
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Genet.
Sec. Computational Genomics
Volume 16 - 2025 | doi: 10.3389/fgene.2025.1579848
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Abstract:Periodontitis, a prevalent global oral health issue, is primarily characterized by chronic inflammation resulting from bacterial infection. Periodontitis primarily affects the tissues surrounding and supporting the teeth, encompassing the gingival tissue, periodontal attachment apparatus, and the bony socket. The disease mechanism results from intricate interactions between hereditary factors, the body's defense mechanisms, and shifts in the composition of oral microbiota, with each element playing a crucial role in the initiation and advancement of the pathological process. The early symptoms of periodontitis are often not obvious, resulting in patients often not seeking medical attention until they are seriously ill, so finding biomarkers for periodontitis is essential for timely diagnosis and treatment. In this study, we selected two datasets (GSE10334 and GSE16134) by in-depth analysis of publicly available sequencing data of affected and unaffected gum tissue in periodontitis patients in the GEO database. To identify key genes associated with periodontitis pathogenesis and explore potential therapeutic biomarkers, we employed two complementary computational approaches: Random Forest, a robust machine learning algorithm for feature selection, and Weighted Gene Co-expression Network Analysis (WGCNA), a systems biology method for identifying co-expressed gene modules. Through comprehensive analysis of these combined datasets, our objective is to elucidate the underlying molecular pathways governing periodontal disease progression, thereby identifying novel therapeutic targets that may facilitate the design of improved clinical interventions for this condition. This study establishes a substantial scientific foundation that contributes to both clinical applications and fundamental research in periodontitis. The findings not only offer valuable insights for developing early diagnostic strategies and therapeutic interventions but also provide a robust theoretical framework to guide future investigations into the molecular mechanisms underlying this complex disease.
Keywords: Periodontitis, random forest, WGCNA, key genes, Enrichment analysis
Received: 19 Feb 2025; Accepted: 28 Feb 2025.
Copyright: © 2025 Cheng and Shen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Xianyang Cheng, Jinan University, Guangzhou, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.