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Introduction: Hi-C is a widely used technique for mapping chromosomal
interactions within a 3D genomic framework, however, its resolution is often
constrained by sequencing depth, making it challenging to detect fine-scale
interactions. To overcome this limitation, Promoter-Capture Hi-C (PCHi-C), as it
selectively enriches for promoter-associated interactions, was employed. This
study integrates PCHi-C and Hi-C datasets from colorectal cancer (CRC) models
investigate chromosomal interaction dynamics across various regulatory levels,
from cis-regulatory elements to topologically associated domains (TADs). The
primary goal is to examine how genomic structural alterations shape the
epigenomic landscape in CRC and to assess their potential role in colorectal
cancer susceptibility.

Methods: PCHi-C and Hi-C datasets from multiple colorectal cancer (CRC)
studies were integrated to enhance the resolution of chromatin interaction
mapping. The analysis focused on identifying fine-scale interactions within
topologically associated domains (TADs) while incorporating histone
modification landscapes (H3K27ac, H3K4me3) and transcriptomic signatures
from CRC cell lines and the TCGA database. For experimental validation,
ChIP-quantitative PCR was performed at the promoters of target genes using
the highly malignant colorectal cell line HT29 and compared it to an embryonic
cell line NT2D1.

Results:Our integrated analysis revealed significant genomic structural instability
in CRC cells, closely associatedwith tumor-suppressive transcriptional programs.
We identified nine dysregulated genes, including long non-coding RNAs
(MALAT1, NEAT1, FTX, and PVT1), small nucleolar RNAs (SNORA26 and
SNORA71A), and protein-coding genes (TMPRSS11D, TSPEAR, and DSG4), all
of which exhibited a substantial increase in expression in CRC cell lines
compared to human embryonic stem cells (hESCs). Additionally, we observed
enriched activation-associated histonemodifications (H3K27ac andH3K4me3) at
the potential enhancer regions of these genes, indicating possible transcriptional
activation. ChIP-quantitative PCRs conducted using in the highly malignant CRC
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cell line HT29, compared to the embryonic cell line NT2D1, further validated these
findings, reinforcing the link between altered chromosomal interactions and gene
dysregulation in CRC.

Discussion: This study sheds light on the dynamic 3D genome organization in CRC,
highlighting critical structural changes associated with disease-associated loci. The
identification of nine dysregulated genes points to potential biomarkers for
colorectal cancer, with implications for diagnostic and therapeutic strategies.
The combination of Hi-C and PCHi-C offers a refined approach for detecting
chromosomal interactions at a higher resolution, laying the foundation for future
studies on cancer-associated chromatin architecture.

KEYWORDS

colorectal cancer, topologically associated domains, genome organization, epigenome,
gene expression, biomarker

1 Introduction

Until recently, studies on the impact of three-dimensional changes
on gene expression regulation were restricted due to the limited tools
available to investigate the three-dimensional genome structure.
Cutting-edge techniques for unraveling chromatin organization have
enabled explorations into the gene expression mechanisms in a new
dimension. Techniques such as fluorescence in situ hybridization
(FISH) (Bienko et al., 2013; Beliveau et al., 2012) and chromosome
conformation capture (3C, 4C, 5C, Hi-C, and promoter-capture Hi-C)
have been developed for studying the mechanisms of gene expression.
Using these methods, several studies (Dekker et al., 2002; Lieberman-
Aiden et al., 2009; Zhao et al., 2006; Rao et al., 2014; Freire-Pritchett
et al., 2021) have revealed hierarchical layers of spatial organization of
genomes, further unveiling that the 3D genome architecture is highly
dynamic throughout the course of an animal’s development.
Chromosome conformation capture methods, such as Hi-C and
promoter-capture Hi-C (PCHi-C), provide averaged 3D genomic
interaction information derived from their application to millions of
cells. Hi-C maps have been generated across a variety of human cell
categories, encompassing embryonic stem cells and early embryonic
lineages (Dixon et al., 2012; Dixon et al., 2015; Pelham-Webb et al.,
2020; Djeghloul et al., 2020; Du et al., 2020; Collombet et al., 2020),
immune cells (Rao et al., 2014), fibroblasts (Jin et al., 2013), and other
primary tissue types (Schmitt et al., 2016). Hi-C4 enables whole
genome-wide mapping of long-range chromatin interactions and,
therefore, represents a powerful approach for predicting the distal
gene targets of disease-associated loci. Hi-C-derived methodologies
are advancing our understanding of TAD-level organization, A/B
compartments, and loop formations (Klein et al., 2021; Fukuda
et al., 2021; Spracklin et al., 2021; Hildebrand and Dekker, 2020; van
Schaik et al., 2020; Su et al., 2020). However, effectively identifying intra-
TAD interactions, such as regulatory loops, from Hi-C data remains a
challenging task due to the complexity of the Hi-C libraries and the
considerable expense associated with deep sequencing to obtain
statistically significant interactions. On the other hand, targeted
chromatin-capture techniques such as PCHi-C provide cis-regulatory
insights for a specific subset of clinically relevant genomic regions at a
substantially lower cost with fine-scale genomic interactions. High-
resolution maps of clinically relevant loci enable more accurate
predictions of the impacts of structural changes and alterations that
may lead to human diseases or developmental abnormalities (Lupiáñez

et al., 2016). PCHi-C significantly enhances the capability to identify
interactions that encompass promoter sequences. PCHi-C analysis
across distinct cell types recognized numerous enhancer–promoter
interactions and unveiled significant differences in promoter
architecture between cell types and during differentiation
(Schoenfelder et al., 2015; Mifsud et al., 2015; Javierre et al., 2016;
Freire-Pritchett et al., 2017; Rubin et al., 2017; Siersbæk et al., 2017).
These investigations demonstrated that the organization of the genome
reflects cellular identity, underscoring the importance of disease-
relevant cell types toward deciphering the gene regulatory
mechanisms associated with disease loci. To support this idea,
several recent studies have utilized high-resolution promoter
interaction maps to identify tissue-specific target genes associated
with GWAS findings. An examination of promoter-capture Hi-C
data across 17 primary human blood cell types captured
2,604 potentially significant genes related to immune and blood-
related disorders, including a considerable number of genes with
roles yet to be annotated in those diseases (Javierre et al., 2016).
Montefiori et al. generated high-resolution PCHi-C mapping in
human-induced pluripotent stem cells (iPSCs), and iPSC-derived
cardiomyocytes (CMs) unveiled 1,999 single-nucleotide
polymorphisms (SNPs) associated with cardiovascular diseases,
which were linked to 347 target genes. This highlights the
significance of incorporating long-range chromatin interactions into
the interpretation of functional targets associated with disease loci
(Montefiori et al., 2018). Philip et al. performed a GWAS meta-
analysis to explore the gene regulatory mechanisms underpinning all
GWAS risk loci. They achieved this by analyzing PCHi-C datasets and
capturing chromatin interactions between predisposition loci and target
genes. They also scrutinized gene expression data and integrated these
findings with chromatin immunoprecipitation-sequencing (ChIP-seq)
data for 31 newly identified loci, in addition to the previously known
loci, to investigate the heritable risk of colorectal cancer susceptibility
(Law et al., 2019).

Colorectal adenocarcinoma, the fourth most common epithelial
tumor, continues to be the predominant cause of mortality
worldwide (Bray et al., 2018; Alzahrani et al., 2021). In order to
acquire detailed genome architectural insights into the progression
of colorectal tumors, it is essential to establish a comprehensive gene
regulatory map of human colon cells. This will facilitate an
understanding of how TAD disruptions influence gene
regulation. In this study, we present an integrative approach to
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comprehensively detect structural changes in cancer genomes by
combining Hi-C, PCHi-C, RNA-seq, ChIP-seq, and single-cell
RNA-seq (scRNA-seq) analyses for the identification of the
multiple target genes that may potentially serve as biomarkers for
CRC susceptibility (the strategy is depicted in Figure 1). We further
demonstrate that the expression of these genes, along with the
associated activatory chromatin modifications, such as H3K27ac
and H3K4me3, at the target regions is upregulated in CRC. In
summary, this study illustrates the dynamic interplay between global
and local chromatin architecture. Furthermore, by integrating
chromatin architecture with gene expression and chromatin
modification profiles, we identified novel regions of colorectal
cancer susceptibility.

2 Materials and methods

2.1 Promoter-capture Hi-C data processing
and analysis

Raw PCHi-C sequencing reads were aligned to the hg38 human
reference genome and filtered using HiCUP (S et al., 2015) and Bowtie2
(Langmead and Salzberg, 2012). To identify regions that interacted with
promoters, referred to as promoter-interacting regions (PIRs), we
utilized the CHiCAGO tools (Cairns et al., 2016). Promoter-
interacting regions were identified by comparing the number of
promoter-ligated regions within each genomic bin to the expected
reads, according to the generatedmodel. Genomic binswithCHiCAGO
scores≥5 were considered to be PIRs. BAM files were converted into a

CHiCAGO-compatible format (.chinput) using bam2chicago script.
Chinput files are tab-delimited text files that contain essential
information of all pairs of promoter–“other end” regions for which
at least one ligation region was detected. Each line in the .chinput file
provides details about one promoter–“other end” pair, including their
respective genomic coordinates.

2.2 Differential chromosomal interaction
analysis using PCHi-C data

Detecting differential signals in sequencing data is a fundamental
and frequently performed task in genomic analyses. We used Chicdiff
(Cairns et al., 2019) for the differential analysis of significant
interactions identified by CHiCAGO between different cell types.
This tool integrates moderated differential testing for count data
using negative binomial generalized linear models implemented in
DESeq2 (Love et al., 2014), with signal normalization informed by
CHiCAGO and non-uniform multiple testing correction.

2.3 Hi-C data processing and analysis

Reads were aligned to the human reference genome hg38 using
Bowtie2 (Langmead and Salzberg, 2012), and then SAMtools (Li
et al., 2009) was used to convert the reads to the BAM format. We
used the HiCExplorer package (Wolff et al., 2020; Ramírez et al.,
2018) for Hi-C data processing. The “hicBuildMatrix” command
was used to construct the matrix of read counts over the genomic

FIGURE 1
Schematic diagram of the workflow for the identification of target genes. Graphical representation of the steps used in the analysis combining
multiple large colorectal cancer datasets (PCHi-C, Hi-C, ChIP-seq, RNA-seq, and single-cell RNA-seq) to identify target genes potentially playing a key
role in CRC progression.
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bins, taking into account sites around the given restriction site
(AAGCTT). The matrix was corrected using the
“hicCorrectMatrix” command to eliminate biases related to
GC content, open chromatin, and, most importantly,
normalize the number of restriction sites per bin.
Topologically associated domains (TADs) were identified
using the “hicFindTADs” command with specific parameters,
including “–minDepth 60,000,” “–maxDepth 120,000,” and
“–step 20,000.” The visualization of the interaction matrix and
other signal tracks was performed using the “hicplotsTADs”
command. The positions of TAD boundaries were used to
analyze the localization of identified genomic interactions
relative to these TAD boundaries.

2.4 ChIP-seq data processing and analysis

ChIP-seq reads were trimmed using the TrimGalore tool for adapter
removal. Filtered reads were mapped to the human reference genome
hg38 using Bowtie2 (Langmead and Salzberg, 2012), and then SAMtools
(Li et al., 2009) was used to convert the reads to the BAM format. macs2_
callpeak was used for peak calling with –tsize = 26, –gsize = 2.7e9, and
–extsize 200, with the remaining settings left as default. TheMACS2 tool is
designed to account for the impact of genome complexity when assessing
the significance of enriched ChIP regions. It enhances the spatial
resolution of binding sites by incorporating information from both the
position and orientation of sequencing tags.

2.5 RNA-seq data processing and analysis

2.5.1 RNA-seq pipeline 1
The gene expression abundance from paired-end RNA-seq datasets

was downloaded from The Cancer Genome Atlas (TCGA) data portal.
For the retrieval of colon cancer datasets, primary sites “colon” and
“rectum,” project IDs “TCGA-COAD” and “TCGA-READ,” and
sample types “primary tumor,” “tumor,” and “metastatic” were
selected. For the control datasets, “blood-derived normal” and “solid
tissue normal” parameters were selected during the data retrieval
process. The sample manifest file was prepared, and GDC client
(Morgan and Davis, 2017) was used for downloading the datasets.

2.5.2 RNA-seq pipeline 2
Quality control of the dataset and mapping of processed reads

were carried out as follows:
Raw files were downloaded and converted using the SRA toolkit.

After that, the QC program was used to filter low-quality reads and
remove any sequencing errors. The processed reads were aligned
using the RNA-seq aligner STAR (v2.5)42 with the Ensembl human
reference annotation (GRCh38).

2.5.3 Quantifying transcript abundances
RSEM (Li and Dewey, 2011) was employed to quantify

transcript abundance from the paired-end RNA-seq datasets. The
human reference genome was built using the rsem-prepare-
reference script. We used STAR to perform transcriptome-based
mapping, and gene expression levels were calculated from STAR-
generated BAM files by rsem-calculate-expression scripts.

2.5.4 Identification of differentially
expressed genes

The edgeR package (v3.30.0)44, which relies upon count-based
expression data for determining differential expression in R, was
used for differential gene expression analysis. Transcripts with zero
expression values were removed. Normalization of the counts was
performed using the calcNormFactors function of edgeR, which
normalizes for differences in RNA composition by finding a set of
scaling factors for the library sizes that minimize the log-fold
changes between samples for most genes. The TMM method of
normalization was used for the datasets.

2.5.5 RNA-seq pipeline 3
The preprocessed RNA transcripts were mapped to Homo

sapiens (Gencode v29) transcriptomes using Salmon (Patro et al.,
2017). The resulting quant files were imported into R (v4.0.3) for
exploratory data analysis. R package tximeta (Love et al., 2020) was
used to import and summarize transcript-level data to the gene level.
DESeq2 (Love et al., 2014) was used for differential expression
analysis with the default setting. Further details of the used pipeline
are available at the following link: (https://bioconductor.org/
packages/release/workflows/vignettes/rnaseqGene/inst/doc/
rnaseqGene.html).

2.6 GO analysis, network analysis, and
mutational analysis details

The STRING database was used for the functional annotation of
genes. During the analysis, GO biological process libraries 2021 and
molecular function libraries 2021 were selected. The statistically
significant results (p-value ≤ 0.05) were further considered for
downstream analysis as a reference organism for the annotation of
genes. The enriched gene clusters were visualized in the STRING
network. We curated the function of genes based on functional
enrichment analysis associated with key functions such as chromatin
remodeling, chromatin organization, and cellular organization, among
others. For mutational analysis, the Colon Cancer Atlas and the
COSMIC database were used as reference databases, containing data
from 13,711 CRC tissues and more than 165 CRC cell lines.

2.7 Single-cell RNA-seq data processing
and analysis

We used the Seurat package (Stuart et al., 2019) (v4.0.6) for this
integrative multimodal analysis. Genes detected in fewer than 100 cells,
cells exhibiting expression of less than 200 detected genes, and cells
expressing >15% mitochondrial genes were removed for downstream
analysis. We adopted the general protocol described by Stuart et al. (2019)
for grouping single cells into different cell subsets. We employed the
following steps: data normalization, identification of highly variable
features, scaling the data, clustering the cells, reordering the clusters
based on their similarity, running non-linear dimensional reduction
(tSNE), and labeling the cell types. Principal component analysis
(PCA) was carried out on the scaled data of highly variable genes. The
first 30 principal components (PCs) were used to cluster the cells and
perform a subtype analysis by non-linear dimensionality reduction
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(t-SNE) (Van Der Maaten, 2014). Additionally, we utilized the SingleR
package (v1.8.1) for labeling cell types (Aran et al., 2019).

2.8 Cell lines and culture

NT2D1 embryonic cells (gifted by Dr. Peter Andrews) were
cultured in DMEM (Invitrogen), with 20% FBS (Invitrogen), 1X
antibiotics (Antibiotic-Antimycotic, Invitrogen) and NEAA
supplements (Lonza) at 37o C with 5% CO2. The cells were
split after every 3 days and maintained at 70% confluency to
avoid any differentiation. HT29 colorectal carcinoma cell line
(ATCC, HTB-38) was cultured in DMEM, with 10% FBS and
antibiotics. Cells were split after every 1.5 days. Similar cell
culture regime was followed with a change to RPMI-1640
media (Thermo Fisher Scientific) for other colon cancer lines
used including DLD1 (ATCC, CCL-221) COLO-205 (ATCC,
CCL-222) and HCT-115 ( ATCC, CCL-225). FHC (fetal
human colon) and hESC (human embryonic stem cells) were
used as control cell lines, while HT29 and LoVo served as treated
cell lines. We compared FHC and hESC with the cancer cell lines
(HT29 and LoVo) to evaluate their similarity in terms of changes
in Topologically Associated Domains (TADs). The primary
objective was to assess whether hESC could function as a
control for further downstream analyses. Two or 10 million
cells were harvested for RNA extraction and chromatin
immunoprecipitation assays, respectively.

2.9 RNA extraction and quantitative RT-PCR

The cells harvested (2 × 106) were washed twice with cold 1X
PBS, and the pellets were re-suspended in TRIzol (Invitrogen),
followed by the isolation of total RNA. Following DNase I
(Promega) digestion, RNA (260/280 ratio ~2) was subjected to
cDNA synthesis using a high-capacity cDNA synthesis kit
(Applied Biosystems), as per the manufacturer’s protocol.
Target oligos were designed using the UCSC Genome Browser
and Primer3 software. The expression level of h18s RNA was
used as the internal control for the normalization of target
transcripts. Quantitative RT-PCR analyses were performed
using TB Green II qPCR Master Mix (TaKaRa) with the
following PCR conditions: step 1, 95°C for 5 min; step 2, 95°C
for 45 s, 60°C for 45 s, and 72°C for 1 min, repeated for 40 cycles,
using the ViiA 7 Real-Time PCR system (Applied Biosystems).
The change in gene expression was calculated using the formula
ΔCt = Ct target − Ct control. Normalized transcript expression
was calculated using the equation; 2−(ΔCt), where ΔCt = Ct
target − Ct control. The oligonucleotide primer sequences used
for qRT-PCR analyses are listed in Supplementary Table S1.
Statistical analysis was performed using one-way ANOVA
(GraphPad v9.1) on three biological replicates.

2.10 Chromatin immunoprecipitation q-PCR

Cells obtained were cross-linked using 1.25% formaldehyde
(Sigma), followed by quenching with 150 mM glycine. Cross-

linked cells were washed twice with PBS and subjected to
chromatin isolation and shearing, as described by Patta et al.
(2020), with a few modifications. In brief, nuclei were isolated
using the hypotonic buffer (25 mM Tris–HCl at pH 7.9, 1.5 mM
MgCl2, 10mMKCl, 0.1%NP-40, 1 mMDTT, 0.5 mMPMSF, and 1×
protease inhibitor cocktail) (Roche). Pelleted nuclei were lysed using
the sonication buffer (50 mM Tris–HCl at pH 7.9, 140 mM NaCl,
1 mM EDTA, 1% Triton X-100, 0.1% sodium deoxycholate, 0.5%
SDS, 0.5 mM PMSF, and 1× protease inhibitor cocktail) (Roche),
and chromatin was subjected to sonication using the Covaris
M220 sonicator with the following parameters: peak power 75,
duty factor 20, burst 300, and duration 10 min. We obtained the
chromatin fragment size of 200–400 bp. After pre-clearing,
chromatin was subjected to immunoprecipitation using anti-
H3k27ac (Abcam) and anti-H3K4me3 (Abcam) antibodies
overnight at 4°C. Similarly, normal IgG was used as a control.
Immunoprecipitated complexes were pulled down by adding
protein A/G beads (Thermo Fisher Scientific), and the cocktail
was incubated at 4°C for 4 h. The immunoprecipitated bead-
bound chromatin was washed thoroughly using low-salt, high-
salt, and lithium chloride buffers and subjected to elution using
the elution buffer (1% SDS, 0.1 M NaHCO3). The eluted chromatin
was de-crosslinked, and protein and RNA contamination were
removed by treating with proteinase K (Sigma-Aldrich) and
RNase A (Sigma-Aldrich), respectively. Furthermore, the
immunoprecipitated chromatin was purified and subjected to the
quantitative PCR analysis using the formula ΔCt = Ct Target − Ct

Input. Fold differences in enrichment were calculated using equation
2−(ΔCt), where ΔCt = Ct Target − Ct Input, for both IgG- and TCF1-
immunoprecipitated DNA. The primer sequences used for ChIP-
PCR analysis are listed in Supplementary Table S2. Statistical
analysis was performed using one-way ANOVA (GraphPad v9.1)
with three biological replicates.

3 Results

3.1 hESC and FHC cell lines share high
percentage of common genes with HT29
and LoVo CRC cell lines in TADs disruption
comparison

We performed comparative study of FHC (fetal human
colon) and hESC (human embryonic stem cell) lines to
understand the chromatin architectural differences between
FHC and hESC versus the CRC cell lines (HT29 and LoVo).
The basis for selecting conserved Topologically Associated
Domains (TADs) was ensuring that the genes within the
overlapping TADs matched those in their respective TADs.
Consequently, overlapping TADs that did not meet this
criterion were regarded as disrupted TADs. Towards this, we
filtered affected genes which have been found in TADs disrupted
regions in FHC & hESC versus CRC (HT29 & LoVo) cell lines.
HiCExplorer39 has been used to search for topological associated
domains (TADs) (Figure 2A). Figure 2B depicts the number of
genes that have been found in TADs disruption regions in FHC &
hESC versus CRC (HT29 & LoVo) cell lines. Further comparative
analyses revealed 79% common genes within the TADs
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disruption region in hESC versus HT29 and FHC versus HT29
comparison and 83% common genes lies in the TADs disruption
region in hESC versus LoVo and FHC versus LoVo cells. This
indicates that TADs generated using FHC and hESC datasets
have maximum gene similarity with the CRC cell in the TADs
disruption region. However, due to the limited depth of
sequencing of Hi-C datasets, we were unable to capture fine
scale interactions within TADs and therefore it is difficult to
integrate fine-scale interaction with histone modification marks
and transcriptional signature. In such a scenario, promoter-
capture Hi-C (PCHi-C) data is often used for mapping fine
scale interactions. Currently, PCHi-C data is available only for
hESC, HT29 and LoVo, not FHC cells in publicly available
databases. We performed a comparative study of hESC and
FHC against CRC cell lines (Figure 2C) to capture and
compare the subset of common genes in the TADs disruption
region. We obtained 79% and 83% common genes in TADs
disruption loci respectively (Figure 2C), showing good
similarity between hESC and FHC cell lines while comparing
with CRC cell lines in the context of TADs disruption. Since the
PCHi-C data is not available for FHC, we therefore chose to use
hESC instead FHC for further comparative study. Thus, we used
hESC as a control and HT29 and LoVo as a case for capturing the
fine-scale interactions and association with epigenomic marks for
novel biomarker identification in CRC progression.

3.2 Enhancer–promoter interactions are
enriched in HT29 and LoVo cell lines
compared to hESC, which corresponds to
changes in gene expression dynamics

We used PCHi-C data to examine genomic interaction in
CRC. The captured regions (genomic region of interest or
diseases-associated loci) are referred to as “baits” throughout
the manuscript. In this study, we selected two colon cancer cell
lines (HT29 and LoVo) and compared them with human
embryonic stem cells (hESCs). We used CHiCAGO (Cairns
et al., 2016) to identify significant interactions. We
investigated the interactions that were separated by a distance
of at least 10 Kb. We identified bait interactions with other
genomic loci, and the results are shown in Figure 3. In total,
we identified 1,283,056 (49%) and 1,135,609 (43%) bait
interactions in HT29 and LoVo cell lines, respectively, and
201,356 (8%) interactions in the hESC cell line (Figure 3A).
Most interactions were found in cancer cell lines (HT29 and
LoVo) compared to those in hESCs. A significant proportion of
bait interactions was shared between the cancer cell lines
compared to those in hESCs (Figure 3B). We also calculated
the counts of interactions with respect to each bait fragment and
chromosome-wise across all the cell lines (Figures 3C,D). We
observed similar interaction patterns in HT29 and LoVo cell lines

FIGURE 2
Comparison of the distribution of TADs and genes within TADs between case cell lines (HT29 and LoVo) and control cell lines (hESC and FHC). Here,
TAD refers to intra-chromosomal interaction between two different genomic fragments. (A) Number of TAD boundaries against hESC, FHC, HT29, and
LoVo cell lines generated by HiCExplorer. (B)Number of genes located within disrupted TADs in control (hESC and FHC) versus case (HT29 and LoVo) cell
lines. (C) Venn diagram depicting genes within disrupted TADs between control and case groups.
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compared to those in hESCs (Figure 3D). We used Chicdiff
(Cairns et al., 2019) for differential bait interaction between
cancer and normal cell lines. We plotted the distribution of
differential bait interactions (Figures 4B,C) and observed
3,895,502 (~87%) and 582,084 (~13%) differential interactions
of HT29 versus hESC and LoVo versus hESC cell lines,
respectively (Figure 4A). Differential interactions between two
bait fragments (Figures 4D,E) were plotted with interactions
within 500 Kb upstream and downstream from the bait,
passing the threshold of 5 (threshold >5). The threshold
criteria >5 was set up by the Chicdiff (Cairns et al., 2019) tool
for significant differential interactions. Similar to the differential
interaction analysis, we performed differential RNA-seq analysis
using CRC datasets obtained from TCGA databases (The Cancer
Genome Atlas Network, et al., 2012). The identified differentially
expressed (DE) genes are depicted in Figure 4F. We found approximately
twenty-eight thousand transcripts that were differentially expressed (false
discovery rate ≤ 0.05). Nearly 62% of transcripts were expressed in cancer
cells compared to those in normal cells. In cancer cells, 35%were protein-
coding genes, and the remaining were non-coding genes (lincRNA,
pseudogenes, antisense, miRNA, etc.). All the transcripts, along with
their annotations, are provided in Supplementary Table S3. Gene
expressions related to colorectal cancer (primary tumor and

metastatic) were compared with blood-derived normal, solid tissue to
determine the DE genes using edgeR (Robinson et al., 2010). For the
extraction ofDEgenes that lie within the differential interaction region, we
overlapped the genomic coordinates of differential bait fragments with the
genomic coordinates of DE genes. In hESC/HT29 and hESC/LoVo case
studies, we found 24,438 and 17,385 DE transcripts, respectively, after
overlapping. The abovementioned steps enabled finding the repertoire of
DE genes due to structural changes at the chromatin loop level.

3.3 Disruption in TAD dynamics of HT29 and
LoVo cell lines, compared to that in hESCs,
involves a subset of colorectal-
specific genes

In the previous section, we overlaid differentially expressed genes
with the bait fragment’s coordinates of the differential interaction region.
To understand the distribution of TAD boundary regions with respect to
bait fragments, we further overlapped the bait fragments in such a way
that the starting bait should liewithin the range of TADboundary regions.
Using HiCExplorer, we plotted the TADs with 10 Kb resolution and
compared the TAD boundaries among the three cell lines (hESC, HT29,
and LoVo). We found 8,461, 7,955, and 6,498 TAD boundaries,

FIGURE 3
Distribution of promoter-capture Hi-C interactions in hESC, HT29, and LoVo cell lines. Here, bait fragment refers to the promoter-capture region or
region of interest and other-end fragment refers to those fragments that interact with the bait fragment. (A) Proportion of bait interactions with other
ends generated by CHiCAGO (Cairns et al., 2016) using PCHiC data of HESC, HT29, and LoVo cell lines. (B) Venn diagram displaying the number of bait
fragments among hESC, HT29, and LoVo. (C) Interaction counts of bait fragments with other-end fragments of hESC, HT29, and LoVo cell lines. (D)
Chromosome-wise interaction counts of bait fragments with other-end fragments of hESC, HT29, and LoVo cell lines. The black curve depicts
chromosome lengths as per the reference genome GRCh38.
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respectively, in hESC, HT29, and LoVo cells (Figure 5A). Next, the
overlappedTADboundaries between two cell lines containing at least one
DE gene were classified into two categories: conserved TADs and
disrupted TADs. The total number of conserved and disrupted TADs
(Figure 5B) of hESC/HT29 and hESC/LoVo are 2,637 and 5,448 and
2,138 and 4,255, respectively. The criterion for selecting conserved TADs
is that the genes within the overlapping TADs are the same as those in
their corresponding TADs. Hence, overlapping TADs that are not

conserved were considered disrupted TADs. We then investigated
nearby genes in detail around the TAD disrupted regions. We filtered
genes based on their position in the TAD boundary shift loci between
normal and cancer cells (Figure 5C). We mapped and filtered the
disrupted genes in TAD shifting boundary regions with the TCGA
database (Figure 5D). We found that 47% of the disrupted genes were
protein-coding and 53% were non-coding genes, which included
lincRNAs, miRNAs, pseudogenes, and other non-coding variants in

FIGURE 4
Distribution of differential promoter-capture Hi-C interactions between cancer cell lines (HT29 and LoVo) versus normal cell line (hESC). (A) Pie-
chart depicting proportions of differential bait interactions between cancer versus normal cell lines. (B, C) Differential bait interaction counts of cancer
versus normal cell lines with respect to bait fragments. (D, E) Differential interaction detected by Chicdiff (Cairns et al., 2019) around HDAC1, MARCKSL1,
and SMARCC1 genes are plotted. Significant interactions were detected for each condition separately by CHiCAGO (Cairns et al., 2016) and color-
coded (blue: 3 < score ≤ 5; red: score >5). Significant differentially interacting regions detected by Chicdiff (Cairns et al., 2019) were depicted as red blocks
against HT29 versus hESC and LoVo versus hESC cell lines. (F) Volcano plot of differentially expressed genes generated from the colorectal cancer dataset
from TCGA database. A total of 57,864 transcripts were observed. A total of 27,676 statistically significant transcripts were identified (false discovery rate ≤
0.05), out of which 17,146 transcripts were expressed in cancer cells, while 10,530 transcripts were expressed in normal cells.
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the hESC/LoVo cells. Similarly, 40% expressed genes were protein-coding
and 60% were non-coding genes in hESC/HT29 cells (Figure 5E). This
approach allowed us to monitor the distribution of nearby genes across

TAD boundaries. Taken together, these findings provided insights into
the role of regulatory mechanisms in structural instability in CRC
compared to normal cells.

FIGURE 5
Distribution of genome-wide interactions between CRC cell lines (HT29 and LoVo) and embryonic stem cell line (hESC). Here, TAD refers to intra-
chromosomal interaction between two different genomic fragments. (A) Number of TAD boundaries for each cell line generated by HiCExplorer (Wolff
et al., 2020; Ramírez et al., 2018; Wolff et al., 2018). (B) Number of conserved and disrupted TADs between the two cell lines. (C) TAD plot of chr1:
28788062–35788062 of HT29, hESC, and LoVo cell lines, and red rectangle highlights a major TAD shift of HT29 and LoVo compared to hESCs. (D)
Affected genes due to shifting of TAD boundaries in HT29 and LoVo cell lines compared with hESCs. (E) Numbers of protein-coding and non-coding
genes in HT29 and LoVo TADs compared with those in hESC TADs.

TABLE 1 List of genes associated with chromosome organizations and assembly.

Function Name of the genes

Chromatin assembly Histone H1
HIST1H1A, HIST1H1B, HIST1H1D, and HIST1H1E
Histone H2
HIST1H2BB, HIST1H2BE, HIST1H2BF, HIST1H2BI, HIST1H2BL, HIST1H2BM, and HIST1H2BO
Histone H3
HIST1H3A, HIST1H3B, HIST1H3C, HIST1H3F, HIST1H3I, and HIST1H3J
Histone H4
HIST1H4A, HIST1H4B, HIST1H4C, HIST1H4D, HIST1H4E, HIST1H4L, and HIST2H2BF

Regulation of chromatin remodeling CDKN2A, HIST1H4A, HIST1H4B, HIST1H4C, HIST1H4D, HIST1H4E, and HIST1H4L
INO80, SMARCA1, SMARCA2, SMARCA4, SMARCA5, SMARCB1, SMARCC1, SMARCC2, SMARCD1, SMARCD2,
and SMARCD3

Chromatin organization and nucleosome
organization

HIST1H2AB, HIST1H2AD, HIST1H2AH, HIST1H2AJ, HIST1H2AL, HIST1H2AM, HIST1H3A, HIST1H3B,
HIST1H3C, HIST1H3F, HIST1H3I, HIST1H3J, HIST1H4A, HIST1H4B, HIST1H4C, HIST1H4D, HIST1H4E,
HIST1H4L, and HIST2H2AB
CDKN2A, CENPN, CENPU, CENPT, HDAC2, CENPW, CENPQ, CENPI, H2AFX, CHEK1, CBX3, TNP2, CASC5,
AURKB, ITGB3BP, RBBP7, SET, CHRAC1, SUPT16H, ATRX, HJURP, ACTB, ACTL6B, ARID1A, BAHD1, BAZ1B,
BAZ2A, BRD4, BRDT, CBX3, CENPA, CENPK, CENPO, CENPP, CHD4, CHRAC1, DMAP1, ESR1, FOXP3, HDAC1,
HDAC2, HDAC5, HELLS, HILS1, HMGA2, HNRNPC, INO80E, INO80C, INO80B, INO80B-WBP1, KAT2B, KLF1,
KMT2B, MBD2, MEN1, MIS18A, MIS18BP1, MYC, NASP, NPM2, OIP5, PADI2, PAX7, PBRM1, PSME4, RBBP7,
RERE, RNF8, RUVBL1, RUVBL2, SATB1, SATB2, SCMH1, SIRT1, SMYD1, TOP1MT, and TTF1
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3.4 Gene ontology, network analysis, and
mutational study of colorectal-specific
genes in the vicinity of disrupted TAD
boundaries

Functional analysis revealed that most of the genes found at the
disrupted TAD boundaries were involved in chromatin remodeling,
chromatin assembly, and chromatin organization (Table 1). Network
analysis revealed that SWI/SNF regulatory networks and histone family
clusters were significantly associated with chromatin remodeling,
chromatin assembly, and chromatin organization (Figure 6A). The
results of enriched Gene Ontology and pathway analyses for both
HT29 and LoVo cell lines are provided in Supplementary Table S4.
Figure 6B depicts a volcano plot showing the list of the affected genes
that were involved in chromatin remodeling, chromatin assembly, and
chromatin organization expressed in cancer cells. The heatmap and

normalized count of the list of affected genes are listed in
Supplementary Figure S1. Furthermore, we integrated the mutational
datasets with the affected genes due to TAD changes and examined
those affected genes that were flagged as oncogenes in the CRC and
COSMIC databases (Tate et al., 2019; Chisanga et al., 2016). Mutational
analysis revealed that AR1D1A, ATRX, centromere protein complex,
histone complex, chromatin organizers SATB1 and SATB2, SWI1/
SNF1 complex, and histone deacetylases were frequentlymutated in this
dataset. Approximately 585 genes exhibited mutations, specifically in
LoVo and HT29 cells, in which nonsynonymous and missense
mutations were prominent. Supplementary Figures S2A, B provide
the frequency of mutations in terms of CDs and nucleotide changes in
genes associated with chromatin-associated genes collected from Gene
Ontology analysis, which lie in TAD disruption regions according to
Tate et al. (2019) and Chisanga et al. (2016). Supplementary Figures
S2C, E list the various types of mutations in genes collected from the

FIGURE 6
Functional annotation of genes extracted from TAD disruption regions and proportion of cis-regulatory interaction with bait fragments. (A)Network
visualization of genes and gene families associated with chromatin remodeling (von Mering et al., 2003) (green), chromatin assembly (blue), and
chromatin organization (red). (B) Volcano plot showing the expression pattern of chromatin remodeling, chromatin assembly, and chromatin
organization associated genes that had been extracted fromGene Ontology analysis. (C) Total number of bait interactions with regulatory elements
(promoter-like (PLS), proximal enhancer-like (pELS), distal enhancer-like (dELS), DNase-H3K4me3, and CTCF regions in disrupted TAD regions of hESC
and HT29 cell lines in hESC/HT29. (D) Total number of bait interactions with regulatory elements (promoter-like (PLS), proximal enhancer-like (pELS),
distal enhancer-like (dELS), DNase-H3K4me3, and CTCF regions in disrupted TAD regions of hESC and LoVo cell lines in hESC/LoVo.
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database (Chisanga et al., 2016), which lie in the TAD disruption
regions.We performed a comparative analysis with the list of chromatin
remodeling-associated genes with relevant literature related to CRC
(Chisanga et al., 2016; Chubb et al., 2016; Rudd et al., 2005). We
obtained 33, 41, and 106 common genes when comparing our study
with the previous CRC studies (Chisanga et al., 2016; Chubb et al., 2016;
Rudd et al., 2005), respectively (Supplementary Figure S3). Finally, we
obtained 10 unique genes that were commonly affected in the cited
CRC studies (Chisanga et al., 2016; Chubb et al., 2016; Rudd et al., 2005)
and in our study. These genes are TOP1MT, HELLS, AURKB, CHEK1,
SMARCC1, TTF1, HDAC1, SCMH1, RERE, and PADI2, out of which
HDAC1, RERE, and PADI2 are known oncogenes (Liu et al., 2017)
(Supplementary Figure S3). These findings suggest that the shifting of
TAD boundaries affects gene regulation in CRC.

3.5 Distribution of the captured promoters’
interactions with candidate cis-regulatory
elements derived from ENCODE data

As mentioned above, we used CHiCAGO, a PCHi-C
interaction tool, to identify bait interactions with other-end

genomic loci using PCHi-C data (Figure 3). We only selected
bait IDs having a non-zero bait count and bait count differences
greater than or equal to 10. Following the abovementioned criteria,
we obtained 115,198 and 630,095 bait interactions with other end
(OE) regions of hESC and HT29 in the hESC/HT29 sample
(Supplementary Figure S4A). Similarly, 112,383 and
554,536 bait interactions with OE regions of hESC and LoVo in
the hESC/LoVo sample (Supplementary Figure S4B). For the sake
of convenience, we referred to the above process as STAGE 1.
Again, we filtered the bait IDs from STAGE1 that had common
bait IDs generated in the previous section (Figure 4A). We referred
to this filtered interaction as STAGE 2. Finally, we filtered bait IDs
of STAGE 2 that have common bait IDs with those of the affected
genes due to TAD disruption (Figure 5B). The bait IDs of the list of
affected genes can be filtered from bait map IDs. The final bait
interactions file is referred to as STAGE 3. We overlapped the OE
region of STAGE 3 interaction files with regulatory elements such
as promoter-like (PLS), proximal enhancer-like (pELS), distal
enhancer-like (dELS), DNase-H3K4me3, and CTCF regions
(https://screen-v2.wenglab.org) (ENCODE Project Consortium
et al., 2020). The stage-wise details of the total number of bait
interactions with regulatory elements of hESC/HT29 and hESC/

FIGURE 7
Impact of structural changes on gene regulation between cancer cell lines (HT29 and LoVo) and normal cell lines (hESCs). (A) The ~ 7 Mb region of
chromosome 18 encompassing the DSG4 gene is shown along with TAD boundaries of Hi-C interaction maps at 10 Kb resolution for case (HT29 and
LoVo) and control (hESC). (B) Zoomed-in view of the DSG4 locus in case (HT29 and LoVo) and control (hESC) along with corresponding PCHi-C
interactions and ChIP-seq data for H3K27ac andH3K4me1 are displayed in blue peaks. Filtered DSG4 read counts used by CHiCAGO are displayed in
red, with the corresponding significant interactions shown as arcs. For clarity, only DSG4 interactions were shown.
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LoVo are tabulated in Supplementary Table S5. It is clearly evident
that there are high proximal enhancer-like (pELS) and distal
enhancer-like (dELS) interactions with promoter-capture
counts, compared to those with the remaining cis-regulatory
interactions (Figures 6C,D).

3.6 Role of enhancer–promoter interactions
within TAD disruption regions in identifying
disease-relevant target genes in CRC

The integration of PCHi-C with Hi-C was performed to
explore the genomic landscape from the loop level to the
TAD-level. This was then combined with differentially
expressed genes from the TCGA database and from HT29
(case) versus NT2D1 (control) cell lines was to understand
gene regulation. We also overlapped these data with histone
modification marks (H3K4me1 and H3K27ac) to verify the
promoter interaction with the enhancer, which overall mimics
the impact of TAD disruption on a gene’s expression. These could
serve as key genes for potential therapeutic targets. Based on the
capture count and log2fold value, we selected a few statistically
significant DE genes that lie in the TAD disruption regions. The
statistically significant gene list includes long non-coding genes
(MALAT1, NEAT1, FTX, and PVT1), small nucleolar genes
(SNORA26 and SNORA71A), and protein-coding genes
(TMPRSS11D, TSPEAR, and DSG4). In this study, statistical
significance refers to selecting the top-hit genes based on high
capture counts, which have enhancer–promoter loops, lie within
TAD disruption regions, and are upregulated genes in CRC. For
the visualization of Hi-C and PCHi-C interaction maps in the
context of gene regulation, we highlighted one of the statistically
significant upregulated gene loci, DSG4, in Figures 7A,B, with the
remaining loci in Supplementary Figure S5-11. The DSG4 gene
lies within the TAD disruption region in case cells (HT29 and
LoVo) compared to control cells (hESCs), as identified by Hi-C
analysis. Similarly, PCHi-C detected a higher frequency of
interactions between the DSG4 promoter and histone
modification marks H3K27ac and H3K4me1 in case cells
(HT29 and LoVo) compared to the control cells (hESCs).
TAD-based analysis helps in defining a gene’s cis-regulatory
landscape, while high-resolution promoter interaction data
provide the necessary precision for accurately mapping the
enhancer–promoter interactions. There were more active
enhancer marks and enhancer–promoter loop formations in
the case cells than in the control cells in the vicinity of the
DSG4 gene locus, suggesting its upregulation (Figures 7A,B).
PCHi-C techniques employed across various cell types detected
numerous enhancer–promoter interactions, uncovering
significant differences in promoter structure among these cell
types and during differentiation (Schoenfelder et al., 2015;
Mifsud et al., 2015; Javierre et al., 2016; Freire-Pritchett et al.,
2017; Rubin et al., 2017; Siersbæk et al., 2017; Montefiori et al.,
2018). The variation in enhancer–promoter interactions within
TAD disruption regions (Figures 7A,B) suggests that disease-
relevant cell types (such as HT29 and LoVo) serve as tractable
models for effectively probing the gene regulatory mechanisms
associated with disease loci.

3.7 Validation of the dysregulated genes
revealed putative biomarkers

As discussed above, using our combined Hi-C, promoter-
capture Hi-C, RNA-seq, and ChIP-seq analysis, we have
uncovered new potential targets that exhibit a high degree of
dysregulation in CRC datasets with respect to the 3D structure.
To validate whether the predictions of our analysis hold true, we
next sought to monitor the expression profiles of a few of the
statistically significant hits from our dataset in CRCmodels, some of
which were previously reported to be dysregulated in CRC. lncRNA
PVT1 has been implicated in the progression of colorectal cancer via
the VEGFA-AKT axis (Wu et al., 2020). lncRNA NEAT1 modulates
chromatin accessibility in CRC and directly regulates Myc and
ALDH1 (Zhu et al., 2020). Similarly, recent studies (Zhao et al.,
2020; Yang et al., 2018; Jia et al., 2022; Guo et al., 2015) have reported
that lncRNA FTX plays a crucial role in the initiation and
progression of CRC. We used a highly malignant colorectal cell
line HT29 and compared it to an embryonic cell line NT2D1 in our
experimental validations to closely represent the primary datasets
used for the bioinformatics analysis. We selected our targets, in
which the contact frequency was at least two-fold. We observed that
expression levels of genes belonging to long non-coding genes
(MALAT1, NEAT1, FTX, and PVT1), small nucleolar genes
(SNORA26 and SNORA71A), and protein-coding families
(TMPRSS11D, TSPEAR, and DSG4) were significantly higher in
HT29 and various other colorectal model cell lines than in
NT2D1 embryonic cells (Figure 8A). Next, we monitored the
relative levels of transcriptional activation-associated chromatin
modifications H3K4me3 and H3K27ac at the promoters of these
genes by performing ChIP-quantitative PCRs. We observed a
significant enrichment of both these modifications at the
promoters of all selected target genes (Figures 8B,C), suggesting a
hierarchical modification of the chromatin following TAD
disruption. Collectively, these analyses suggest that changes in
transcription-associated chromatin modifications correlated with
the 3D chromatin changes shown previously, leading to the
activation of the transcription machinery.

The integrative analysis reported above is based on bulk-seq
data. In bulk-seq studies, samples are treated as a homogeneous
population. However, the cell populations in the human body are
heterogeneous in nature, and each cell reflects unique activity.
Due to recent breakthroughs, it is now possible to analyze the
transcriptome at the single-cell level for millions of cells (Stuart
and Satija, 2019; Khaliq et al., 2022). This enabled us to
differentiate, characterize, and classify each cell at the
transcriptome level, which leads to the prediction of rare cell
populations. Taking advantage of the single-cell human colon
cancer atlas database (Pelka et al., 2021), we analyzed
transcriptionally profiled 371,223 tumor and adjacent normal
cells generated based on scRNA-seq. A detailed analysis is
provided in Supplementary Material M1. The purpose of the
single-cell RNA-seq analysis is to assess the enrichment of the
potential targeted genes (MALAT1, NEAT1, FTX, PVT1,
SNORA26, SNORA71A, TMPRSS11D, TSPEAR, and DSG4) at
the single-cell level. We did not observe a significant enrichment
score at the single-cell level despite these genes exhibiting a high
degree of dysregulation at the bulk-seq level.
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4 Discussion

TADs are increasingly recognized as pivotal elements of 3D
chromosome organization and gene regulation. Our objective was to
understand the communication between enhancer-promoter
interactions and impact on gene expression. In this study, we
investigated how the abnormalities in 3D chromosome folding
affect gene expression patterns in colorectal cancer. The
instability of cancer genomes often results in a higher frequency
of TAD disruption in cancer cells compared to their normal
counterparts. Such disruptions could trigger significant alterations
in gene expression, potentially contributing to the initiation and
progression of tumorigenesis. Our comprehensive analysis
attempted to explore the molecular basis of the genetic risk for
CRC. The configurations of TADs in cancer cells could thus offer
valuable insights into the genetic underpinnings of gene expression
in these cells, potentially identifying specific targets for therapeutic
interventions. In our study, we focused on identifying multiple
potential therapeutic targets for colorectal cancer by
systematically integrating 3D datasets with 1D datasets. We
employed publicly available datasets including Hi-C, PCHi-C,
ChIP-seq, RNA-seq, and single-cell RNA-seq data towards this
comprehensive analysis. Generating high-resolution Hi-C data
through Hi-C experiments requires the use of millions of

mammalian cells, resulting in the generation of billions of paired-
end reads. Because of the substantial costs of sequencing, most Hi-C
datasets exhibit a relatively low resolution, which might not be
suitable for examining detailed interactions in the vicinity of regions
of interest, such as disease-associated loci.

To overcome this limitation, we integrated PCHi-C data with
Hi-C to understand the dynamics of regulatory chromosomal
interactions from local-to-TAD level. This approach enabled us
to investigate the structural organization and changes in chromatin
interactions across different cellular contexts. During our analysis,
we observed that most interactions were found in cancer cell lines
(HT29, LoVo) compared to hESCs. This finding suggests a higher
frequency of structural alterations in tumor cells, highlighting the
extensive chromatin remodeling and genomic instability associated
with tumor cell population in contrast to human embryonic stem
cells. Such modifications may contribute to cancer-specific
transcriptional programs by reshaping regulatory interactions.

TADs exhibit evolutionary conservation and serve as crucial
elements in governing and facilitating long-range regulation of gene
expression67. They act as self-contained domains that confine
enhancer-promoter interactions, ensuring precise gene expression
control. When a TAD boundary is deleted, it can lead to the fusion of
two adjacent TADs, resulting in the misregulation of genes
previously restricted to separate regulatory environments.

FIGURE 8
Validation of target genes extracted from integrative analysis. (A) qRT-PCR analysis of target genes in NT2D1, HT29, Colo205, HCT15, and DLD1 cell
lines, showing relative enrichment of gene expression in the CRC cell lines compared to NT2D1 cells. (B, C) ChIP-qPCR for H3K4me3 and H3K27ac
modifications, respectively, on the transcription start site (TSS) upstream regions of target genes. The cell lines used are indicated below the bars. Three
biological replicates were used for statistical analysis using GraphPad v9.1. A one-way ANOVA or unpaired t-test was used as the significance test.
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, and ns,non-significant.
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Genomic rearrangements that fragment existing TADs and create
novel regulatory domains, while preserving the original TAD
boundaries. The disruption of TAD boundaries can lead to
abnormal gene expression patterns by exposing genes to
inappropriate regulatory elements. This disruption is frequently
observed in cancer cells, where alterations in the 3D chromatin
architecture drive oncogenic transcriptional programs and plays a
crucial role in tumorigenesis68–70 (Figure 9). Comprehending the
significance of TAD disruption and long-range chromatin
interactions is essential for gaining insights into the broader
mechanisms of gene regulation. Additionally, it sheds light on
how genomic rearrangements and mutations in cancer genomes
can result in the atypical expression of oncogenes and tumor
suppressors. This knowledge contributes not only to our
understanding of gene regulation in a general context but also to
our comprehension of the molecular underpinnings of cancer
progression.

For gene expression analysis, we performed differential RNA-
seq analysis using colorectal cancer samples (primary tumor,
metastatic) compared with normal samples (blood-derived
normal, solid tissue) obtained from the TCGA databases. We
filtered differentially expressed genes found around variably
interacting regions to check the distribution of DGEs across
TADs boundaries. We used H3K27ac and H3K4me1 histone
modification marks for understanding the gene’s cis-regulatory
landscape to precisely map the enhancer-promoter interactions.
The functional study revealed that most of the genes upregulated
in cancer were found around TAD disruption regions, and are
involved in chromatin remodeling, chromatin assembly and
chromatin organization. We also integrated the mutational

datasets collected from databases like cosmic database52,53 and
human oncogene database56 with the affected genes due to TAD
disruptions. Results of such analyses revealed that genes encoding
key chromatin associated regulators including AR1D1A, ATRX,
centromere protein complex, histone complex, SATB1, SATB2,
SWI1/SNF1 complex, histone deacetylases were frequently
mutated in these datasets.

Finally for experimental validation, we filtered a statistically
significant gene-list based on high capture count and log2 fold
change in transcript expression; and with relevant literature related
to colorectal cancer. We found expression of long non-coding genes
(MALAT1, NEAT1, FTX and PVT1), small nucleolar (SNORA26 and
SNORA71A) and protein-coding (TMPRSS11D, TSPEAR and DSG4)
were significantly much higher in HT29 compared to NT2D1; and
enriched with activation-associated histone modifications H3K4me3
and H3K27ac. Our data, while confirming the expression patterns,
strongly argues in favor of a priori involvement of epigenomic
mechanisms in form of dynamic histone modifications as well as
the chromatin interaction changes that modulate the gene expression.

Additionally, for understanding the expression patterns of target
genes across diverse cell types, we analyzed 371,223 tumor and
adjacent normal cells taken from the single cell human colon cancer
atlas database. We found expression of FTX and PVT1 is
contributed from the rare cell population while MALAT1 and
NEAT1 were expressed almost everywhere in diverse cell
populations. However, expression of TSPEAR and DSG4 was not
observed in the scRNA-seq analysis. Collectively, our study suggests
that changes in 3-D genomic architecture affect transcriptome
signatures which might be associated with tumor-suppressive
transcriptional programs (Figure 9). Such integrative analysis

FIGURE 9
Schematic depiction of the architectural changes in TADs during tumorigenesis: we explored how dynamic changes in the 3D genome architecture
influence gene regulation in colorectal cancer (CRC). Fine-scale 3D-genome interactions, combined with their association with epigenomicmarks, were
analyzed to identify novel biomarkers for CRC progression. The disruption of TAD dynamics was found to involve a subset of colorectal-specific genes, as
depicted schematically.
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resulted in identification of multiple target genes which may
potentially serve as biomarkers and could be used to better
understand CRC progression.
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