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Marfan syndrome (MFS MIM#154700), due to pathogenic variants in the FBN1
gene, is an autosomal dominant connective tissue disorder, typically involving the
skeletal, cardiovascular and ocular systems. Currently, over 3000 MFS patients
were reported, and approximately 1800 pathogenic variants in FBN1 were
identified. However, the molecular diagnosis still remains challenging for 8%–
10% of patients with clinical features suggestive of MFS. In this study, we reported
a 2-month-old Chinese female patient whose clinical features were compatible
with the MFS. Whole-exome sequencing (WES) identified a novel de novo deep
intronic variant, c.4943-8_4943-7insTATGTGATATTCAT TCAC in intron 40 of
FBN1 that was predicted to affect the RNA splicing. Minigene analysis showed that
this variant causes skipping of exon 41, leading to the deletion of 41 amino acids
(c.4943_5065del, p.Val1649_Asp1689del). It confirmed the pathogenic nature of
the variant and established the genotype-phenotype relationship. Our study
expands the mutation spectrum of FBN1 and emphasizes the importance of
deep intronic variant interpretation and the need for additional functional studies
to verify the pathogenicity of these variants.
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Introduction

Marfan syndrome is a clinically recognized genetic disorder involving multiple
congenital anomalies. Three cardinal manifestations are frequently seen in MFS patients
and can be used as diagnostic clues, including skeletal anomalies (tall, thin stature,
disproportionately long limbs and digits, anterior chest deformity and scoliosis),
cardiovascular problems (mitral valve prolapse, mitral regurgitation, dilatation of the
aortic root, and aortic regurgitation), and ocular anomalies (ectopia lentis and myopia).
Aneurysm of the aorta and aortic dissection are the major life-threatening cause. MFS is
caused by pathogenic variants in FBN1 (encoding fibrillin-1) (MIM # 134797) (Pyeritz,
2000). To date, more than 3,000 patients with MFS have been reported in the literatures and
1800 pathogenic variants in FBN1 have been identified (Collod-Béroud et al., 2003;
Landrum et al., 2018; Arnaud et al., 2021); HGMD database. Pathogenic or likely
pathogenic variants in coding exons and canonical splicing sites in FBN1 could account
for the majority of individuals with clinical features suggestive of MFS (Dietz et al., 2001).
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However, it was found that 8%–10% of individuals with suspected
MFS remain genetically unexplained (Loeys et al., 2004; Baetens
et al., 2011; Zeigler et al., 2021). It is partly attributed to some cryptic
variants, such as noncanonical splicing variants, that may be missed
during variant interpretation because they were generally considered
to be non-deleterious effect on protein products. Furthermore, it is
laborious to carry out functional studies in the lab on variants
suspected of being a potential genetic cause of patients with MFS
phenotypes.

In this study, we reported a 2-month-old female patient who
displayed characteristics typical for MFS. Whole exome sequencing
(WES) was performed for the patient and identified a novel de novo
deep intronic variant (NM_000138.4: c.4943-8_4943-
7insTATGTGATATTCATTCAC) in FBN1.

Materials and methods

Ethical compliance

This study was approved by the Ethics Committee of Dongguan
Maternal and Child Health Hospital (DMCH 202307) and was
performed in accordance with the Declaration of Helsinki. Written
informed consent was obtained from the legal guardian for the
release of any potentially identifiable image or data contained in
this paper.

Whole exome sequencing and sanger
sequencing

Genomic DNA was extracted using nucleic acid extraction
reagents according to the kit instructions. Whole exome
sequencing (WES) was used to screen for causal variants in this
patient. Sequencing was performed with an Illumina NovaSeq 6,000
(Illumina, San Diego,CA, United States). The bcl2fastq2 Conversion
Software (v2.20) was applied for extracting Fastq files, and all reads
were mapped to the human genome (GRCh37/hg19) by using BWA
(v0.2.10) with default parameters. The Genome Analysis Toolkit
(GATK; v.3.7) HaplotypeCaller was performed for identifying
variants. The aligned reads were visualized by using the Integrated
Genome Viewer (IGV). Common variants were filtered based on their
frequencies in the databases of the Genome Aggregation Database
(https://gnomad.broadinstitute.org/) and our internal database. The
suspected variant was verified by Sanger sequencing. The
pathogenicity of the sequence variants was interpreted according to
ACMG/AMP guidelines (Richards et al., 2015).

In vitro minigene assays

Wild type and mutant minigene plasmids were constructed for
the FBN1 variant (c.4943-8_4943-7insTATGTGATATTCATTCAC)

using the exon trap vectors pcMINI. The sequence of exon 41
(123 bp), part of intron 40 (463 bp), and part of intron 41
(496 bp) were amplified from the proband’s or her mother’s genomic
DNA, using the following primer pairs: forward 5‘-GGTAGGTACCGA
GTGCAATGGCATGATCTT-3’ and reverse 5‘-TGCAGAATTC TAC
CTATGCTGCTACAAGAT-3’. The amplified products were inserted
into the pcMINI vector. Then, plasmids were constructed and transfected
into human embryonic kidney 293T (HEK 293T) and human breast
cancer cells (MCF-7) respectively, in triplicates using Lipofectamine 2000
(Invitrogen, USA). Cell cultures were operated according to the literature
previously published (Li et al., 2021). After 48 h of transfection of cells, the
total RNA was extracted using TRIzol reagent (Cowin Biotech Co.,
Jiangsu, China). For RT-PCR, a pair of primers was designed to
amplify the target sequence originated from the expressed minigenes:
forward 5‘-CTAGAGAACCCACTGCTTAC-3’ and reverse 5’-TAG
AAGGCACAGTCGAGG-3’. Finally, the PCR product was verified by
Sanger sequencing and visualized with electrophoresis on a 1.2%
agarose gel.

Results

Case presentation

The Chinese female patient was the third-born child of a
nonconsanguineous couple, and her siblings were unaffected. She
was born at 39 weeks of gestational age by spontaneous vaginal
delivery. She had normal birth measurements: her weight was 3.1 kg,
her length was 50 cm and her head circumference was 34 cm. She
was referred to the clinic at 2 months of age because of pneumonia
and congestive heart failure. She displayed distinctive facial features
including bilateral temporal skull flattening, enophthalmos and
retrognathia (Figures 1A, B), and skeletal anomalies including
arachnodactyly, pes planus, long, narrow feet, hammer toes, skin
striae (Figures 1C, D), scoliosis and pectus excavatum. Positive wrist
and thumb signs, reduced extension at elbows and joint
hypermobility were observed. X-ray showed significant
enlargement of the heart shadow with a cardiothoracic ratio of
0.67 (normal value < 0.6) (Figure 1E). Echocardiography showed
atrial septal defect, mitral regurgitation, tricuspid regurgitation and
dilatation of the aortic root, 15 mm with Z-score of 4.48 (Figures
1F–H). The combination of aortic root dilatation and 10 points of
systemic features resulted in the clinical diagnosis of MFS, based on
a set of manifestations from the revised Ghent nosology (Loeys
et al., 2010).

Genetic analysis

WES identified a novel deep intronic variant in intron 40 of FBN1,
(NM_000138.4:c.4943-8_ 4943-7insTATGTGATATTCATTCAC) in
the patient. Sanger sequencing confirmed the variant and the variant
was absent from the parents, thus it was a de novo event (Figure 2)
(PS2). In addition, the variant was not present in the Genome
Aggregation Database, the 1000 Genomes Project or our internal
database (PM2_supporting). Four computational splicing tools
(Human Splicing Finder, SpliceAI, ESE Finder v3.0, NetGene2)
predicted that this deep intronic variant could lead to use of a new

Abbreviations: MFS, Marfan syndrome; HEK 293T, human embryonic kidney
293T; GD, geleophysic dysplasia; AD, acromicric dysplasia; WES, Whole-
exome sequencing.
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FIGURE 1
Photographs of our patient with MFS. Note bilateral temporal skull flattening, enophthalmos, retrognathia, arachnodactyly, pes planus, long, narrow
feet, hammer toes and skin striae. (A–D) X-ray showed significant enlargement of the heart shadowwith a cardiothoracic ratio of 0.67 (normal value < 0.6)
(E). Echocardiography showed atrial septal defect, mitral regurgitation, tricuspid regurgitation and dilatation of the aortic root, 15 mm with Z-score
of 4.48 (F–H).

FIGURE 2
Sanger sequencing results for the patient, and the patient’s father and mother. The analysis demonstrated the presence of a deep intronic variant in
FBN1 (c.4943-8_4943-7insTATGTGATATTCATTCAC) in the patient and the absence of the variant in her parents. The red arrow indicates the variant site.
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splice acceptor site within intron 40 of the FBN1 transcript. To
further assess the impact of this variant, minigene study was
performed to investigate the transcriptional outcome of the
variant identified. An FBN1-pcMINI minigene was
constructed and the cDNA of the wild-type and mutant
mRNAs was obtained via RT-PCR. We observed that the
variant affected splicing and caused exon 41 skipping. The
final annotation was an infame deletion variant: c.4943_
5065del, p.Val1649_Asp1689del. (PM4_strong) (Figure 3).
Moreover, the patient’ manifestations were highly consistent
with that of MFS (PP4). Furthermore, WES did not identify
any other variants in FBN1 and also excluded other possible
known genetic causes. Thus, this variant was evaluated as clinical
pathogenic according to the ACMG/AMP guidelines (PS2 +
PM2_supporting + PM4_strong + PP4) (PS: pathogenic
strong; PM: pathogenic moderate; PP: pathogenic supporting).

Discussion

The FBN1 gene is located on 15q21.1, consists of 66 exons and
encodes the large molecule fibrillin-1 of 2,871 amino acids.
Fibronectin-1 is widespread in connective tissues, and the protein

contains 47 cysteine-rich epidermal growth factor EGF-like repeats
and seven transforming growth factor-β1 binding protein-like
domains (Ramirez and Dietz, 2007). FBN1 mutations cause MFS
through haploinsufficiency or dominant-negative effects
mechanism (Aoyama et al., 1994; Whiteman et al., 2001; Faivre
et al., 2007; Mátyás et al., 2007). Interestingly, studies have shown
that missense mutations in exon 41 or 42 of FBN1 cause geleophysic
dysplasia (GD, MIM #614185) or acromicric dysplasia (AD, MIM
#102370) through a gain-of-function mechanism, which is
characterized by severe short stature, short hands and feet, joint
stiffness, and skin thickening, but without cardiac involvement or
early death (Le Goff et al., 2011; Passarge et al., 2016).

Many different types of FBN1 variants have been identified.
FBN1 null variants (frameshift, nonsense and canonical variants)
and missense variants are frequently detected in MFS patients
(Robinson et al., 2006). However, deep intronic variants are
rarely reported in MFS patients because these variants were
generally considered to have no deleterious effect on protein
product, thus they were easily to be missed during variant
interpretation. Here, we identified a novel de novo deep intronic
variant in FBN1 (c.4943-8_4943-7insTATGTGATATTCATTCAC)
in a 2-month-old female patient with clinical features suggestive of
MFS. This variant was initially considered as a variant of unknown

FIGURE 3
Minigene assay for FBN1 c.4943-8_4943-7insTATGTGATATTCATTCAC variant and schematic diagram of the splicing pattern. (A) The construction
of FBN1-pcMINI minigene plasmid; (B)Gel electrophoresis of RT-PCR revealed a single band for wild-type (wt) and two bands for mutant-type (mut); (C)
minigene product sequencing demonstrated that the wild-type minigene formed normal mRNA, but the c.4943-8_4943-7insTATGTGATATTCATTCAC
variant in FBN1 caused a splicing abnormality, which abrogates the canonical splice site of intron 40, resulting in exon 41 skipping.
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significance according to ACMG/AMP guideline. Since the patient
met the clinical diagnostic criteria for MFS, the deep intronic variant
was considered as a candidate variant. Multiple computational
splicing tools predicted that the variant could cause use of a new
splice acceptor site within intron 40 of the FBN1 transcript. In order
to seek the convincing evidence, in vitro minigene testing was
performed and showed that the variant abrogates the canonical
splice site of intron 40, resulting in exon 41 skipping. Eventually, the
variant was annotated as an inframe deletion variant (c.4943_
5065del, p.Val1649_Asp1689del), which was evaluated as clinical
pathogenic according to the ACMG/AMP guidelines. Thus, the
patient was clinically and molecularly diagnosed with MFS.

Then, we systematically reviewed and analyzed deep intronic
variants in FBN1 (Biggin et al., 2004; Gillis et al., 2014; Xiong et al.,
2015; Groth et al., 2017; Fusco et al., 2019;Wai et al., 2020; Guo et al.,
2023; Bai et al., 2024); [HGMD database]. Currently, a total of
85 deep intronic variants, including the novel variant identified in
our study, were identified (Figure 4). Among these variants, 28 of 86
(32.6%) have been verified to be pathogenic through functional
analysis such as patient’s mRNA expression or in vitro minigene
assays. Thus, additional investigations are needed to determine the
pathogenicity of the other deep intronic variants. No obvious
mutation spots were observed. Certainly, it is also necessary to
collect more cases with deep intronic variants in FBN1 to enrich
mutation spectrum of FBN1.

In conclusion, we identified a novel deep intronic variant in FBN1
in a Chinese patient diagnosed with MFS. Our findings expanded
FBN1mutation spectrum, and highlighted that deep intronic variants
should not be neglected in the interpretation of variants, andmay be a
potential cause of disease. Additional functional studies are necessary
to verify the pathogenicity of deep intronic variants.
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FIGURE 4
Schematic representation of FBN1 deep intronic variants identified to date. The structure of FBN1 contained 66 exons (blue rectangles), introns
(black horizontal line); The localization of variants identified is depicted with dots. The dots above FBN1 indicate deep intronic variants determined by
functional analysis, and those below FBN1 indicate deep intronic variants not determined by functional analysis. Red: Novel variants identified in this study.
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