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Coronary artery disease (CAD) remains the leading cause of mortality worldwide,
driven by both lifestyle factors and genetic predisposition. Large-scale population
genetic studies have greatly enhanced our understanding of the genetic
underpinnings of CAD and facilitated the discovery of disease-associated genes.
Noncoding RNAs, such as circular RNAs (circRNAs) and microRNAs (miRNAs), play
crucial roles in the regulation of these genes. However, the impact of CAD-
associated genetic variants on noncoding RNAs and their regulatory gene
networks remain largely unexplored. In this study, we systematically identified the
targets of both noncoding and coding genes influenced by CAD-associated variants.
We constructed a CAD risk gene network, encompassing circRNAs, miRNA and
genes, based on the concept of competing endogenous RNA regulation.
Additionally, we focused on the endothelial cell (EC)-specific gene regulatory
network to prioritize disease-associated circRNAs. Notably, we identified two
CAD-associated variants that may disrupt circZNF609 and circABCC1, potentially
altering their function asmiRNA sponges and impacting EC-specific gene regulation,
ultimately contributing to disease risk.Ourfindings linkCADgenetic predisposition to
noncoding RNA-mediated gene regulatory mechanisms in specific cell types,
providing a valuable resource for novel target identification and advancing
precision medicine in CAD.
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Introduction

Coronary artery disease (CAD) is the most common type of heart disease and a leading
cause of morbidity and mortality worldwide (LaRocca et al., 2017; Campbell et al., 2021).
The complexity of CAD arises from the involvement of various cell types, including
endothelial cells (ECs), smooth muscle cells, fibroblasts, and immune cells, which can
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undergo phenotypic changes (Zhu et al., 2024). Among these, ECs
play a critical role as the primary site where atherosclerosis develops,
leading to CAD (Schnitzler et al., 2024). Understanding the
regulatory mechanisms that malfunction in ECs is crucial for
developing effective treatments for CAD.

Circular RNAs (circRNAs) are a class of non-coding RNAs
characterized by their high stability and tissue or cell type-specific
expression patterns (Kristensen et al., 2019; Yu et al., 2018; Tan et al.,
2017). Circular RNAs (circRNAs) can modulate gene expression
through various mechanisms, including acting as microRNA
(miRNA) sponges. By sequestering miRNAs, circRNAs prevent
them from binding to their target messenger RNAs (mRNAs),
thereby regulating gene expression (Tay et al., 2014; Zhang et al.,
2018; Glaser et al., 2023). Increasing evidence suggests that non-
coding RNAs, including circRNAs and miRNAs, are key players in
numerous cellular processes, and their dysregulation is linked to the
pathogenesis of several cardiovascular diseases, including CAD
(Zhang et al., 2020a; Zhang et al., 2015; Zhang et al., 2020b).
Consequently, these molecules are being investigated as
promising therapeutic targets for CAD. However, a
comprehensive understanding of the cell type-specific regulation
mediated by non-coding RNAs in CAD is still lacking.

Genome-wide association studies (GWAS) have been
instrumental in identifying thousands of risk loci associated
with CAD, providing new insights into the disease’s etiology,
and offering potential targets for drug development (Yu et al.,
2022). Recent studies have explored the genetic regulation of
circRNA expression and its potential link to cardiovascular
diseases. For example, research on human aortic smooth
muscle cells has identified circRNA quantitative trait loci
(circQTLs) that colocalize with GWAS loci associated with
CAD. Notably, some genetic variants specifically affect
circRNA expression without altering the expression of their
linear mRNA counterparts, suggesting that circRNAs may
contribute uniquely to the genetic architecture of CAD. While
some CAD-associated GWAS loci have been linked to circRNAs
(Aherrahrou et al., 2023), most of these loci are non-coding and
their functional roles remain largely unexplored. The impact of
CAD-associated genetic variants on gene regulatory networks,
including both coding genes and non-coding RNAs such as
circRNAs within endothelial cells (ECs), remains unclear.

In this study, we aimed to elucidate the complex molecular
mechanisms underlying CAD by focusing on the roles of circRNAs
in ECs. Through a comprehensive analysis, we identified the CAD-
associated circRNAs, miRNAs, and gene sets, constructing a
circRNA competitive regulatory network. This network
uncovered intricate interactions between genetic variants and
circRNAs, with a particular emphasis on circZNF609 and
circABCC1. Our findings indicate that specific CAD-associated
genetic variants may alter the function of circZNF609 and
circABCC1, thereby influencing gene regulation in ECs. These
circRNAs likely act as miRNA sponges, sequestering miRNAs
and thus modulating the expression of downstream genes. The
dysregulation of these gene programs may contribute to CAD
pathogenesis by impairing endothelial cell function and
promoting atherosclerosis. This study provides new insights into
how genetic predisposition influences CAD risk through non-
coding RNA-mediated regulatory mechanisms.

Materials and methods

Identification of circRNA-mRNA competitive
interactions

We sourced human circRNA-miRNA and miRNA-mRNA
interactions from RAID v2.0 (Yi et al., 2017), aggregating RNA-
associated interactions from experimental data and computational
predictions in public databases. We retained interactions with a
confidence score exceeding 0.3. A circRNA-mRNA pair sharing at
least three miRNAs was considered competitively regulated.

GWAS variants for CAD

The GWAS variants associated with CAD were obtained from
studies by Aragam et al. (2022) and van der Harst and Verweij
(2018). For each GWAS signal, we defined a set of nearby circRNAs
and genes, encompassing the two closest circRNAs and genes on
either side and all within ±500 kb. This yielded a total of
1,942 candidate GWAS circRNAs and genes.

Known CAD-associated circRNAs, miRNAs
and genes

The CAD-associated circRNAs were sourced from circRNADisease
v2.0 (Sun et al., 2024). Known CAD miRNAs were obtained from
HMDD v4.0 (Cui et al., 2024) and miR2Disease (Jiang et al., 2009),
while CAD-associated genes were sourced fromOMIM (Amberger and
Hamosh, 2017) and GeneCards (Stelzer et al., 2016). The summary of
the CAD-associated circRNAs, miRNAs and genes can be found in the
Supplementary Table S1.

Expression data of circRNA and mRNA
in CAD

The circRNA expression profile (GSE115733) from 24 CAD
patients and seven healthy samples, and mRNA expression data
(GSE23561) from six CAD patients and nine healthy samples, were
retrieved from the GEO database. Samples were derived from
peripheral blood, normalized, and log2 transformed.
Differentially expressed circRNAs and genes were identified using
adj.p < 0.05 and |fold change|>1.5. The DE circRNA and gene list
can be seen in the Supplementary Table S2.

Construction of CAD risk circRNA-
gene network

The CAD-associated circRNAs/genes were mapped into the
global circRNA-mRNA competitive network. We kept the
circRNA-mRNA interactions with at least one GWAS or known
or DE circRNAs/genes to construct the CAD risk circRNA network.
Network visualization was conducted using Cytoscape (Majeed and
Mukhtar, 2023) and GO functional enrichment analysis was
performed using the R package clusterprofiler (Wu et al., 2021).
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EC-specific programs in CAD

To explore EC-specific dysfunction pathways in CAD, Jesse M.
Engreitz lab used Perturb-seq and scRNA-seq data to systematically
identify sets of genes that act together in biological pathways
(Schnitzler et al., 2024). A total of 13 EC-specific programs were
found. Each program had 300 genes.

Results

The global circRNA-miRNA-mRNA
competitive triplets

The workflow of our approach is illustrated in Figure 1. To
identify global circRNA-miRNA-mRNA competitive triplets, we
extracted high-confidence human circRNA-miRNA and miRNA-
mRNA interactions from the RAID database. Triplets were defined
by the presence of at least three shared miRNAs, resulting in the
identification of 2,089,725 triplets, comprising 478 circRNAs,
279 miRNAs and 9,908 genes.

To establish connections between circRNA regulations and
CAD associations, we integrated comprehensive datasets of CAD-
associated circRNAs, miRNAs and genes. From 307 CAD GWAS
variants, we identified 90 nearby circRNAs and 2,720 nearby genes.
Notably, circZNF609 and circHERPUD2, located near CAD disease
variants, have been suggested as potential biomarkers for CAD
(Liang et al., 2020; He et al., 2023). Similarly, genes near these
variants, such as MMP3, SMAD3, COL4A1, and COL4A2, have
known associations with CAD. Additionally, other genes like UBC

and APOE, located near causal variants, may represent novel CAD
biomarkers (Figure 2A).

Using expression data from peripheral blood mononuclear cells
(PBMCs) of CAD patients and healthy controls, we identified
125 differentially expressed (DE) circRNAs and 1,245 DE genes
(adj.p < 0.05 and |fold change|>1.5) (Figure 2B). Furthermore, we
retrieved 29 known CAD circRNAs, 54 known CAD genes, and
179 known CAD miRNAs from manually curated disease databases.
This comprehensive analysis yielded a total of 241 CAD-associated
circRNAs, 179 CAD-associated miRNAs, and 3,872 CAD-associated
genes (Supplementary Figure S1).

The risk circRNA-mRNA competitive
regulatory network in CAD

To identify the CAD risk circRNA-mRNA competitive regulatory
network, we retained circRNA-mRNA interactions involving at least
one CAD GWAS or known or DE circRNAs or genes. This approach
identified a total of 74,307 circRNA-mRNA interactions, involving
69 circRNAs and 8,540 genes. The top 200 genes with high network
degree were shown in Figure 3A. Notably, known CAD circRNAs
exhibited the highest network degrees, including circNIPSNAP3A
(Wang et al., 2024), circZNF609 (Liang et al., 2020), circHIPK3
(Zhang et al., 2021), and circHERPUD2 (He et al., 2023).
Additionally, circABCC1, circKIAA1586, and circGPSM2 emerged
as top-ranking circRNAs in terms of network degree, potentially
serving as key regulators in CAD.

Multiple topological and functional properties of the ceRNA
network were analyzed against the background ceRNA network

FIGURE 1
The workflow of this study. First, construct the global circRNA-associated ceRNA network. Second, collected the CAD-associated circRNAs,
miRNAs and genes and then mapped them into the background network to identify the CAD-associated ceRNA network. At last, using the EC-specific
gene programs, we connected variants to circRNA regulations in EC dysfunction. Green diamonds represent circRNAs, yellow triangles represent
miRNAs, and light purple circles represent genes.
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(Figure 3B). Two widely used topological properties, degree and
betweenness, were calculated to investigate the important roles of
disease-associated ceRNA network. Network nodes with high degree
are highly connected and considered as hubs and nodes with high
betweenness control the extent of information flow and are referred to
as bottlenecks. We found that nodes in the disease ceRNAs had
significantly higher degree and betweenness than those in the
background ceRNAs. This comparison indicated that nodes in
disease ceRNAs tended to be the network hubs and bottlenecks,
implying important functions.

To elucidate the biological functions of the CAD risk circRNA
network, we conducted GO function enrichment analysis
(FDR <0.05) for genes within the network. This analysis revealed
significant enrichment in biological processes associated with CAD,
such as the Wnt signaling pathway (Weerackoon et al., 2021),
wound healing (Li et al., 2017), endothelium development

(Medina-Leyte et al., 2021) and immune system development
(Feng et al., 2022) (Figure 3C).

EC-specific circRNA regulatory network
in CAD

Endothelial cells (ECs) play a crucial role in the development
of atherosclerosis, a leading cause of CAD. In a study by Jesse M.
Engreitz (Schnitzler et al., 2024), 13 EC-specific gene regulatory
programs related to CAD were identified using perturb-seq and
single-cell RNA-seq techniques. Each program included
300 genes, resulting in a total of 2,019 genes across all EC-
specific programs (Figure 4A). To uncover common CAD
pathogenesis in ECs, we identified genes present in at least six
of these programs (Figure 4B).

FIGURE 2
(A) Manhattan plot displaying CAD GWAS variants. (B) Volcano plot illustrating the differential expression analysis of circRNAs and genes.
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Further analysis revealed 44 circRNAs regulating these common
target genes by mediating 53 known CAD-associated miRNAs
(Figure 4C). Among these, circHERPUD2, a known CAD
biomarker (He et al., 2023), was highlighted. Our findings
indicate that circHERPUD2 competitively binds to hsa-miR-218,
subsequently regulating the gene MARCKS, which is implicated in
several EC-specific programs, including extracellular matrix (ECM)
organization, KLF flow response, focal adhesions, basement
membrane, angiogenesis, and cell adhesion.

Connecting variants to circZNF609 and
circABCC1 in EC dysfunction

Endothelial cells (ECs) are significantly implicated in CAD
heritability (Turner et al., 2022). We identified 90 circRNAs in
proximity to 307 CAD-associated variants (within 500 kb). Liu et al.
demonstrated that silencing circular RNA-ZNF609 ameliorates
vascular endothelial dysfunction (Zhang et al., 2020a; Liu et al.,
2017). In our study, we found that CAD variant rs6494488 is located
on circZNF609. This circRNA competitively bind to hsa-miR-15a,
hsa-miR-15b, and hsa-miR-16, thereby regulating the expression of
SPARC, HSPG2, MGAT4A, APLN, and APP, all of which are
involved in EC-specific programs such as ECM organization, cell
adhesion, and basement membrane maintenance (Figure 5).

Another CAD GWAS variant, rs12691049, is associated with
circABCC1, which regulates the largest number of target genes within
the EC-specific circRNA regulatory network. Our findings suggest that

circABCC1 promotes EC dysfunction by modulating several CAD-
associated miRNAs, including hsa-miR-34a, hsa-miR-34c, hsa-let-7b,
and hsa-let-7i (Figure 5). These results highlight circZNF609 and
circABCC1 as potential key regulators in the pathogenesis of CAD.

We explore the crosstalk between CAD risk variants,
noncoding regulators (circRNAs and miRNAs), target genes,
and the corresponding cellular contexts. It highlights how
variants influence noncoding RNAs like circZNF609 and
circABCC1, which in turn regulate key genes involved in
endothelial cell dysfunction, thereby providing insight into the
molecular mechanisms underlying CAD.

Discussion

Our study offers new insights into the molecular mechanisms
underlying CAD by examining the regulatory roles of noncoding
RNAs, particularly circRNAs, in ECs. By identifying and integrating
CAD-associated circRNAs, miRNAs and gene sets, we constructed a
comprehensive circRNA competitive regulatory network. This network
illustrates the complex interplay between genetic variants and
noncoding RNAs in the context of CAD.

A key finding of our study is the disruption of circZNF609 and
circABCC1 by specific CAD-associated variants. These circRNAs
function as miRNA sponges, modulating gene expression in
endothelial cells. The dysregulation of these gene programs may
contribute to CAD pathogenesis by impairing endothelial cell
function and promoting atherosclerosis.

FIGURE 3
(A) The risk circRNA-mRNA competitive regulatory network in CAD is illustrated, with green diamonds representing circRNAs and light purple circles
representing mRNAs. Node size represents network degree. (B) The network topological properties of CAD-associated ceRNA and background network.
(C) Significantly enriched GO functions of the risk circRNA network.
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FIGURE 4
(A) The 13 EC-specific gene programs in CAD identified by Jesse M. Engreitz’s study. (B) The frequency distribution of genes across the EC-specific
programs. (C) The EC-specific circRNA regulatory network in CAD. Nodes with red borders represent known or GWAS-associated circRNAs.

FIGURE 5
Linking CAD variants to circZNF609 and circABCC1 in EC-specific programs, illustrating the crosstalk between CAD risk variants, noncoding
regulators (circRNAs and miRNAs), target genes, and the corresponding cellular contexts.
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The identification of circZNF609 and circABCC1 as critical
regulators in CAD underscores the significance of circRNAs in the
disease process. Our findings suggest that circRNAs play a vital role in
gene regulation and disease progression, adding a new layer of
complexity to the genetic architecture of CAD. This underscores the
need for further research into the functional implications of circRNAs in
cardiovascular diseases. Integrating GWAS data with circRNA
regulatory networks has proven to be an effective approach for
linking genetic variants to disease mechanisms. Our study
demonstrates the utility of this approach in uncovering the molecular
basis of complex diseases like CAD. By identifying specific circRNAs
affected by CAD-associated variants, we provide a clearer understanding
of how genetic predisposition translates into disease risk at themolecular
level. This knowledge could inform the development of targeted
therapies aimed at modulating circRNA activity to reduce CAD risk.

However, several limitations must be addressed in future studies.
While our network model offers valuable insights, it is based on
bioinformatics predictions and requires experimental validation.
Functional assays are needed to confirm the roles of circZNF609 and
circABCC1 in endothelial cell dysfunction and CAD pathogenesis.
Additionally, our study focused on a limited number of circRNAs
and genetic variants. Expanding this analysis to include a broader
range of circRNAs and variants could provide a more detailed
understanding of the regulatory landscape in CAD. The EC-specific
circRNA subnetwork identified in our study consists of differentially
expressed genes that distinguish CAD patients from healthy controls,
underscoring its potential utility in predicting CAD risk.

With the rapid advancement of single-cell and spatial technologies,
the investigation of disease mechanisms and key molecular players,
including circRNAs, has greatly progressed. Cutting-edge
computational methods such as scDRS and SCAVENGE facilitate the
efficient integration of disease-associated genetic variants with diverse
single-cell datasets, including scRNA-seq and scATAC-seq, enabling the
identification of disease regulatory circuits at unprecedented resolution.
Our study underscores the promising role of circRNAs in uncovering
potential therapeutic targets for CAD. Future research should prioritize
the development of novel computational algorithms, particularly AI-
powered approaches, to comprehensively analyze non-coding
RNAs—including but not limited to circRNAs—at single-cell resolution.

In conclusion, our study highlights the critical roles of circRNAs in
the genetic regulation of CAD and establishes a link between genetic
variants and endothelial cell-specific gene programs. These findings
enhance our understanding of the molecular mechanisms driving CAD
and open new avenues for targeted therapeutic interventions.
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