products. Here are some of the key regulations
and guidelines related to nanotechnology-based agri-products.

1. Regulatory Oversight: Each country has its own regulatory
framework for using nanotechnology in agriculture. In the
United States, Pesticides are governed by the Environmental
Protection Agency (EPA), while agricultural biotechnology
products are governed by the U.S. Department of Agriculture
(USDA). Nanotechnology in foods and pesticides are governed
by the European Chemicals Agency (ECHA) and the European
Food Safety Authority (EFSA) in the European Union.

2. Risk Assessment: Regulatory bodies require risk assessment before
approval of any nanotechnology-based agri-product. This includes
evaluating the toxicity of the nanomaterials used, the potential for
environmental release, and the impact on human health.

3. Labeling: Regulatory bodies require labeling of agri-products that
contain nanomaterials. This helps consumers make informed
decisions about the products they purchase and use.

4. International Standards: International standards have been
developed to assure the safety and quality of nanotechnology-
based agri-products. The International Organization for
Standardization (ISO) has developed several standards related
to nanotechnology, including ISO/TS 80004-1, which provides
terminology and definitions for nanomaterials.

5. Research and Development: Regulatory bodies encourage
research and development of nanotechnology-based agri-
products to ensure that the products are safe for human
health and the environment. Overall, the safe use of
nanotechnology in agri-products requires a collaborative effort
between researchers, manufacturers, regulatory bodies, and
consumers. It is important to continue to monitor and assess
the risks associated with nanotechnology-based agri-products to
ensure their safety and effectiveness (Arya et al., 2021a). Some
examples of nanomaterials that have been studied and defined by
United States regulatory bodies on parameters such as safety, risk
assessment, and effectiveness (Supplementary Table S5).

Different countries have established various regulations and
guidelines to ensure the safe use and development of
nanotechnology-based agri-products (Supplementary Table S6).
Here are some examples:

United States of America: Nanotechnology-based agricultural
products in the United States are regulated by a number of
governmental organisations, including the Food and Drug
Administration (FDA), the Environmental Protection Agency
(EPA), and the United States Department of Agriculture
(USDA). There are nanomaterials that have been approved
by the US-FDA for use in food applications. The following
are some examples:

1. Titanium dioxide: This is a common food additive used as a
whitening and brightening agent in various food products, such
as candy, chewing gum, and powdered sugar. Nanoscale forms of
titanium dioxide have been approved for use in food products
(Powell et al., 2016).

2. Silica: Nano-sized silica is used in some food products as an anti-
caking agent, such as in powdered foods like coffee creamer (US
Food and Drug Administration, 2020).

3. Zinc oxide: Nanoscale zinc oxide has been approved for use as a
food colorant and as a dietary supplement (US Food and Drug
Administration, 2020).

4. Iron oxide: Nanoscale iron oxide has been approved for use as a
food colorant (US Food and Drug Administration, 2020).

In general, these agencies have a common goal of ensuring the
safety and efficacy of nanotechnology-based agricultural products,
while also ensuring that they are in compliance with applicable
regulations.

Here are some key laws, safety measures, and regulations related
to nanotechnology-based agri-products in the United States:

1. The Toxic Substances Control Act (TSCA): This law gives the
EPA the authority to regulate the production, importation, use,
and disposal of chemical substances, including nanomaterials.
Nanomaterials used in agri-products fall under the TSCA,
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and companies are required to provide the EPA with information
on the potential health and environmental effects of these
materials.

2. The Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA):
This law regulates the registration and use of pesticides in the
United States. Pesticides that contain nanomaterials must be
registered with the EPA, and companies must demonstrate that
the products are safe for use.

3. The Food, Drug, and Cosmetic Act (FD&C Act): The FDA
regulates the use of nanotechnology in food and cosmetics.
The FD&C Act requires that food and cosmetic products be
safe for use and properly labelled. The FDA also requires that
manufacturers of nanotechnology-based products provide
information about the safety and efficacy of these products.

4. The National Organic Program (NOP): The NOP is a USDA
program that regulates the use of organic labelling on agricultural
products. Products that are labelled as organic must meet certain
standards, including restrictions on the use of synthetic substances.
The NOP does not specifically address the use of nanomaterials in
organic products, but companies that produce organic products
are still required to comply with all applicable regulations.

5. The Nanotechnology Research and Development Act (NRDA):
This law directs federal agencies to coordinate research and
development efforts related to nanotechnology. The goal is to
ensure that the risks and benefits of nanotechnology are well
understood and that appropriate regulations are in place.

In addition to these laws and regulations, there are several safety
measures that companies can take to ensure the safety of
nanotechnology-based agri-products, including.

1. Conducting rigorous safety testing: Companies should conduct
thorough safety testing to identify any potential risks associated
with nanomaterials used in their products.

2. Labelling: Companies should properly label their products to
provide consumers with information about the ingredients used
in their products. Labelling only the ingredients is a necessary
but not sufficient requirement for meeting regulatory
guidelines. Apart from listing the ingredients, other relevant
information such as the dosage, potential exposure routes, and
any associated health risks should also be provided to ensure
consumer safety. For instance, in the case of nanotechnology-
based agri-products, the U.S. Food and Drug Administration
(FDA) recommends that companies provide additional
information about the nature and properties of the
nanomaterials used, such as their size, shape, and surface
area, to enable risk assessment and management. Companies
are also advised to evaluate the potential exposure pathways and
take measures to minimize exposure to workers, consumers,
and the environment (U.S. Food and Drug Administration,
2018).

3. Environmental impact assessments: Companies should conduct
assessments to determine the potential environmental impact of
their products.

4. Training: Companies should train employees on the proper
handling and disposal of nanomaterials to reduce the risk of
exposure.

Overall, the regulation of nanotechnology-based agri-products
in the United States is an evolving field, and companies must stay
up-to-date on the latest laws, safety measures, and regulations to
ensure the safety and efficacy of their products.

United Kingdom: In the UK, the regulation of nanotechnology-
based agri-products falls under the responsibility of several
governmental agencies, including the Food Standards Agency
(FSA), the Department for Environment, Food and Rural Affairs
(DEFRA) and the Health and Safety Executive (HSE).

One of the primary regulations governing the safety of
nanotechnology-based agri-products in the UK is the
Nanotechnology Safety Guidance produced by the HSE in 2011.
This guidance provides information on the safe handling and
use of nanomaterials in various industrial settings, including
agriculture.

The FSA is responsible for ensuring the safety and quality
of food products, including those derived from nanotechnology.
In 2014, the FSA published a report on the safety of nanomaterials
in food, which recommended that the use of nanotechnology
in food products be subject to risk assessment and evaluation.
Additionally, DEFRA has issued guidance on the use of
nanomaterials in agriculture, including the safe handling and
disposal of nanomaterials in agricultural settings. This guidance
was updated in 2018 to reflect the latest scientific knowledge
on the potential risks associated with nanomaterials. Overall,
the regulation of nanotechnology-based agri-products in the
UK is a rapidly evolving field, with new regulations and
guidance being issued on a regular basis to reflect the latest
scientific understanding of the potential risks and benefits of
nanotechnology.

Europe: Nanotechnology-based agri-products, such as
pesticides, fertilizers, and animal feed additives, are subject to
various regulations in Europe to ensure their safety for human
health and the environment. Here are some of the key laws and
regulations for nanotechnology-based agri-products in Europe,
along with their reference and year (EFSA Scientific Committee,
2011; ECHA, 2012).

1. Regulation (EC) No 1107/2009 - This regulation establishes the
rules for placing plant protection products on the market in the
European Union (EU). It requires that all plant protection
products be authorized before they can be sold or used. The
regulation also sets out the data requirements for the
authorization of plant protection products, including those
that contain nanomaterials (Year: 2009)

2. Regulation (EC) No 396/2005 - This regulation establishes
maximum residue levels (MRLs) for pesticides in or on food
and feed derived from plants and animals. It also applies to
pesticides containing nanomaterials (Year: 2005)

3. Regulation (EC) No 1935/2004 - The general safety standards for
products and materials that come into contact with food are
established by this regulation. It applies to all nanomaterials used
in food contact materials, including those used in agri-products
(Year: 2004)

4. Regulation (EC) No 767/2009 - This regulation establishes the
rules for the authorization and marketing of feed additives in the
EU. It also requires that all feed additives be safe for animals and
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the environment. The regulation applies to all feed additives
containing nanomaterials (Year: 2009)

5. Regulation (EU) No 2019/1009 - This regulation establishes the
rules for the making available on the market of CE-marked
fertilizers. It also requires that all fertilizers be safe for human
health and the environment. The regulation applies to all
fertilizers containing nanomaterials (Year: 2019)

In addition to these regulations, there are also guidelines and
recommendations from various European agencies and
organizations, such as the European Chemicals Agency (ECHA)
and European Food Safety Authority (EFSA), on the safety
assessment of nanomaterials used in agri-products.

Canada: In Canada, nanotechnology-based agri-products are
regulated under several laws and regulations to ensure their safety
for consumers and the environment. Some of the key regulations
and their corresponding references and years are.

1. Canadian Environmental Protection Act, 1999 (CEPA): This act
is the primary federal legislation for regulating the environmental
and human health impacts of nanotechnology-based products,
including agri-products. The CEPA provides the framework for
the assessment and management of nanomaterials under the
New Substances Notification Regulations (CEPA, 1999;
Chemicals and Polymers, 2015).

2. Food and Drugs Act (FDA): This act is Canada’s federal
legislation for regulating food safety and consumer health.
The FDA provides the legal framework for ensuring the
safety, quality, and efficacy of food products, including those
that use nanotechnology. The FDA also sets out labeling
requirements for food products that use nanomaterials
(FDA, 2019a; FDA, 2019b).

3. Pest Control Products Act (PCPA): This act is Canada’s
primary legislation for regulating pest control products,
including those that use nanotechnology. The PCPA sets out
the requirements for registering and labeling pesticide products,
as well as the safety and efficacy requirements for these products
(PCPA, 2002).

4. Canada Agricultural Products Act (CAPA): This act regulates the
marketing and inspection of agricultural products in Canada.
Under this act, agri-products that use nanotechnology are subject
to inspection and quality control standards to ensure their safety
for consumers (CAPA, 1985).

Australia: The use of nanotechnology in agriculture is a rapidly
growing field, and in Australia, the regulation of nanotechnology-
based agri-products is overseen by several regulatory bodies. Here
are some of the relevant laws, safety standards, and regulations for
nanotechnology-based agri-products in Australia (Bartholomaeus,
2011).

1. Australian Pesticides and Veterinary Medicines Authority
(APVMA) regulates the registration and use of agrochemical
products, including those that incorporate nanotechnology. In
2014, the APVMA released a guidance document on the

regulation of nanomaterials in pesticides and veterinary
medicines (APVMA, 2014).

2. Food Standards Australia New Zealand (FSANZ) is responsible
for regulating the safety and labelling of food products, including
those that use nanotechnology. In 2015, FSANZ published a risk
assessment of titanium dioxide nanoparticles in food (FSANZ,
2015).

3. Work Health and Safety (WHS) laws in Australia require that
employers take reasonable steps to ensure the safety of workers
who may be exposed to nanomaterials in the workplace. The
National Industrial Chemicals Notification and Assessment
Scheme (NICNAS) also provides guidance on the safe
handling and use of nanomaterials (Safe Work Australia, 2019).

4. The Therapeutic Goods Administration (TGA) regulates the
safety and efficacy of therapeutic products, including those
that use nanotechnology. In 2015, the TGA released a
guidance document on the regulation of medicines that
contain nanomaterials (TGA, 2015).

China: In China, the regulation of nanotechnology-based
agricultural products falls under the jurisdiction of several
government agencies, including the Ministry of Agriculture and
Rural Affairs (MARA), the State Administration for Market
Regulation (SAMR), the National Health Commission (NHC),
and the Ministry of Ecology and Environment (MEE). The
following are some key laws, safety standards, and regulations
related to nanotechnology-based agricultural products in China,
along with their references and years of enactment (http://en.nim.ac.
cn/; http://en.nim.ac.cn/division/overview/924).

1. Regulations on the Safety Assessment of Agricultural Genetically
Modified Organisms (MARA Order No. 7)—2001. This
regulation sets out the safety requirements and procedures for
the approval of genetically modified agricultural products,
including those that utilize nanotechnology.

2. Safety Requirements for Food and Food Additives Containing
Nanomaterials (NHC No. 13)—2011. This guideline establishes
safety requirements and evaluation procedures for food and food
additives that contain nanomaterials, including those used in
agriculture.

3. Technical Guidelines for Safety Assessment of Nano-Scale
Agricultural Products (MARA No. 198)—2014. This guideline
provides a framework for the safety assessment of
nanotechnology-based agricultural products, including their
production, processing, and use.

4. Administrative Measures for Safety Evaluation of New Varieties
of Agricultural Genetically Modified Organisms (SAMR Order
No. 8)—2020. This regulation outlines the safety evaluation
procedures for new varieties of genetically modified
agricultural products, including those that utilize
nanotechnology.

5. Measures for the Administration of Environmental Safety
Assessment of Agricultural Genetically Modified Organisms
(MEE Order No. 12)—2021. This regulation sets out the
procedures and requirements for the environmental safety
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assessment of genetically modified agricultural products,
including those that use nanotechnology.

India: In India, the regulation of nanotechnology-based agri-
products falls under the purview of various agencies and laws,
including the Department of Biotechnology (DBT), the Ministry
of Environment, Forest and Climate Change (MoEFCC), the Food
Safety and Standards Authority of India (FSSAI), and the Indian
Council of Agricultural Research (ICAR).

Here are some laws, safety measures, and regulations related to
nanotechnology-based agri-products in India (dbtindia.gov.in).

1. The Environment (Protection) Act, 1986: This law empowers
theMoEFCC to regulate the production, import, export, and use
of hazardous substances, including nanomaterials
(Environment Protection Act, 1986).

2. The Hazardous Waste (Management, Handling, and
Transboundary Movement) Rules, 2016: These rules require
the registration and authorization of facilities that generate,
store, and dispose of hazardous wastes, including nanomaterials
(Hazardous Waste Rules, 2016).

3. The Food Safety and Standards Act, 2006: This law establishes
the Food Safety and Standards Authority of India (FSSAI),
which regulates the safety and quality of food products in India.
The FSSAI has issued guidelines for the use of nanotechnology
in food products, including agri-products (Food Safety and
Standards Act, 2006).

4. The Insecticides Act, 1968: This law regulates the registration, sale,
distribution, and use of insecticides in India. Nanotechnology-
based insecticides fall under the purview of this act (Insecticides
Act, 1968).

5. The Seeds Act, 1966: This law regulates the quality of seeds used
in agriculture. The act has been amended to include provisions
for the regulation of genetically modified seeds, which may
include the use of nanotechnology (Seeds Act, 1966).

6. DBT Guidelines on Safety Assessment of Foods Derived from
Genetically Engineered Plants and Microorganisms (2017):
These guidelines provide a framework for the safety
assessment of foods derived from genetically engineered
plants and microorganisms, including those produced using
nanotechnology.

7. MoEFCC Notification on Manufacture, Storage and Import of
Hazardous Chemicals Rules (1989): This notification requires
manufacturers and importers of hazardous chemicals, including
nanomaterials, to comply with certain safety and environmental
regulations.

8. FSSAI Regulations on Food Additives (2011): These
regulations specify the conditions for the use of food
additives, including those derived from nanotechnology, in
food products.

9. ICAR Guidelines on Nanotechnology Research in Agriculture
(2010): These guidelines provide a framework for the safe and
responsible use of nanotechnology in agricultural research and
development.

10. Indian Pharmacopoeia Commission (IPC) Guidelines on
Nanoparticle Characterization (2019): These guidelines provide

a framework for the characterization of nanoparticles, including
those used in the production of agri-products.

Overall, the regulation of nanotechnology-based agri-products
in India is still evolving, and there is a need for more comprehensive
and coordinated regulatory frameworks to ensure their safety and
efficacy.

Note: The above laws, safety measures, and regulations related
to nanotechnology-based agri-products in India may also be
subject to additional guidance and policies issued by the
respective regulatory agencies. It is important to note that these
regulations are constantly evolving and subject to change, and
there may be additional guidelines and standards at the local or
regional levels.

Conclusion and future prospects

Nanotechnology have paved a way to find out the new
strategies to develop novel methods to bring scientific
interventions that enabled us to raise a quality product in the
field of agriculture and production of agri-products. Although,
there are few ill effects of the technology which need to be
mitigated to make it a successful approach. Further, researchers
or scientists need to work on green synthesis approach to make it
more reliable and ecofriendly which is the utmost need of the
society. Green synthesis technique does not require any toxic
solvent as a capping and reducing agent which eradicates the
environmental pollution. Nano priming of seeds can also be the
one helpful technique in order to maintain the pace of sustainable
agriculture through the development of nano-primed plants that
bear alterations at the molecular level and produces ultimate
modifications in the phytochemicals and physiological changes
in the plant without causing any harmful effect to the environment
and plant itself. Moreover, it is simple, cost effective and requires
less energy. Bottom down method should be focused. Apart from
this, primary screening needs to be done to decide the usage of
optimal dose or concentration of the chemicals or extracts used.
Mode of delivery of nanoparticles should be specifically monitored
or framed so that it will not carry any toxic substance with it. The
effectiveness of respective regulatory systems for handling
nanotechnologies has been actively investigated by a number of
nations worldwide. Overall, the safety measure and regulations for
nanotechnology based agri-product need to be updated time to
time as the research in this field continues to come out with the
new scientific interventions and its output which need to be
screened by the regulatory bodies.
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