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Periodontitis, a prevalent global oral health issue, is primarily characterized by
chronic inflammation resulting from bacterial infection. Periodontitis primarily
affects the tissues surrounding and supporting the teeth, encompassing the
gingival tissue, periodontal attachment apparatus, and the bony socket. The
disease mechanism results from intricate interactions between hereditary
factors, the body’s defense mechanisms, and shifts in the composition of oral
microbiota, with each element playing a crucial role in the initiation and
advancement of the pathological process. The early symptoms of
periodontitis are often not obvious, resulting in patients often not seeking
medical attention until they are seriously ill, so finding biomarkers for
periodontitis is essential for timely diagnosis and treatment. In this study, we
selected two datasets (GSE10334 and GSE16134) by in-depth analysis of publicly
available sequencing data of affected and unaffected gum tissue in periodontitis
patients in the GEO database. To identify key genes associated with periodontitis
pathogenesis and explore potential therapeutic biomarkers, we employed two
complementary computational approaches: Random Forest, a robust machine
learning algorithm for feature selection, and Weighted Gene Co-expression
Network Analysis (WGCNA), a systems biology method for identifying co-
expressed gene modules. Through comprehensive analysis of these combined
datasets, our objective is to elucidate the underlying molecular pathways
governing periodontal disease progression, thereby identifying novel
therapeutic targets that may facilitate the design of improved clinical
interventions for this condition. This study establishes a substantial scientific
foundation that contributes to both clinical applications and fundamental
research in periodontitis. The findings not only offer valuable insights for
developing early diagnostic strategies and therapeutic interventions but also
provide a robust theoretical framework to guide future investigations into the
molecular mechanisms underlying this complex disease.
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1 Introduction

Periodontal inflammation, a chronic condition triggered by microbial activity, is
characterized by the progressive breakdown of the periodontal support system, including
the gums, periodontal ligament, and alveolar bone, ultimately leading to compromised tooth
stability and functionality (Manresa et al., 2018). Periodontitis affects people of all ages and is
particularly common in adults. Epidemiological evidence demonstrates a significant positive
correlation between periodontitis prevalence and advancing age, with disease incidence
showing a progressive upward trend across successive age cohorts (Holde et al., 2017;
Pischon et al., 2008; Hewlett et al., 2022; Eke et al., 2016). Global epidemiological data
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from 2021 revealed that severe periodontitis affected over 1 billion
individuals worldwide, corresponding to an age-standardized
prevalence rate of 12.50%. Projections indicate a substantial
44.32% increase in disease burden, with the affected population
expected to exceed 1.5 billion cases by 2050, highlighting the
growing global challenge of this oral health condition (Nascimento
et al., 2024). According to statistics, the proportion of men suffering
from periodontitis is usually higher than that of women, whichmay be
associated with various contributing elements, including tobacco use
patterns among males, dental care maintenance practices, and
fluctuations in endocrine system regulation (Del Pinto et al., 2024;
Kim et al., 2014; Michelson et al., 2022; Liu Y. et al., 2018). The
development and progression of periodontal disease result from
intricate interactions among diverse causative elements, with
genetic predisposition, dysregulated host immune responses, and
microbial dysbiosis constituting key determinants in the disease’s
pathological progression (Teles et al., 2022; Di Stefano et al., 2022;
Darby, 2022). Specifically, genetic predisposition may make some
individuals less effective in the immune response to bacterial infection,
and thus more prone to inflammation (Laine et al., 2012). At the same
time, if the bacterial community in the mouth is unbalanced, the
excessive growth of certain pathogenic bacteria will also exacerbate the
inflammatory response (Bendek et al., 2021). Bacterial invasion can
cause a local immune response, leading to an inflammatory response
that further destroys periodontal tissue, which can eventually lead to
tooth loosening, tooth loss, and even affect overall health, enhancing
predisposition to chronic pathological conditions, particularly
cardiovascular disorders and metabolic syndromes including
diabetes mellitus. In addition to genetic factors, external
determinants including tobacco consumption, inadequate dental
care maintenance, suboptimal dietary patterns, and underlying
medical conditions can also significantly increase the risk of
periodontitis (Genco and Borgnakke, 2013; Bartold, 2018).

Periodontitis is usually caused by plaque buildup, which leads
to an inflammatory response in the gums and periodontal tissues.
The symptoms of early periodontitis are mild and may be
manifested as bleeding gums, bad breath and swollen gums
(Teles et al., 2022; Heitz-Mayfield, 2024). These symptoms are
often mistaken for general gum problems and therefore easily
overlooked or delayed treatment. However, if left untreated, the
disease can progress to the middle and late stages, leading to
serious destruction of periodontal tissue and even tooth loosening
or loss. The treatment of advanced periodontitis is difficult and
requires comprehensive treatment such as deep cleaning and
surgical repair, and the risk of disease recurrence is high. With
the objective of improving long-term patient outcomes and disease
management, some new treatment methods, such as laser therapy
and antimicrobial therapy, have been applied in clinical practice in
recent years, and have achieved certain curative effects (Graziani
et al., 2017; Kwon et al., 2021; Herrera et al., 2022; Cobb, 2017).
However, there are risks such as high cost, strict technical
requirements, risk of drug resistance and side effects, and the
early diagnosis and treatment of periodontitis still face great
challenges due to the lack of obvious early symptoms and
specific biological markers. This study attempts to find key
genes related to periodontitis by integrating microarray data
and using random forest and WGCNA algorithms to provide
reliable scientific basis for its early diagnosis and treatment targets.

2 Material and methods

2.1 Methods for data processing and
software tools

The primary genomic data were acquired from the publicly
accessible Gene Expression Omnibus (GEO) repository (Clough
et al., 2024), including transcriptome gene expression matrix,
platform information, and clinical information. This study
included two datasets: GSE10334 and GSE16134, which were
divided into the periodontitis gingival affected group and the
periodontitis gingival unaffected group.

All computational procedures and statistical evaluations were
performed utilizing the R programming platform (v4.4.0),
maintained by the R Development Core Team. This open-source
statistical software package can be accessed through its official web
portal at https://www.r-project.org/ (Ariel de Lima et al., 2022). To
address potential batch effects across multiple datasets, we
implemented the ComBat normalization method implemented in
the sva package of the R programming environment. This
methodology, grounded in empirical Bayesian statistical
principles, was implemented to address batch-related variations
and ensure dataset consistency (Leek et al., 2012). The ComBat
approach adjusts for systematic differences between batches by
utilizing a Bayesian framework to ensure that data from different
batches is comparable for downstream analysis. This method can
effectively correct batch effects caused by technical or experimental
factors in the data, thereby reducing the interference of these non-
biological variations on the results. Transcriptomic profiling and
identification of differentially expressed genes (DEGs) were
conducted utilizing the limma computational tool within the R
statistical environment, which implements an empirical Bayesian
approach for analyzing microarray data. This well-established
statistical framework enables robust detection of differentially
expressed genes while controlling for multiple testing (Ritchie
et al., 2015). To visualize transcriptional variations, hierarchical
clustering was conducted through the pheatmap visualization tool
implemented in the R programming framework. This package
implements robust clustering algorithms and color normalization
methods to generate comprehensive heatmap visualizations,
enabling effective pattern recognition and biological
interpretation of gene expression profiles. To systematically
investigate inter-gene co-expression relationships and identify
functional gene modules, We utilized the WGCNA
computational framework, which was executed within the R
programming environment. This comprehensive systems biology
approach utilizes soft-thresholding and topological overlap matrix
calculations to construct scale-free gene co-expression networks,
facilitating the detection of functionally relevant gene clusters and
key regulatory elements correlated with distinct phenotypic
characteristics (Langfelder and Horvath, 2008). When screening
for key genes, we also used the “randomForest” R package (Nguyen
et al., 2021), a powerful machine learning tool to implement a
decision tree and assess the relative contribution of each gene to
screen out the key genes that are most relevant for disease. Upon
detection of pivotal candidate genes, pathway enrichment
investigations were conducted utilizing the clusterProfiler
computational tool to characterize associated biological
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mechanisms and molecular networks. This comprehensive analysis
incorporated Gene Ontology (GO) enrichment across three
domains (biological process, molecular function, and cellular
component) and pathway analysis using the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database, with false discovery rate
(FDR) correction applied to ensure statistical rigor (Wu et al., 2021).
The fundamental biological mechanisms, molecular interactions,
and cellular signaling cascades associated with pivotal genes were
systematically investigated.

2.2 WGCNA analysis

To investigate gene co-expression patterns associated with
disease pathogenesis, we implemented a comprehensive analytical
pipeline using the WGCNA framework. Prior to network
construction, rigorous quality assessment protocols were
implemented to ensure data integrity and analytical robustness.
Specifically, we performed systematic data preprocessing, including
calculation of pairwise Pearson correlation coefficients (PCC) across
all gene pairs to assess expression similarity. Potential outliers were
identified through robust statistical measures, including
interquartile range (IQR) analysis and Mahalanobis distance
calculation, with stringent filtering criteria applied to maintain
dataset consistency and reliability. In order to further establish a
scale-free network of biological significance, we selected an
appropriate soft threshold parameter, set to 0.9, which enables us
to screen out the most relevant nodes in the gene expression profile.
Based on the soft threshold, we successfully constructed the co-
expression relationship between genes, and by using this standard,
genes were classified into several different modules according to
their expression patterns. Each co-expression module comprises a
functionally coherent gene cluster exhibiting highly correlated
expression profiles, suggesting potential synergistic involvement
in specific biological processes or pathways. These modules were
characterized by distinct topological properties and intramodular
connectivity patterns, reflecting their potential roles in coordinated
biological functions and regulatory mechanisms. Finally, we focus
on the identification of key genes in the network, namely, hub genes.
These hub genes serve pivotal functions in the network and are often
closely related to the occurrence and development of diseases.
Therefore, we are focusing on these hub genes as the focus of
subsequent studies to further explore their potential functions and
regulatory roles in disease mechanisms.

2.3 Random forest

In this study, we combine two independent data sets to form a
new representation matrix, and perform differential representation
analysis on this matrix. The analysis process used the “limma” R
package, a commonly used differential analysis tool that enables
efficient processing of gene expression data. We then selected the
most significant genes in the differential expression analysis,
including the 300 most significantly upregulated and 300 most
significantly downregulated differentially expressed genes. These
genes will be used as input data for subsequent analysis and
random forest analysis will be performed using the

“randomForest” R package. This algorithm demonstrates
exceptional performance in handling high-dimensional datasets,
particularly due to its inherent regularization mechanisms that
effectively mitigate overfitting. The robustness of the model is
further enhanced by its capacity to maintain optimal bias-
variance tradeoff, even when processing datasets with feature
dimensions significantly exceeding sample size. In the process of
model training, the random forest generates multiple decision trees
by randomly partitioning the data set. These trees are each trained
with different data subsets and feature subsets, so they can capture
diverse features in the data and improve the accuracy of the
prediction (Dunne et al., 2023; Quadrianto and Ghahramani,
2015). After the training is complete, the random forest model
possesses the capability to quantitatively assess and rank the relative
importance of individual predictor variables in determining the final
prediction outcomes (that is, each gene) in the overall model. This
importance value is usually measured by the “Gini index,” which
reflects the relative importance of individual features in determining
model classification outcomes (Wang et al., 2016). Based on the
feature importance scores derived from the Gini index analysis, we
systematically ranked all genes and subsequently identified the top-
ranking candidates as potential key genes.

2.4 GO and KEGG analysis

We pooled 24 differential genes obtained from random forest
and 65 differential genes obtained from WGCNA for downstream
functional enrichment analysis. GO term enrichment analysis aims
to reveal the multi-dimensional roles of genes in biological systems
through functional annotation of gene sets. The Gene Ontology
(GO) analysis framework comprises three fundamental aspects:
Molecular Function (MF), addressing elemental activities at the
molecular level; Biological Process (BP), describing coordinated
cellular events; and Cellular Component (CC), characterizing
subcellular structures and locations. Molecular function describes
the specific functions performed by gene products at the molecular
level, biological processes encompass a diverse array of molecular
interactions and cellular events mediated by gene products, and
cellular components describe the specific location or subcellular
structure of gene products in cells. To perform Go-related
enrichment analyses, we use the “enrichKEGG” R package (Wu
et al., 2021). The package was able to identify statistically significant
GO terms that were closely related to the gene sets provided, which
in turn helped us discover and to elucidate molecular mechanisms
and regulatory functions mediated of these genes defined by GO
classification. Through this approach, we systematically detected
statistically significant alterations across multiple ontological
categories, including key biological pathways, molecular
interaction networks, and subcellular localization patterns
associated with the gene set under investigation, providing
valuable insights into their potential biological significance.
Furthermore, to comprehensively investigate the functional
characteristics of these genes, we employed the “enrichKEGG” R
package, a bioinformatics tool that integrates with the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database, enabling
systematic analysis of the biological pathways and molecular
networks associated with these genes (Wu et al., 2021). KEGG
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pathway analysis can reveal metabolic pathways, signal transduction
pathways, and other important biological networks related to study
genes. This analysis helps us understand the functional location of

genes in cells and their roles in various biological processes, further
enhancing our understanding of their underlying mechanisms and
interactions.

TABLE 1 Summary of dataset characteristics and experimental parameters.

GSE ID Partipants Species Analysis type Year

GSE10334 183 periodontitis and 64 healthy Human Array 2008

GSE36090 241 periodontitis and 69 healthy Human Array 2009

FIGURE 1
Workflow of this study. We first conducted an extensive search in the GEO database, aiming to find a suitable dataset related to periodontitis. After
screening, we finally selected two datasets, GSE10334 and GSE16134. Next, we conducted RF analysis and WGCNA on both datasets. By integrating the
results from these two approaches, we identified a potential key gene.
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2.5 Ethical declaration

The research data utilized in this investigation were exclusively
obtained from open-access repositories and established public
domain resources, and we relied entirely on existing, publicly
available datasets without conducting any experiments or
interventions directly related to individual animals or humans.
Therefore, this study does not require the participation of animal
experiments or human subjects and fully complies with all ethical
guidelines and regulations.

4 Results

4.1 Data details

This investigation incorporated two independent datasets, with
their comprehensive characteristics and experimental parameters
systematically summarized in Table1.

4.2 Research workflow and
methodological framework

The present investigation involved the acquisition and
integration of two distinct gene expression datasets from the
GEO repository. Subsequent analytical procedures incorporated
both RF algorithms and WGCNA methodologies to
systematically examine the combined dataset characteristics. The
analytical pipeline yielded distinct sets of DEGs through
complementary approaches: WGCNA methodology identified
65 significant gene candidates, while the RF-based classification

algorithm detected 24 potential biomarkers, demonstrating partial
overlap between the two analytical frameworks. Finally, one gene
CXCL1 was obtained. COL15A1 and CTSH ranked first in the
results of random forest analysis, and MICU3 and EIF3D ranked
first in the results of WGCNA analysis. Therefore, we take these five
genes as the key genes, and see Figure 1 for the specific process.

4.3 Data normalization and
preprocessing pipeline

The microarray datasets were initially processed using quantile
normalization to standardize expression values across all samples.
The result is Figures 2A, B, D, E. We carried out difference analysis
on the two datasets respectively, and labeled the top 10 most
significant genes in p-values, as shown in Figures 2C, F. For
comprehensive data harmonization, including noise reduction,
redundancy elimination, and batch effect adjustment, we applied
the ComBat normalization method available in the sva R package.
By removing the batch effect, we verified that the corrected data set
had a consistent expression pattern across batches and retained true
biological differences, as shown in Figures 2G, H.

4.4 Network topology and module
identification through WGCNA

As a sophisticated computational framework, WGCNA has
emerged as a powerful methodology in biomedical investigations,
enabling the systematic construction of gene interaction networks
and identification of functionally relevant modules associated with
pathological conditions. This analytical approach facilitates the

FIGURE 2
Data preprocessing and integration. First, we use the limma software package to standardize a single dataset. (A, D) is the distribution of data before
standardization, and (B, E) is the distribution of data after standardization. (C, F) Two datasets were analyzed for difference, and the ten genes that had the
most significant P - values weremarked. Tomitigate the potential confounding effects of batch processing on analytical outcomes, we utilize theCombat
functionwhich is included in the “sva” R package. The Combat functionminimizes the interference of these batch effects on data results by adjusting
and removing variations caused by batch-specific factors. (G) The distribution of the initial data set before the batch effect is removed, and (H) the
distribution of the data set after the batch effect is removed.
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discovery of molecular signatures, elucidation of disease
pathogenesis, and identification of novel therapeutic interventions
through comprehensive network-based analyses. The foundational
concept underlying WGCNA methodology revolves around the
systematic examination of pairwise gene expression correlations,
cluster genes into distinct co-expression modules and subsequently
identify disease-relevant modules through comprehensive network
analysis. The identified co-expression modules represent
functionally coherent gene clusters that demonstrate consistent
expression patterns across biological conditions, providing
valuable insights into potential disease-associated biomarkers. By
implementing a network-based analytical framework, WGCNA
facilitates the comprehensive detection and characterization of
highly interconnected hub genes within complex gene regulatory
architectures - highly interconnected nodes that frequently serve as
critical regulators in disease pathogenesis and progression. This
analytical approach not only facilitates the elucidation of disease
mechanisms at the molecular level but also establishes a robust
framework for biomarker discovery and the design and
implementation of precision-based treatment strategies tailored to
specific molecular targets and pathological mechanisms. To
comprehensively investigate the systemic impact of periodontitis
on physiological functions, we employed WGCNA to analyze the
periodontitis-associated gene expression matrix. While numerous
studies have explored individual gene functions in periodontitis,
substantial limitations persist in the comprehensive elucidation of
intricate transcriptional regulatory mechanisms and their
multidimensional interactions within cellular systems and their
interactions underlying this condition. Our network-based
approach provides a systems-level perspective that complements
traditional gene-centric analyses, potentially revealing novel
molecular pathways and therapeutic targets in periodontitis. To
maintain analytical rigor and ensure the reliability of our findings,
we first used the “goodSamplesGenes ()” function to check the
quality of sample data and remove the outliers in the data. Then, the
“hclust()” function is used to perform cluster. To establish an
optimal scale-free network topology, the optimal soft-
thresholding parameter was determined through systematic
computational analysis using the pickSoftThreshold() algorithm,
with selection criteria incorporating both scale-free topology
approximation (minimum R2 = 0.85) and network connectivity
preservation. Following network construction, we performed
hierarchical clustering of the topological overlap matrix (TOM)
and implemented a dynamic tree-cutting algorithm with a deepSplit
parameter of 3 and minimum module size of 40 genes, ensuring
biologically meaningful module detection while preventing excessive
fragmentation. In order to identify and visualize different modules,
we use the “labels2colors()” function to represent each module with
a different color. The correlation between the different modules is
then calculated using the “moduleEigengenes()” function, helping us
to further understand the relative relationship of these modules in
the overall gene network. During the final stage of network analysis,
genes demonstrating ≥90% topological overlap similarity were
clustered into cohesive modules. Subsequent identification of
intramodular hub genes, characterized by their high connectivity
and module membership scores, revealed critical regulatory nodes
that provide mechanistic insights for further functional
investigation. The relevant results of this process have been

shown in Figure 3, further revealing the possible role of
periodontitis-related genes in the physiological and pathological
processes of the body.

4.5 Results of the RF analysis

As an ensemble learning methodology, Random Forest (RF) has
emerged as a robust computational framework extensively applied
in biomedical informatics and computational biology research
domains, especially in the screening of disease-related genes. In
disease research, random forest can effectively screen out key genes
that are closely related to disease from large amounts of genetic data.
Compared with the traditional single-variable analysis method,
random forest can handle high-dimensional data and complex
gene interactions by integrating multiple decision trees, and it is
not easy to overfit. In this study, we combine two independent data
sets into a new representation matrix, and analyze the differential
representation of this matrix. We then selected the most significant
genes in the differential expression analysis, including the 300 most
significantly upregulated and 300 most significantly downregulated
DEGs. These genes will be used as input data for subsequent
analysis. To ensure robust model validation, we performed
stratified random partitioning of the identified gene set into
independent training and testing cohorts. As the number of
decision trees increases, the OOB error rate decreases. When the
OOB error rate is 3.23%, it means that the model has converged to A
relatively stable state, and the number of decision trees is 24. See
Figures 4A, C for specific results. According to the feature
importance score calculated by the Gini index, we ranked all the
genes and screened out the top 24 genes as potential key genes
in Figure 4B.

4.6 Results of the GO and KEGG analysis

In the following analysis, we pooled 24 differentially expressed
genes (DGEs) identified by random forest (RF) analysis with
65 DEGs screened from WGCNA. With this approach, we get a
comprehensive gene set. To investigate the functional relevance of
the identified gene clusters, a multi-dimensional annotation
approach was implemented. Gene Ontology (GO) term
enrichment analysis was systematically conducted, encompassing
biological processes, molecular functions, and cellular components.
In parallel, pathway enrichment profiling was performed through
the KEGG platform to detect statistically significant pathway
alterations and molecular network perturbations. The
comprehensive outcomes of our comprehensive functional
annotation and pathway enrichment investigations are
systematically presented in Figure 5, which illustrates the
significant associations between DEGs and specific biological
processes. The visualization reveals distinct patterns of gene
enrichment across various functional categories and metabolic
pathways, highlighting their potential regulatory roles in key
cellular processes. Notably, the network diagram demonstrates
the complex interplay between significantly enriched pathways
and their associated gene clusters, yielding critical mechanistic
understanding of the molecular pathways and regulatory
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networks associated with the identified phenotypic alterations. GO
analysis results showed that the first enrichment result in BP was
epidermis development. In CC, the first enrichment result is the
external side of plasma membrane. In MF, the first priority of
enrichment result is actin binding, while in KEGG enrichment
result, the first priority is Cytokine-cytokine receptor interaction.

5 Discussion

Our study aims to explore potential biological targets of
periodontitis through in-depth analysis of 2 independent data
sets. Through the integration of diverse analytical approaches,
notably the RF machine learning algorithm and WGCNA, we
have successfully identified critical genetic markers and pivotal
biological pathways associated with periodontitis pathogenesis.
These significant findings not only enhance our mechanistic
understanding of periodontitis at the molecular level but also
establish a foundation for exploring novel therapeutic targets and
advancing innovative treatment strategies for this prevalent
oral disease.

CXCL1 (C-X-C Motif Chemokine Ligand 1) is a protein-coding
gene. CXCL1 is a chemokine belonging to the CXC subfamily. Also
known as GROα (Growth-Regulated Oncogene Alpha). The main
role is to modulate the chemotactic migration and functional
activation of immunocompetent cells by binding to its receptors
(such as CXCR2) (Korbecki et al., 2022a). CXCL1 serves as a pivotal
mediator in orchestrating diverse immune responses and

inflammatory cascades. As a potent chemokine, its fundamental
biological function involves the recruitment and directional
migration of immunocompetent cells, particularly neutrophils, to
localized sites of infection or tissue inflammation through
chemotactic signaling. Through its specific binding to the
CXCR2 receptor, CXCL1 initiates a cascade of intracellular signal
transduction pathways that regulate essential cellular processes,
including directional cell migration, functional activation of
immune cells, and the modulation of inflammatory responses
(Korbecki et al., 2022b; Silva et al., 2017). Specific functions of
CXCL1 include: 1. Recruitment of immune cells: CXCL1 attracts
neutrophils to inflammatory or infected areas through its binding
with CXCR2 receptors to enhance immune response (Girbl et al.,
2018; De Filippo et al., 2013). 2. Proinflammatory effect: CXCL1 can
activate immune cells and enhance their ability to kill bacteria and
remove pathogens (Wang et al., 2022; Kaltenmeier et al., 2022). 3.
Tissue repair: In some cases, CXCL1 also plays a role in the repair
process after tissue injury, especially in cell migration and new blood
vessel formation (Kaur et al., 2023; Wang et al., 2018). CXCL1 has
been extensively implicated in the molecular pathophysiology of
diverse disease states, particularly through its critical involvement in
inflammatory cascades, immune diseases and tumors. Due to its role
in promoting immune cell migration and activation, emerging
evidence has established CXCL1 as a pivotal molecular regulator
in the development and progression of various inflammatory
pathologies, with demonstrated involvement in periodontal
disease, autoimmune arthritis, and chronic intestinal
inflammation, among other immune-mediated conditions (Hou

FIGURE 3
Results of the WGCNA analysis. (A) In the process of WGCNA analysis, select appropriate soft threshold parameters to ensure the accuracy of
network construction. (B–E) These diagrams show the process of gene module identification and characterization under the WGCNA framework.
Specifically, they show how a gene can be rationally divided into different co-expression modules based on its expression profile. Gene co-expression
modules represent clusters of genes demonstrating coordinated transcriptional profiles, indicating potential functional associations and
participation in shared biological pathways. (F) The figure further illustrates how the entire gene expressionmatrix is divided into these identifiedmodules,
showing how the data is segmented into several biologically relevant clusters.
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et al., 2023; Liu W. et al., 2018; Zhan et al., 2023). The investigation
revealed significantly elevated CXCL1 expression levels in gingival
tissues obtained from both human subjects and rat models with
periodontitis, when compared to healthy periodontal sites (Rath-
Deschner et al., 2020). Enhancement of CXCL1 expression in gums
has been reported to normalize diabetes - and insulin-resistant
induced neutrophil recruitment and delayed periodontitis.
Therapeutic modulation of CXCL1 dysregulation in fibroblasts
represents a promising strategy not only for periodontitis
management but also for ameliorating diabetes-related
complications, including insulin resistance and impaired wound
healing (Shinjo et al., 2023). In another work integrating the single-
cell transcriptome, it was found that CXCL1 inhibited by curcumin
could exert therapeutic potential in the management of periodontitis
(Huang et al., 2023). CXCL1 has been mechanistically linked to
tumorigenesis and metastatic progression across multiple
malignancies, with well-documented roles in non-small cell lung
carcinoma, mammary neoplasia, pancreatic adenocarcinoma, and
cutaneous melanoma pathogenesis. Emerging evidence highlights
the pivotal role of CXCL1 in driving oncogenic processes and
promoting the metastatic spread of malignant cells to secondary
sites through dual mechanisms: orchestrating the recruitment and

accumulation of immunosuppressive cells within the tumor
microenvironment, and enhancing the invasive potential and
metastatic capabilities of malignant cells (Lu et al., 2024; Yu
et al., 2019; Liang et al., 2021; Lv et al., 2014; Zheng et al., 2023;
Hayashi et al., 2023; Molinelli et al., 2023). CXCL1 has been
mechanistically linked to the pathogenesis of cardiovascular
disorders, particularly atherosclerosis and coronary artery disease,
through its ability to exacerbate vascular inflammation by
promoting pro-inflammatory responses within the vascular
endothelium (Korbecki et al., 2022c; Baragetti et al., 2023).
According to previous evidence, CXCL1 does participate in the
occurrence of periodontitis, which further validates the feasibility
and scientificity of our algorithm.

The COL15A1 gene encodes the α1 subunit of type XV collagen,
a distinctive member of the FACIT collagen family characterized by
its unique structural organization featuring intermittent triple-
helical domains (Eklund et al., 2000; Hagg et al., 1998). Type XV
collagen exhibits ubiquitous expression across multiple tissue types,
but the predominant localization of this protein within the basement
membrane zone suggests its potential involvement in mediating
structural interactions between the basal lamina and subjacent
stromal extracellular matrix. The proteolytic cleavage of type XV

FIGURE 4
Results of the RF analysis. (A) The error rates of training set, test set and OOB gradually decrease with a growing number of trees. (B)When the OOB
error rate tends to be stable, the number of trees is 24, and the error rate is 3.23%. (C)We then used the “Gini Index” as an evaluation indicator to show the
importance ranking of each gene.
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collagen generates a C-terminal fragment known as restin, which
shares structural homology with endostatin and exhibits potential
anti-angiogenic properties (Martinez-Nieto et al., 2021; Mutolo
et al., 2012). Accumulating evidence from experimental studies
has demonstrated that genetic deficiency of collagen XV is
associated with progressive muscular degeneration and
microvascular abnormalities (Schupp et al., 2023).
COL15A1 serves a critical structural and functional role in
maintaining the integrity of ocular basement membranes,
particularly in corneal tissues. Genetic alterations in
COL15A1 have been implicated in the pathogenesis of various
ocular disorders, including keratopathy, visual dysfunction, and
other sight-threatening conditions. Notably, emerging molecular
epidemiology evidence demonstrates that polymorphic variants in
COL15A1 and COL18A1 genes substantially modulate the temporal
onset and clinical trajectory of primary open-angle glaucoma
(POAG) (Wiggs et al., 2013). Due to the expression of
COL15A1 in the heart and blood vessels, its mutation may be

associated with heart disease, especially with abnormal
myocardial morphology and physiology (Durgin et al., 2017;
Grimaldi et al., 2015). It was found that overexpression of
downregulated Col15a1 and increased the Col1a1/Col3a1 ratio.
This mechanism may influence diastolic heart failure in diabetic
cardiomyopathy by modulating myocardial stiffness and elasticity
(Dai et al., 2024). Another study found that Col15a1, a vascular
secretory factor secreted by coronary arteries, is downregulated by
Ino80 defect and actively facilitates cardiomyocyte proliferation
(Rhee et al., 2021). Abnormalities in COL15A1 may also play a
role in certain connective tissue diseases, which modulates tissue
architecture and physiological functionality such as skin, bone and
muscle (Gabusi et al., 2012), for instance, a study revealed that both
the loss and gain of col15a1b function result in pathfinding errors in
primary and secondary motor neuron axons. Pathfinding
abnormalities manifest both at and distal to the critical decision
point where axonal trajectory determination occurs, ultimately
resulting in progressive muscular degeneration and impaired

FIGURE 5
TheGO and KEGG pathway analyses of the combined DEGs. Through the integration of RFmachine learning algorithms andWGCNA, we delineated
a distinct cohort of differentially expressed genes. Subsequent functional annotation of these molecular signatures was conducted via comprehensive
GeneOntology (GO) enrichment analysis. (A–C)Displays the top 10 enriched pathways categorized by the three primary GO domains: biological process
(BP), cellular component (CC), and molecular function (MF). These pathways reflect the functional characteristics and activities of genes involved in
various biological processes, their cellular locations, and their molecular functions. (D) Delineates the ten most significantly enriched pathways derived
from KEGG pathway enrichment analysis, elucidating potential molecular mechanisms and biological processes associated with the differentially
expressed gene clusters.
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locomotor function (Guillon et al., 2016). Additional studies have
demonstrated that col15a1b deficiency impairs peripheral nerve
maturation, resulting in structural abnormalities of the basal
lamina and consequent impairment of sensorimotor integration
processes (Rasi et al., 2010). Another study found that
COL15A1 is a candidate gene for further studies to evaluate the
genetic susceptibility to osteoporosis (Trost et al., 2010). Moreover,
Col15a1 has been implicated in tumorigenesis. Studies have shown
that Col15a1 inactivation in mice alters the fibrotic tumor
microenvironment and promotes breast tumor progression
(Martinez-Nieto et al., 2021). Emerging research evidence
indicates that elevated expression levels of COL15A1 significantly
inhibit the migratory capacity and metastatic potential of testicular
seminoma cells (Cui et al., 2021). Genome-wide association analyses
have revealed COL15A1 as a novel genetic susceptibility locus
associated with epithelial ovarian cancer risk in the Chinese Han
population (Chen et al., 2014).

We identified two key genes significantly associated with the
progression of periodontitis, which play a critical role in its
pathogenesis. Existing research indicates that these genes are not
only closely linked to periodontitis but also implicated in various
inflammatory diseases, tumors, and cardiovascular disorders. The
experimental evidence implies a potential etiological role of these
genetic factors in the pathogenesis and progression of periodontal
disease. From a clinical standpoint, the expression profiles of these
genes present valuable biomarkers with considerable diagnostic and
therapeutic implications. Tracking the expression patterns of these
genes not only facilitates early disease detection but also enables
accurate assessment of patient prognosis, thereby supporting the
formulation of personalized treatment strategies. Importantly, the
upregulation of certain genes is closely linked to adverse clinical
outcomes, making them reliable predictors for survival rates and
recurrence probabilities. Consequently, analyzing the expression
dynamics of these genes offers critical insights for clinical decision-
making, aids in the timely identification of early-stage periodontal
disease markers, and plays a pivotal role in optimizing disease
management protocols. Further, previous translational medicine
research has shown that some key genes have the prospect of
being potential targets in clinical therapy. By inhibiting or
activating these genes, we can interfere with the proliferation of
cells or regulate the inflammatory response, thereby optimizing
therapeutic outcomes and ameliorating clinical manifestations in
affected individuals. The detection technology of these genes can
not only act as a pivotal modulator of patient screening, but also assist
clinicians in selecting the most optimal treatment strategy, thereby
improving the accuracy and effectiveness of treatment. In the future, a
deeper exploration of the functional roles of these critical genes will
provide valuable insights into their molecular mechanisms underlying
the development and progression of periodontitis. By clarifying the
precise contributions of these genes, this research will accelerate the
development of novel diagnostic tools and precision-based
therapeutic strategies. Additionally, by utilizing the expression
patterns of these genes, scientists can further explore their clinical
applications, particularly in areas such as early disease detection,
prognosis assessment, and the prediction of therapeutic outcomes.
Future multi-center clinical studies will help verify the clinical
application value of these genes in periodontitis, and provide more
comprehensive support for precision medicine of periodontitis

through the combination of multi-dimensional data such as
genomics and proteomics. This will not only promote the progress
of early diagnosis and accurate treatment of periodontitis, but also lay
a solid foundation for the implementation of personalized medicine.

5.1 Limitation

The main limitation of this study is that the data set is relatively
small, which may cause some deviations in the results. We have
searched the GEO database for microarray data on both affected and
unaffected gums in all patients with PD, unfortunately, we found
only two datasets that met the inclusion criteria, which were
compensated for by a sufficient sample size. In future studies, we
will validate our results in other ways.
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