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Cotton is a vital fiber crop for the global textile industry, but rising temperatures
due to climate change threaten its growth, fiber quality and yields. Heat stress
disrupts key physiological and biochemical processes, affecting carbohydrate
metabolism, hormone signaling, calcium and gene regulation and expression.
This review article explores cotton’s defense mechanism against heat stress,
including epigenetic regulations and transgenic approaches, with a focus on
genome editing tools. Given the limitations of traditional breeding, advanced
omics technologies such as GWAS, transcriptomics, proteomics, ionomics,
metabolomics, phenomics and CRISPR-Cas9 offer promising solutions for
developing heat-resistant cotton varieties. This review highlights the need for
innovative strategies to ensure sustainable cotton production under climate
change.
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1 Introduction

Cotton (Gossypium hirsutum) is one of the most important cash crops, providing
natural fiber to textile industries worldwide and supporting the livelihoods of over a
hundred million households (Zhang Z. et al., 2023). Annually, cotton contributes
approximately $600 billion to the global economy (Tokel et al., 2022). Beyond fiber,
cotton serves as a food source; nearly 65% of conventional cotton products enter the food
chain, either directly through cottonseed oil or indirectly through meat and milk from
animals consuming cottonseed meal and ginning by-products (Saini et al., 2023; Wang W.
et al., 2023; Zia et al., 2021).

Globally, cotton is cultivated in nearly 35 countries, covering approximately
34.1 million hectares and yielding about 120 million bales annually (Shi et al., 2023;
AOF, 2023). China, India, and the United States collectively contribute around 60% of total
cotton production (Meyer and Dew, 2021). China, being the largest cotton consumer,
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utilizes around 7.60 million tons yearly (Zhu et al., 2023). The
United States, being the third largest cotton producer and top
exporter, holds an important position in the global cotton market
(USDA ERS, 2020a).

However, cotton production faces continuous threats from
climate change, particularly heat stress (USDA ERS, 2020b).
Elevated temperatures adversely affect cotton’s growth,
development and yield. For example, in the southwestern
United States, heat stress has led to a 26% reduction in cotton
yields (Elias et al., 2018; Riisgaard et al., 2020). In Arizona’s low
desert, cottonseed yields are projected to reduce by 40% by the mid-
century (2036–2065) and by 51% by the late-century (2066–2095),
compared to the baseline period of 1980–2005 (Ayankojo
et al., 2020).

The rising concentrations of greenhouse gases (GHGs) and
rapid environmental changes pose severe challenges to the
sustainability of agriculture (Voora et al., 2023). Global warming
is expected to lead to more abrupt and extreme environmental
fluctuations in agricultural regions (Gupta et al., 2020). For example,
in Pakistan, the average annual temperature is predicted to rise by
4.38°C by 2080 (Tariq et al., 2023; Shehzad, 2023). As sessile
organisms, plants are continuously exposed to various abiotic
stress, including drought, salinity, heavy metals and heat stress,
which affect their survival, growth, development and yield (Elahi
et al., 2022). Among these, heat stress is one of the most serious
threats to global food security, with reports indicating that each
degree Celsius increase in temperature can reduce crop yields by
over 17% during the growing season for major crops (Elahi et al.,
2022; Riisgaard et al., 2020). Therefore, it is not difficult to predict
the drastic effects of increased temperature on agricultural
production (Dutta et al., 2023).

Countries like USA, China, India, Pakistan, Brazil, Turkey and
Australia have the capacity to produce greater than the average
cotton yield at slightly higher temperatures, accounting for about
75% of the world’s cotton production area (Tokel et al., 2022).
However, if the average annual temperature continues to rise at the
current rate, even these leading cotton-producing countries will face
production losses (Meyer and Dew, 2021). Regions already
producing cotton at around 40°C would suffer greatly from
hostile climatic conditions, leading to dramatic losses in the
production per unit area (Yousaf et al., 2023).

Given the critical role of cotton in global agriculture and its
vulnerability to heat stress (He et al., 2024), it is imperative to
explore strategies to mitigate the impact of rising temperatures.
While only few previous studies (Saleem et al., 2021; Majeed et al.,
2021; Abro et al., 2023) have explored the effects of heat stress on
cotton, mostly have primarily focused on either physiological
responses or traditional breeding approaches. This review
advances current knowledge by providing a comprehensive
synthesis of recent findings on the morphological, physiological,
and biochemical responses of cotton to heat stress. Additionally, it
explores cutting-edge omics technologies, including genomics,
transcriptomics, proteomics, and metabolomics, to understand
heat stress tolerance mechanisms at a molecular level. Unlike
earlier reviews, this work integrates emerging strategies such as
CRISPR-Cas gene editing, genome-wide association studies
(GWAS), and high-throughput phenotyping to accelerate the
development of heat-resilient cotton cultivars. By bridging

conventional and modern breeding techniques, this review
provides a multidisciplinary perspective on improving cotton’s
adaptability to climate change. Ultimately, it aims to guide future
research and breeding programs by identifying genetic and
biotechnological interventions that can enhance cotton’s
resilience, ensuring sustainable production in a warming climate.

2 Effect of heat stress on cotton
morphology and physiology

High temperature has a significant effect on cotton growth and
reproduction. Heat stress adversely affects cotton growth throughout
its life cycle, with the reproductive stages beingmore sensitive to high
temperatures than other growth stages (Majeed et al., 2021; Ma et al.,
2021). The optimal temperature for optimal cotton seedling growth
is reported to be 30°C (Majeed et al., 2021) (although few studies
have also reported a range of 30°C–34°C (Beegum et al., 2024; Sarwar
et al., 2023; Mudassir et al., 2021). High temperature has a very
crucial effect on different developmental stages of the cotton such as
germination., seedlings growth, vegetative propagation, and traits of
maturity and morphological development are very important
(Sarwar et al., 2023) (Figure 1). Yousaf et al. (2023) studied the
effects of heat stress on morphological traits of several upland cotton
genotypes. Heat stress significantly effected all the studied traits,
including plant height, nodes per plant, sympodial branches, bolls
per plant, ginning out-turn, and staple length. Approximately 33%–
46% of reduction was observed in these traits compared to the
control, highlighting the detrimental impact of heat stress on cotton
morphology. Similarly, Mudassir et al. (2021) evaluated the impact
of varying high temperatures on cottonmorphology across six major
cotton-growing cities in Pakistan. Yield-related traits were severely
affected at all locations, leading to significant yield losses. Boll size,
number of bolls, and number of flowers were significantly reduced
by approximately 47%–54% on average across all locations. The
effect of heat stress on pollen tube germination, growth and
elongation indicates that temperatures >30°C adversely affect
cotton reproductive performance (Zhang et al., 2024). Pollen
germination was maximum when the temperature was regulated
at 28°C (Saud andWang, 2022). The rate of germination was inverse
to a temperature >28°C and it declined rapidly at
temperatures >37°C (Saud and Wang, 2022). Zhang et al. (2024)
reported that significant reduction in boll weight and the number of
bolls per plant under heat stress was strongly associated to lower
pollen fertility. This reduction in pollen fertility was further
associated with disruptions in energy metabolism and anther
carbohydrate balance. Heat stress enhanced sucrose content in
anthers by limiting sucrose hydrolysis due to reduced activities of
invertase and sucrose synthase. However, sucrose hydrolysis can be
accelerated to mitigate pollen infertility under heat stress by
downregulating the expression of the GhSWEET55, GhSUT4, and
GhSUT3A/D genes.

2.1 Root growth

Roots are the first plant organs that get exposed to any abiotic
stress before other plant parts (Farooq et al., 2024). Healthy plant
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growth mainly depends on the health of the roots, which is affected
by many factors, with temperature being one of the most critical
(Virk et al., 2021). For better growth, cotton should be cultivated
during a specific period to minimize the negative effects of
environmental stressors. The ideal temperature range for root

development is 22°C–30°C during the day and 27°C–35°C at
night (Reddy V. et al., 1997). However, temperature exceeding
32/40°C disrupt root growth, causing roots to become shorter
and stunted roots even with abundant nutrients and water
availability (Fan et al., 2022). Heat stress severely impacts root

FIGURE 1
Illustration of the general effects of heat stress or elevated temperatures on cotton growth and development. Heat stress reduces the
photosynthesis rate, chlorophyll, and carotenoid contents. It also decreases the number and weight of cotton bolls, ginning outturn (GOT) ratio, and
increases flower and square abscission. Additionally, it shortens fiber length, weakens fiber strength, lowers fiber quality, and reduces fruit-bearing
capacity and the number of sympodial branches. Heat stress leads to an increase in reactive oxygen species (ROS) concentration, accompanied by
elevated levels of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). At the molecular level, it causes the denaturation of DNA, RNA, and
key cellular enzymes, thereby impairing the optimal production of heat shock proteins essential for heat stress mitigation. Note: this figure was generated
using BioRender.
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traits, leading to significant reductions in root length (34%–67%,
depending on the severity of temperature) (Virk et al., 2021; Parkash
et al., 2024; Xia et al., 2023; Saleem et al., 2021), and root total
biomass (41%–77%) (Wang Q. et al., 2024; Dev et al., 2024;Wu et al.,
2022), thereby meshing the overall root system architecture (Guo
et al., 2024a). Heat stress also diminishes the development of
primary root hairs (Yu et al., 2022; Fan et al., 2022), root
elongation (Rani et al., 2022; Yousaf et al., 2023), branching (Fan
et al., 2022), and ultimately inhibit the uptake of essential nutrients
(Hannan et al., 2024; Saleem et al., 2021), and water required for
cotton survival (Shifa et al., 2024; Das et al., 2024). Moreover, in arid
and semi-arid regions, heat tolerance in seedlings is a key factor for
successful plant cultivation (Naveed et al., 2025), because
maintaining optimal soil moisture during sowing is essential to
support healthy seedling growth (Ma et al., 2024). Increased wind
velocity and high soil temperature can cause rapid moisture loss,
which significantly disturbs the development of the root system and
eventually reduces fiber quantity and quality (Guo et al., 2024b).
Moreover, the fatty acid composition of roots is susceptible to
temperature deviation (Xu et al., 2022; Li et al., 2022a). Under
heat stress, the membrane stability of cotton root cell, is often
compromised leading to lessen cellular function and ions
transportation due to membrane damage (Abro et al., 2024; Sheri
et al., 2023; Lu et al., 2023). Many studies have reported the increased
concentration of Reactive Oxygen Species (ROS) in cotton root cells
under heat stress resulting in oxidative stress (Sekmen et al., 2014;
Fan et al., 2022; Majeed et al., 2021). Heat stress also alters the cell
wall composition and structure, reduces the mechanical strength
and adaptability of roots to stress (Tsvetkova et al., 2002; Ezquer
et al., 2020; Zhou et al., 2014).

Genetic variability is therefore of great importance in crop
improvement, including cotton, as it provides valuable insights
into the genetic architecture that can be used to enhance plant
resistance to abiotic stresses. In cotton, genetic differences in the root
systems are very important because they directly influence plant
productivity. Superior genotypes with well branched root systems
demonstrated a stronger ability to support plant growth. A robust
and extensively branched root system can significantly enhance
cotton yield, even under unfavorable moisture conditions. Till
now few studies have identified the genes such as GhNAC1
(Sivakumar et al., 2021; Kundu et al., 2019), GhWRKY41
(Adjibolosoo et al., 2024), GhHSP17.3 (Lv et al., 2024), GhROD1
(Ding et al., 2024), GhANN11 (Luo et al., 2024), GhADF1 (Qin et al.,
2022), GhZFP1 (He et al., 2019), and GhARF1 (Wang D. et al., 2024)
associated with cotton root traits under heat stress. The up and
downregulation of these genes under various heat stress conditions
have confirmed the resistances in different cultivars (Abdullah et al.,
2023; Ding et al., 2024). Meanwhile, the enrichment of the vascular
system facilitates the growth of lateral roots, enhancing the plant’s
ability to actively withstand abiotic stresses (Chen L. et al., 2023).
Genotypes with dense root systems and well developed lateral root
exhibit greater resilience under such conditions (Guo et al., 2024a).
Therefore, identifying and utilizing genes associated with this vital
trait can help develop high-yielding, stress tolerant genotypes
(Nguyễn et al., 2024). Alternatively, tradition breeding
approaches, such as crossing diverse genotypes, cab be employed
to generate diverse germplasm with improved root system, enabling
the crop to reduce severe climatic challenges.

2.2 Photosynthetic efficiency and stomatal
conductance

Cotton growth also dependent on photosynthesis, a process
highly sensitive to temperature fluctuations (Abro et al., 2024). The
optimal temperature for photosynthesis is around 30°C; however, its
efficiency declines rapidly with each degree rise in temperature
(Sargent et al., 2024). Heat stress during the day adversely affects
the rate of photosynthesis in cotton, leading to reduced yield and
significant alterations in physiological traits, ultimately causing
stunted growth and loss of boll formation (Ma et al., 2024;
Snider et al., 2022).

Heat stress led to the deactivation of Rubisco, an essential
enzyme for catalyzing carbon fixation during photosynthesis, by
inhibiting Rubisco activase, a chaperone protein essential for
maintaining Rubisco function under stress. This results in
reduced photosynthetic activity in cotton (DeRidder and Salvucci,
2007). For example, Carmo-Silva et al. (2012) reported a reduction
in stomatal conductance and net CO2 assimilation with increasing
leaf temperature, which caused lower photosynthesis activity was
observed due to Rubisco inactivation (Crafts-Brandner and Law,
2000). This deactivation of Rubisco is considered the prime
limitation of photosynthesis at temperature around 40°C
(Stainbrook et al., 2024). Heat shock proteins, which are
responsible for or associated with developing tolerance against
heat stress in plants, are closely association with a plant’s
photosynthetic capability (Khan et al., 2022). Rehman et al.
(2021) reported that the upregulation of GhiHSF14 and
downregulation of GhiHSF21 in cotton under heat stress
contributed to increased photosynthetic rates, thereby enhancing
tolerance (Dilnur et al., 2019). Even mild heat stress significantly
disturbs the photosynthetic activity of cotton by interfering with
electron flow in the leaves. This adverse effect of high temperature
on photosynthesis is irreversible due to the interruption in electron
transport (Kamatchi et al., 2024).

Under high temperature, the fluidity of the thylakoid
membranes increases, causing the light-harvesting complexes of
photosystem II (PSII) to detach from the membranes (Haque
et al., 2014). This disrupts the structural integrity of PSII and
affect electron transfer (Haque et al., 2014). Heat stress also
dissociates the oxygen-evolving complex of PSII, inhibiting
electron transport to the acceptor side of PSII (Húdoková et al.,
2022; Allakhverdiev et al., 2008). Recent studies have shown that
heat stress induces oxidative stress in plants, generating ROS that
damage the PSII reaction center and trigger a repair cycle (Pospíšil,
2016; Dev et al., 2024). Consequently, PSII is highly sensitive to heat
stress (Pospíšil, 2016; Húdoková et al., 2022).

Heat stress brings alterations to essential metabolic processes in
cotton, causing low productivity and shortened lifespans. In order to
minimize water loss through evaporation, plants lower stomatal
openings, which limits photosynthesis. Contrariwise, high stomatal
permeability enhances evaporative cooling, alleviating heat stress by
lowering leaf temperature (Wang et al., 2022a). Due to Rubisco (an
important carbon fixation enzyme) inactivation during mild heat
stress, stomatal permeability and net photosynthesis are reduced in
many plant species (Marchin et al., 2022). Since stomata regulate
both water evaporation and CO2 exchange, their role is crucial in
developing varieties that could easily tolerate heat stress. Enhanced
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stomatal aperture in high-yielding genotypes might improve
photosynthesis and transpiration rates under heat stress
conditions (Marchin et al., 2022).

Furthermore, studies have found that more transpiration led to
partial cellular membrane degradation in plants, a mechanism
aimed at mitigating water loss (Li E. et al., 2022). Photosynthetic
capacity and chlorophyll content as indicators in evaluating heat
tolerance in cotton and wheat genotypes have been widely used,
aiding in identifying the mechanism associated with genotypes
adaptation to high-temperature environments. These findings
highlight the importance of stomatal regulation and
photosynthesis performance in developing heat-resilient crop
varieties (Peng et al., 2022).

2.3 Reproduction

In general, higher night temperature in cotton leads to poor
reproductive performance of the crop (Istipliler et al., 2024).
Fertilization typically occurs 12–24 h after pollen release
(Masoomi-Aladizgeh et al., 2021). Heat stress during the
flowering stage can disrupt pollination, ultimately reducing the
number of bolls (Majeed et al., 2021). Pollen grains are extremely
susceptible to heat stress as compared to ovule, making them amajor
factor in reduced fertilization under heat stress (Khan et al., 2023a).
Pollen grains require a significant amount of energy for their
survival, but heat stress reduces carbohydrates production,

adversely affecting their viability (Khan et al., 2022). This also
affects the cotton photosynthetic capacity, increases respiration
and photorespiration, and hinder the translocation of nutrients
(Ahmed et al., 2023a; Naveed et al., 2023). Extremely higher
temperature restricts the efficiency of fertilization by interfering
with carbohydrate metabolism and calcium homeostasis (Khan
et al., 2022). Moreover, increased oxidative stress in tissue can
substantially reduce cotton yield (Zhou et al., 2014). Heat stress
reduces both quantity and viability of pollen grains in cotton. The
pollen tube development is particularly sensitive to heat stress, with
its length decreasing substantially at 34°C and nearly ceasing at 43°C.
A previous study showed that GhCKI genes are highly expressed in
fully developed anthers and control infertility. Introducing the
GhCKI gene into anthers of heat-sensitive cotton lines could
mitigate infertility under heat stress (Min et al., 2013). This
finding highlights the need of identifying and utilizing such
stress-tolerant genes to enhance the resilience of cotton
germplasm. Exploring and incorporating heat-resistance genes
(Table 1) into breeding programs is essential to improve cotton’s
adaptability and productivity in the face of climate change (Salman
et al., 2019). Several genes such as GhBEE1 (Chen et al., 2017), ARFs
(Ding et al., 2017), GSTU24 (Chen et al., 2018), and MPS1 (Chen
et al., 2018) regulate anther indehiscence. However, among the
88 reported genes, only five are involve in controlling
carbohydrate metabolism and cell death (Singh et al., 2007).
Exposure to heat stress has been linked to several pathways that
lead to sterility. Enzymes associated with carbohydrate metabolism

TABLE 1 Heat stress responsive genes reported in cotton.

Gene Function Reference

HSPCB Heat shock protein calmodulin binding Sotirios et al. (2006)

IAR3 Upregulated under both short- and long-term heat stress Demirel et al. (2014)

AtCaM3 Key component in the Ca2+-CaM (calmodulin) Heat Shock signal transduction
pathway

Liu et al. (2005)

ERD15 Augments stress tolerance by enhancing the efficiency of PSII Ziaf et al. (2011)

DDF1 Regulating responses to heat stress Kang et al. (2011)

GhiHSF14 Upregulated in heat stress Dilnur et al. (2019)

GhHSF39 Immediate response to heat shock Wang et al. (2014)

Rubisco activase genes GhRCAα1, GhRCAα2,
GhRCAβ

Expression under heat stress DeRidder and Salvucci
(2007)

AtSAP5 Upregulates expression of heat stress responsive genes Hozain et al. (2012)

AsHSP70 Heat shock protein from Agave sisalana Batcho et al. (2021)

HSP70-17 Heat shock protein improving male fertility under heat stress Khan et al. (2022)

GhMAP3K65 Increase susceptibility to heat stress Zhai et al. (2017)

GhHS26 and GhHS97 Heat tolerant HSP genes Ali et al. (2022)

GhHRP Heat responsive protein Abdullah et al. (2023)

GhSGT1 and GhSGT2 Showed different gene expression and enzymatic activity under heat stress Li et al. (2014)

WRKY25 Heat responsive gene in Arabidopsis thaliana Li et al. (2009)

GhWRKY3, 83 and 97 Expressed under heat stress Dou et al. (2014)

AacCas12b Temperature Inducibility Wang et al. (2020)
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and transports play important role in heat stress. Such enzymes can
serve as markers for assessing pollen viability under heat stress.
Previous experiments have investigated the cause of sterility by
overexpressing the GhCKI gene in cotton (Li et al., 2022c). Li M.
et al. (2021) identified six nuclear genes (WRKY28, ghi-MIR156, ghi-
MIR171, AGL19, MAPKK6 and ghi-MIR7484) associated with
anther abortion in cotton. The growth of the pollen tube and
progeny development in plants mainly depends on the quantity
of pollen grains deposited on the stigma (Stavert et al., 2020).
However, the effects of restrictive pollination on progeny
development are significant and require further exploration. A
key aspect is the reduced pollen tube growth rate caused by a
limited number of pollen grains (Li et al., 2023). When pollen
grain availability is below optimal levels, phenotypic variation
among progeny tends to increase. Studies have demonstrated a
positive correlation between pollen grain quantity and the rate of
pollen tube development (Reese and Williams, 2019). Kakani et al.
(2005) studied the effects of different levels of heat stress, i.e., low,
moderate, and high on the length and germination of pollen tubes in
12 cotton genotypes. The highest pollen tube length and maximum
germination were observed at 32°C. However, at 44°C, no pollen tube
formation was noticed and no pollen germination occurred at 47°C.
Similarly, Burke et al. (2004) also reported that at 47°C the length of
the pollen tube reduced significantly as temperature >32°C. The
pollen germination percentage also decreased at a temperature of
37°C. Furthermore, an experiment was conducted to assess the effect
of pollen quantity on pollen tube growth rate in cotton plants. In the
first trial, almost 20 pollen grains were applied to the stigma of an
emasculated cotton flower, while in the second trial, a large quantity
of pollen grains was applied to the stigma of emasculated flowers
(Ter-Avanesian, 1978). In the first trial, pollen tubes took 15 h to
reach the ovules, whereas in the second trial, they required only 8 h
indicating that the growth rate of pollen tubes in the second trial was
nearly twice as fast (Ter-Avanesian, 1978). The slower growth of
pollen tubes under limited pollen conditions could be attributed to
the physiological association between the stigma and reduced
number of pollen grains, potentially impacting nutrient
availability and signaling pathways (Yang et al., 2022).
Additionally, cultivars with longer anthers, which produce more
pollen grains, have reported to exhibit greater resilience to heat
stress, suggesting that pollen grain abundance may confer an
adaptive advantage under adverse environmental conditions
(Yang et al., 2022).

2.4 Other developmental stages

Heat stress decreases leaf and leaf-related traits of cotton to a
great extent. The reduction in leaf length, leaf width, leaf ratio, and
leaf area depend on the time period and degree of heat exposure.
These traits suffer more damage when exposed to prolonged and
severe heat stress (Saleem et al., 2021; Sarwar et al., 2023; Yousaf
et al., 2023). Leaf area plays a very important role in the process of
photosynthesis as it captures most of the sunlight and is very
sensitive to high temperature and works optimally at 26°C–28°C
(Terashima et al., 2011; Wang Y. et al., 2023). Till now, many studies
have identified genes such as HSP70, HSP101, HsfA1, and HsfB1,
that are associated with leaf traits. These genes also contribute to

enhancing heat stress tolerance in cotton (Ikeda et al., 2011; Zhou
et al., 2023). Furthermore, ABA-responsive element binding factors
have also been reported to regulate the expression genes responsible
for heat resistance, thereby improving leaf morphology (Huang
et al., 2016).

Flowering branches are also highly sensitive to high temperature
with a significant decrease in the flowering ratio observed after
prolonged exposure to temperature exceeding 42°C (Saud and
Wang, 2022). When the daytime temperature rise above 30°C
during the flowering period, it leads to the shedding of squares
and flowers (Bange et al., 2022).

When temperature exceeds the limit of 28°C, it strikingly affects
the seed number and boll size; however, few fruits remain at a
temperature >32°C (Saini et al., 2023). Heat stress also influences the
production of vegetative and flowering branches (Abro et al., 2023).
When temperature increases from 30°C to 40°C, fruiting sites are
reported to increase exponentially (Ahmad et al., 2020). However,
the strength of bolls strikingly decreases above 35°C and approaches
almost zero when the temperature rises above 40°C (Reddy K. R.
et al., 1997). It is observed that newly developed cotton bolls are
frequently shed when the average day temperature is > 32°C (Majeed
et al., 2021).

2.5 Yield

The net yield of cotton is highly susceptible to heat stress,
with numerous studies reporting a negative correlation between
elevated temperature and cotton lint yield (Conaty et al., 2015).
The annual variations in cotton yield are largely attributed to
differences in temperatures during the growing season. Studies
have shown that cotton lint yield decreases rapidly when
temperatures exceed 32°C, and fruiting efficiency begins to
drop at temperature above 29°C (Jans et al., 2021; Ashraf
et al., 2023). Such heat stress suppresses photosynthesis,
leading to low carbohydrates production, which is necessary
for cotton fiber quality and final yield (Zahra et al., 2023).

Elevated temperature at night further exacerbates yield loss
by enhancing respiration, which drop the level of carbohydrates
(Abro et al., 2023). This reduction in carbohydrates adversely
affects several key traits like seed setting, size of bolls, seeds per
boll and quality and quantity of fiber (Soliz et al., 2008). Boll size
and number, the primary contributors to cotton yield, are
particularly vulnerable to heat stress. Boll retention, which
directly associated with yield, decline significantly under heat
stress (Patra et al., 2023). Studies have shown that heat stress
declines the cotton plant capability of retaining boll, causing
premature boll shedding and contributing to substantial yield
losses globally (Saini et al., 2023).

Studies have also revealed that slight temperature changes may
not affect seed weight, but they can significantly reduce the number
of seeds per boll (Mudassir et al., 2021). To mitigate these impacts,
breeding strategies are being developed to enhance heat tolerance of
cotton. Reproductive tissues, which are more sensitive to heat stress,
are recognized as key contributors to yield loss. Therefore, breeding
programs focusing on improving the resilience of these tissues are
critical for maintaining yield stability under heat stress (Majeed
et al., 2021).
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3 Heat-induced oxidative stress and
cellular defense mechanisms

3.1 Antioxidant activity

Plants relay on tightly regulated oxidation-reduction reactions
to balance energy generation and consumption, but these processes
are profoundly influenced by environmental stressors, leading to
significant alterations in their metabolic activities (Suzuki and
Mittler, 2006). Such metabolic changes affect the concentrations
of several biomolecules. Similar to humans, plants subjected to heat
stress undergo metabolic dysregulation, resulting in an excessive
accumulation of reactive oxygen species (ROS) inside of their cells
(Suzuki et al., 2012). While ROS overproduction under heat stress
can oxidative damage to cellular organelles, proteins, lipids, and
DNA, it is important to note that ROS also play crucial physiological
roles. At controlled levels, ROS are involved in key processes such as
detoxification of hazardous compounds, antimicrobial phagocytosis,
programmed cell death (apoptosis), and signaling pathways that
regulates stress tolerance, cell growth, seed germination, root hair
development, and cellular senescence (Considine et al., 2015; Singh
et al., 2016).

ROS levels overwhelm the plant’s antioxidant defense systems
under severe and prolonged heat stress, causing oxidative stress and
irreversible damage to important cellular components (Mittler,
2002). ROS encompass a range of highly reactive molecules,
including singlet oxygen (1O2), hydrogen peroxide (H2O2), and
free radicals like the hydroxyl radical (OH) and superoxide anion
(O2•-). These species are generated through cell-based mechanisms
involving the excitation and reduction of molecular oxygen (O2),
often triggered by disruptions in metabolic pathways and
environmental challenges. For example, Lv et al. (2023)
demonstrated the participation of H2O2 in regulating high
intensity blue light (HB) induced hypocotyl phototropism in
cotton under heat stress. Their findings revealed that exposing
cotton seedling to HBL from one side results in uneven
distribution of H2O2 and inhibits the elongation of hypocotyl
cells. Understanding the dual role of ROS as both damaging
agents under stress and essential signaling molecules highlights
their complexity in plant stress biology.

The evaluation of cotton’s antioxidative scavenging ability and
ROS concentration serves as a critical criterion for selecting heat-
tolerant cultivars (Majeed et al., 2019). In a study involving two
cotton cultivars, 30 days old seedlings were subjected to moderate
heat stress, with temperature increased from 30°C to 45°C. During
heat stress, lipid peroxidation increased by 40%–170% and hydrogen
peroxide levels rose significantly by 206%–248%. The concentration
of non-enzymatic antioxidants increased proportionally with the
temperature. Enzymatic antioxidant activities, including superoxide
dismutase (SOD), catalase (CAT), peroxidase (POX), and ascorbate
peroxidase (APX), also increased by 56%–70%, 37%–69%, 43%–
91%, and 22%–27%, respectively. These finding suggest that
genotypic differences among cultivars influences ROS generation
and antioxidants responses. Cultivars with higher antioxidant levels
and lower ROS concentrations exhibited greater tolerance to heat
stress (Loka and Oosterhuis, 2016).

In a separate study, cotton plants were grown under two
temperature regimes; 38°C and 45°C. The results revealed no

significant differences in H2O2 levels between the two
temperatures. However, proline concentration decreased
significantly and quickly as the temperature increased from 30°C
to 45°C. While CAT, POX, and APX activities increased with rising
temperatures, SOD activity dropped at a temperature of 45°C (Loka
and Oosterhuis, 2016). Additionally, another study demonstrated
that applying H2O2 topically to cotton plants activates SOD and
CAT, supporting the idea that foliar H2O2 treatments can enhance
heat tolerance in cotton without negatively affecting crop yield
(Majeed et al., 2021).

Another study was performed to find out how high temperature
at night affect the biochemical responses of leaves and pistils in an
upland cotton cultivar. The results showed that as the nighttime
temperature increased, glutathione reductase activity in the leaves
rose significantly, whereas its concentration in the pistils and other
floral components are less influenced by fluctuations in nighttime
temperatures compared to leaves and other vegetative parts of the
cotton plant (Sun, 2012). Yousaf et al. (2023) also revealed that the
activities of biochemical attributes of upland cotton genotypes
significantly increased under heat. SOD, POD and CAT
increased by 52%–98%, 54%–169%, and 65%–74%, respectively.
Heat stress also induced oxidative stress, as evidenced by a
substantial increase in H2O2 levels from 7.1% to 28.7%.
Correlation analysis also revealed that SOD and POD displayed
positive, and CAT and H2O2 negative correlation with seed cotton
yield. The results suggest that the antioxidant capacity of cotton
genotypes plays a critical role in their heat tolerance, with BH-232
exhibiting the most effective biochemical response among the
tested genotypes.

3.2 Small RNAs roles in regulating heat stress

Heat stress in cotton also cause various harmful effects at both
the cellular and molecular levels including damage to DNA and
proteins (Yadav et al., 2024). Heat stress disrupts cellular and
molecular functions, particularly at the transcriptional and post-
transcriptional levels. Transcriptional factors (TFs) play a vital role
as key regulatory elements, influencing the expression and activity of
multiple genes under heat stress (Yadav et al., 2024). MicroRNAs
(miRNAs) have generated significant scientific interest due to their
potential involvement in the precise regulation of TFs, which could
impact stress responses and adaptation mechanisms (Wang et al.,
2024c). Under heat stress conditions, miRNAs play an important
role at the molecular level, bridging significant gaps in research
between genetics and molecular breeding (Wang et al., 2024c).
MiRNAs, also known as killer RNAs, are categorized as internal
non-coding RNAs (ncRNAs) (Corona-Gomez et al., 2022). This
category of RNA has profound effects on biological and metabolic
processes. Derived from RNA hairpin precursors, miRNAs are
approximately 21 nucleotides in length. These killer RNAs are
processed by a specific double stranded RNA degrading enzyme,
ribonuclease (Sharma et al., 2025).

The core components of the miRNA pathway under heat stress
are highly conserved, with subtle variations distinguishing their roles
in plants. miRNAs are primarily transcribed by RNA polymerase II
(Pol II) as long primary transcripts known as pri-miRNAs which is
then converted into a hairpin structure (Wang et al., 2024e). Pri-
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mRNAs are then further processed into a precursor miRNA (pre-
miRNA) in the nucleus. Notably, approximately one-third of known
miRNAs are embedded within the introns of protein-coding genes
and are frequently co-transcribed with their respective host genes
(Sharma et al., 2025). Additionally, some miRNAs originate from
exonic regions or are derived from larger ncRNAs. The biogenesis of
most miRNAs follows a sequential processing pathway involving
members of the RNase III family, namely, Drosha and Dicer
(especially Dicer like-1 enzyme) (Maurya et al., 2025). Following
transcription, Drosha cleaves the primary transcripts in the nucleus,
excising short hairpin structures (~60–100 nucleotides) to generate
precursor miRNAs (pre-miRNAs) (Asadi et al., 2024). These pre-
miRNAs are then transported to the cytoplasm via Exportin 5
(XPO5), where Dicer further processes them into mature double-
stranded RNAs (~19–24 nucleotides) (Sumaira et al., 2024).
Notably, some miRNAs deviate from this canonical biogenesis
pathway and mature independently of Drosha processing. Such
miRNAs include mirtrons and tailed mirtrons, which generate their
precursor forms through splicing and exonuclease-mediated
trimming. Subsequently, the mature miRNA associates with an
Argonaute (AGO) protein to assemble the RNA-induced
silencing complex (RISC) (Hameed et al., 2024). This complex
then selectively binds to complementary sequences on target
mRNA molecules, resulting in either mRNA degradation or
translational repression, thereby modulating gene expression at
the post-transcriptional level (Liang et al., 2023). The efficiency
and precision of this regulatory pathway are orchestrated by key
proteins, including HASTY, HYPONASTIC LEAVES1 (HYL1), and
SERRATE (SE), which play essential roles in miRNA processing and
export (Bielewicz et al., 2023). Furthermore, miRNAs also modulate
HSPs expression under heat stress by directly binding to the
3′untranslated region (UTR) of HSP-encoding mRNAs. This
interaction facilitates HSP upregulation either by enhancing
translation or preventing mRNA degradation, thereby fine-tuning
the cellular stress response. Through this regulatory mechanism,
miRNAs ensure that HSP levels are appropriately adjusted in
response to thermal stress, thereby safeguarding cellular
homeostasis and preventing protein misfolding under adverse
conditions (Islam et al., 2024).

The latest advances in high throughput sequencing have
facilitated the precise identification of miRNAs across plant
species including cotton (Naveed et al., 2025; Liu H. et al., 2014;
Chen et al., 2020). Previous research has depicted that heat stress can
induce the differential expression of specific miRNAs in different
plant species (Dong et al., 2015; Kan et al., 2023). However, the
mechanism remains largely unexplored in cotton. A comprehensive
set of 77 miRNAs has been identified, including 33 previously
known and 44 newly discovered miRNAs. Of these, 41 miRNAs
exhibited differential expression under normal temperature, while
28 miRNAs displayed distinct expression patterns under heat stress
(Zhang and Pan, 2009).

Computational analysis has been instrumental in characterizing
various miRNAs families based on their conserved features across
different developmental stages in cotton (Hamid et al., 2024). The
functionality of these miRNAs has been validated through deep
sequencing (Ahmed et al., 2024). In cotton tissues, several highly and
lowly conserved miRNAs families have been identified, a process
widely studied in Oryza sativa and Arabidopsis (Suddal et al., 2024;

Mazhar et al., 2022). Despite this, there is a significant gap in the
literature regarding this role of miRNAs in stress tolerance in cotton,
which require further investigation. To address this, a
comprehensive analysis of the cotton genome using high-
throughput sequencing is underway worldwide. This approach is
considered highly effective for detecting and classifying miRNAs
and elucidating their roles under stress conditions, ultimately aiding
in the development of superior cotton germplasm. The identification
of miRNAs helps in detecting stress responsive genes (Fuck et al.,
2024). Moreover, the linkage of miRNAs profiles with stress
controlling networks offers valuable insights for manipulating
plant genetic material to enhance tolerance to heat stress
(Samynathan et al., 2023). This knowledge can be utilized to
develop dominant or stress resistance cotton varieties capable of
withstanding high temperatures and other abiotic challenges.
Previous studies have shown that certain miRNAs are
upregulated under heat stress (Zeng et al., 2023; Gan et al., 2023).

The Identification of heat-responsive miRNAs provide the basis
for molecular breeding. Using advance techniques, miRNAs
associated with various quality traits can be identified. Plant
hormones, such as abscisic acid (ABA), assist the plants to
survive under heat stress (Wang K. et al., 2024). ABA
significantly influences plant developmental stages during stress
by its regulatory functions and impact on signal transduction
(Liu H. et al., 2022). Understanding ABA’s role and how it
deviates under stress conditions will provide valuable insights for
mitigating crop yield losses and clarifying its function in stress-
induced signal transduction pathways (Cutler et al., 2010). ABA is
synthesized from carotenoids through glyceraldehyde-3-phosphate
and isopentenyl diphosphate in cells containing plastids, such as
those in roots and leaves (Bergman et al., 2024). It is known as a
growth-inhibitory hormone because it suppresses cell proliferation.
Under water deficit conditions, ABA production increases
significantly in roots and is subsequently transported to shoots.
In leaves, ABA levels can rise by up to 50% under water stress (Taiz
and Zeiger, 2002), where it induces stomatal closure to minimize
water loss (Kaya et al., 2019). ABA has proven beneficial under
drought stress by enhancing the hydraulic conductivity of plant root
systems (Grover et al., 2013). During heat stress, plants rapidly
accumulate endogenous ABA, which plays a vital role in improving
heat resistance by regulating ROS levels (Li N. et al., 2021).
Exogenous application of ABA has also been shown to mitigate
the adverse effects of heat stress and enhance heat tolerance
(Sumaira et al., 2024). Moreover, ABA significantly regulates heat
stress transcription factors (HSFs) and heat shock proteins (HSPs),
further strengthening plants’ heat resistance. In earlier studies,
transposon-mediated mutations were employed to investigate
ABA-related responses in an Arabidopsis mutant known as hyl1
(Ali and Yan, 2012).

Various studies have demonstrated that ABA treatment
significantly influences the expression of miRNAs (Ali and Yan,
2012). Previous research has shown that the transcription factor
ABI3 facilitates ABA in inducing and accumulating the expression
of miRNA159 (Li et al., 2007). This induced miRNA159, in turn,
upregulates the expression of other transcripts involved in ABA
signaling. Several studies have explored the impact of ABA on
transcription factors and miRNAs to highlight its importance under
stress conditions across multiple crops (Hao and Zhang, 2022).
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Elucidating the pivotal role of ABA and its molecular traits in
greater detail can provide a clearer understanding of stress responses
in cotton. Such insights would enable scientists and breeders to
strategically manipulate existing germplasm for the benefit of
humankind (Zeng et al., 2023). It is, therefore, a fundamental
responsibility of scientists to enhance crop yields to meet the
demands of the growing global population. The responses of
miRNAs under heat and ABA stress were profiled using
membrane arrays alongside controls. Replicated data from the
membrane arrays under ABA stress were collected to obtain
average responses (Zhang L. et al., 2023).

There are several challenges associated with the application of
miRNAs in cotton and other crops to mitigate heat stress. Plant
miRNA prediction has traditionally relied on pattern-based
methods, which utilize small RNA sequencing data and biological
criteria to identify authentic miRNAs (Yadav et al., 2024). However,
these methods face several challenges and limitations when applying
miRNAs to enhance plant resilience against heat stress. Key issues
include the high false-positive rate due to sequence similarities,
difficulty in distinguishing true miRNAs from degradation products,
and the limited ability to predict novel miRNAs without prior
reference sequences (Kuang et al., 2023). Additionally, these
methods often struggle to capture the dynamic expression
patterns of miRNAs under heat stress, making it challenging to
identify stress-responsive miRNAs with functional significance in
plant adaptation (Patra et al., 2023). Scientists introduced machine
learning to overcome the limitations and challenges associated with
pattern-based methods. Machine learning-based approaches have
been widely employed for predicting plant miRNAs, leveraging
algorithms trained on extensive datasets to analyze miRNA-target
interactions (Fuck et al., 2024). These methods consider multiple
factors, including sequence context, structural characteristics, and
evolutionary conservation across species, often surpassing pattern-
based approaches in accuracy (Sittaro et al., 2023). However,
machine learning models still require refinement, as their
predictions are not always entirely reliable. The advancement of
deep learning techniques highlights the potential for developing
innovative models that could replace existing tools and improve the
accuracy of plant miRNA identification (Jafar et al., 2024).

Despite the progress made, training machine learning models is
a complex process that demands meticulous design and
implementation. Ensuring model reliability is particularly crucial
when individuals without specialized expertise are involved (Tian
et al., 2024). High-quality training datasets are essential for building
effective models, making data collection a fundamental step (Liu
et al., 2022b). A well-structured positive dataset consists of
experimentally validated miRNAs sourced from public databases
or published literature (Singla et al., 2024). The latest version of
miRBase (v.22) includes 38,589 precursor miRNAs from 271 species
spanning plants others and unicellular organisms (Kozomara et al.,
2019). However, concerns have been raised about the reliability of
many plant miRNA loci and families listed in miRBase, as some lack
strong supporting evidence (Ražná et al., 2025). To address these
data quality concerns, the Plant miRNA Encyclopedia (PmiREN)
was developed as a more refined database, integrating updated
annotation strategies to minimize biases found in earlier
resources (Bambil et al., 2025). PmiREN enhances data accuracy
by selectively incorporating genomic and small RNA sequencing

data, ensuring higher-quality miRNA records. The latest PmiREN
2.0 release comprises 179 plant species 38,186 miRNA loci from
7,838 miRNA families (Guo et al., 2022). Despite these
computational advancements, miRNA prediction remains
challenging, with false positives being a persistent issue. Studies
indicate that a significant proportion of plant miRNAs and miRNA
families cataloged in miRBase may be inaccurately annotated, with
more than a quarter of individual plant miRNAs and nearly three-
quarters of miRNA families lacking sufficient experimental
validation (Yan et al., 2024).

3.3 Heat shock proteins

HSPs are a diverse group of proteins that act as molecular
chaperones, helping organisms survive under stress. They play a key
role in protecting cells by stabilizing proteins, preventing damage,
and assisting in refolding damaged proteins (Sable et al., 2018). The
production of HSPs increases as temperatures rise. In cotton, HSPs
are produced and accumulate at controlled temperatures between
38°C and 41°C (Farooq et al., 2023). These proteins are highly
conserved across evolution and are present in both prokaryotes
and eukaryotes.

HSPs are categorized into five main families based on their
molecular weight: HSP20, HSP60/40, HSP70, HSP90, and HSP100
(Waters and Vierling, 2020). Each family plays a specific role in
maintaining cellular balance and supporting different stages of plant
development. Among these, small HSPs (sHSPs) are the most
diverse, with low molecular weights ranging from 12 to 40 kDa
(Silva et al., 2021). They vary widely in their location, function, and
structure. sHSPs bind to unfolded proteins, preventing them from
clumping together, and help in their refolding with the aid of ATP-
dependent chaperones like ClpB/DnaK (Piróg et al., 2021). Most
sHSPs contain an α-crystallin domain, which forms a double-ring
structure (dodecamer) that assists in protein folding. Research has
shown that the expression of sHSP genes, such as Hsp17.7, is closely
linked to thermal stress tolerance in plants (Rehman et al., 2021). In
cotton, quantitative analysis of the sHSP gene GHSP26 revealed that
its expression increases significantly during water deficit conditions,
with a 100-fold rise in protein levels in the leaves (Fan et al., 2024).

HSP60, also known as chaperonin 60, is a mitochondrial protein
that performs two critical functions during heat stress (Singh M. K.
et al., 2024). First, it keeps proteins in an unfolded state for transport
across the inner mitochondrial membrane. Second, it helps fold
essential proteins within the mitochondrial matrix. HSP60 also
supports photosynthesis-related proteins like Rubisco (Cömert
et al., 2024). Studies have shown that mutations in the
Chaperonin-60α gene, which codes for HSP60, lead to defective
chloroplasts, resulting in poor seedling and embryo development in
Arabidopsis (Kim et al., 2013). Deleting this gene causes cell death.
Similarly, experiments with transgenic tobacco plants with reduced
Cpn60β expression revealed issues like delayed flowering, stunted
growth, and leaf yellowing (chlorosis) (Zabaleta et al., 1994).

HSP70 proteins play a key role in folding proteins and
preventing their clumping. Increased HSP70 expression is a
marker of heat tolerance in plants. In cotton, HSP70 genes are
crucial for fiber development, and their inhibition leads to shorter
fiber growth (Sable et al., 2018). This inhibition also causes oxidative

Frontiers in Genetics frontiersin.org09

Luqman et al. 10.3389/fgene.2025.1553406

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1553406


stress by increasing H2O2 levels, damaging the ovule’s epidermal
layer. HSP70 proteins also act as signaling molecules for activating
or deactivating transcription processes (Ni et al., 2021).

HSP90 proteins differ from other chaperones because they are
primarily involved in signal transduction, including working with
signaling kinases and hormone receptors (Lubkowska et al., 2021).
They also help fold proteins and are among the most abundant
cellular proteins (making up 1%–2% of total cellular proteins)
(Kumar et al., 2021). HSP90 proteins often work alongside
HSP70 in a multi-chaperone system, and their expression rises
significantly under heat stress HSP100 belongs to the AAA
ATPase family and performs various functions, such as unfolding
and breaking down protein aggregates (Lubkowska et al., 2021).
Besides helping plants tolerate heat stress, HSP100 plays a role in
basic cellular processes, including chloroplast development (Zeng
et al., 2021).

All living organisms possess the ability to respond to
environmental stresses, with molecular-level changes leading to a
rapid surge in protein synthesis due to alterations in gene
expression. These proteins, known as HSPs, stress proteins (SPs)
or stress-induced proteins (SIPs), play a crucial role in stress
adaptation (Banerjee et al., 2025). Heat stress disrupts essential
cellular metabolic processes, including DNA replication, RNA
transcription, mRNA export, and protein translation, causing a
temporary halt until the cell stabilizes (Zheng et al., 2025). High
temperatures significantly impact plant structure and metabolism,
particularly affecting cell membranes and critical physiological
activities. The enzymes involved in these processes exhibit
temperature dependency, as their activity is influenced by the
Michaelis–Menten constant (Raimanová et al., 2024). To survive
heat stress, plants deploy various adaptive mechanisms, such as
maintaining cell membrane integrity, scavenging ROS, synthesizing
antioxidants, accumulating osmoprotectants for osmoregulation,
and activating kinases, including calcium-dependent protein
kinases (Kumar et al., 2024a). These processes facilitate increased
transcription and signal transduction for chaperone proteins. Heat
stress responses (HSRs) regulate signaling pathways by activating
ABA-responsive genes, Ca2+-dependent signaling cascades, the
synthesis of rapidly inducible osmolytes, ROS detoxification, and
HSP-mediated protein folding (Wang K. et al., 2024). Upon
detecting heat stress signals, plants initiate complex intracellular
signaling cascades, which help regulate the activation of heat-shock
transcription factors (HSFs) and HSPs, along with other stress-
induced genes, to mitigate heat-induced damage (Yurina, 2023).

Genes encoding various HSPs are localized in different cellular
compartments, including the cytosol, endoplasmic reticulum,
chloroplast, mitochondria and nucleus (Kumar et al., 2024b). The
accumulation of HSPs in these organelles is influenced by the
severity of heat stress. For instance, nuclear HSPs localize in the
cytosol at temperatures of 27°C and 43°C, while chloroplastic HSPs
accumulate at around 37°C (Daniel et al., 2008). The transcriptional
regulation of HSPs in response to heat stress is termed the heat shock
response (HSR). This process is governed by HSFs, which bind to
cis-regulatory elements called heat shock elements (HSEs) in the
promoter regions of HSP genes (Hao and He, 2024). HSFs are
categorized into three types, HSFA, HSFB, and HSFC: each with
distinct roles. Among them, HSFA is a key regulator of the HSP cycle
and exists in a monomeric form within the cytosol under normal

conditions. Its activity is negatively regulated by HSP90, which
maintains it in an inactive phospho-protein state (Rabuma and
Sanan-Mishra, 2025). Upon heat stress, this repression is lifted as
HSP90 dissociates, leading to the formation of a functional HSFA
trimer. This activated trimer binds to HSEs in the promoter region,
initiating transcription and subsequent HSP synthesis (Chen et al.,
2024). HSFA1 serves as the primary regulator of this process, while
HSFA2 shares structural and functional similarities with HSFA1 but
is expressed only under stress conditions (Peng et al., 2025; Pan et al.,
2024). Under extreme stress, HSFA2 forms a highly efficient hetero-
oligomer complex with HSFA1, enhancing its regulatory function.
This complex not only controls downstream heat stress-related HSP
genes but also activates protective enzymes such as APX, POX, GR
and GST reinforcing the plant’s defense mechanisms (Pandey
et al., 2024).

3.4 Epigenetic regulation under heat stress

DNA methylation (DM) is a highly intricate mechanism that
requires the involvement of various enzymes and cofactors. It begins
when a DNA methyltransferase enzyme identifies a CpG
dinucleotide (Ravi et al., 2025). This modification influences
chromatin structure, ultimately leading to gene transcription
suppression, as DM plays a crucial role in regulating gene
expression during plant growth and responses to stress (Zhao
et al., 2024). It is responsible for controlling key plant
characteristics, including leaf morphology, resistance to diseases,
and adaptation to environmental stressors. DM is vital for
maintaining genome stability and modulating gene activity in
plants (Talarico et al., 2024). The addition of a methyl group to
the cytosine base results in the formation of 5-methylcytosine
(5 mC), which participates in essential biological functions such
as genome integrity, transcriptional silencing, developmental
processes, and responses to heat stress (Wojciechowski et al.,
2024; Neto et al., 2024). Acting as a repressive marker, 5 mC
inhibits gene expression, with its levels controlled through both
methylation and demethylation mechanisms. DM can occur
through either active or passive pathways, and modifying its
patterns has the potential to improve crop productivity and
resilience to heat stress (Lawson et al., 2025).

Histone modifications primarily occur at the amino acid
residues on histone tails and are mediated through processes
such as methylation, phosphorylation, acetylation, and
ubiquitination (Sharma et al., 2023). These modifications play a
critical role in regulating gene transcription by modulating
chromatin structure, either promoting an open chromatin state
conducive to transcription or inducing a closed, repressive state
(He et al., 2022; Correia et al., 2013). Specifically, histone marks like
H3K4me, H4K5ac and H3K36me are associated with chromatin
opening and active transcriptional regulation (He et al., 2022).
Numerous studies have emphasized the pivotal role of histone
modifications in epigenetic regulation and their contribution to
stress responses, including the development of heat stress resistance
in plants (Perrella et al., 2022; Nishio et al., 2024; Yáñez-Cuna
et al., 2014).

Diverse plant species that undergo histone modification become
susceptible to heat stress (Zhao et al., 2020). Previous studies have
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shown that heat stress effect transmission vector like
Chlamydomonas, resulting in a significant increase in H3/
H4 acetylated histones (Moler et al., 2019; Rommelfanger et al.,
2021). Additionally, it has been demonstrated that heat shock can
trigger the acetylation of histones (H3/H4) through specific
transcriptional factor such as HSF1 (Weng et al., 2006).
However, in forest plants such as oak cork, heat stress causes the
decrease in amount of acetylated histone H3 (Weng et al., 2006). The
increase in deacetylated histone H3 leads to suppression of
chromatin in promoter region and cause failure of gene
functionality (Xia et al., 2020). Therefore, to withstand heat
stress, histone modification in the cell is essential for the
production of cotton anthers.

The exact mechanism by which histone modifications influence
gene expression in response to plant stress are still being explored.
However, research on various plant species has led to several
proposed mechanisms (Miryeganeh and Armitage, 2025;
Abdulraheem et al., 2024; Acharjee et al., 2023; Millán-Zambrano
et al., 2022). One such mechanism suggests that specific
transcription factors or co-regulators are recruited to stress-
responsive genes, guided by the recognition of distinct histone
modifications in response to different environmental conditions
(Dhatterwal et al., 2024).

The performance of TFs is accelerated in the presence of
enhancers. The binding of enhancers to specific regions causes
histone alternations, leading to increased transcription of relevant
genes (Liu et al., 2023). Multiple studies have been carried out to
understand the role of enhancers in gene functionality and
developing resistance to heat stress, but much remains unknown
(Giresi and Lieb, 2011). Enhancers are genomic segments involved
in gene function studies and contains sequence motifs. These short
sequence motifs serve as binding sites for the attachment of TFs
(Zhao H. et al., 2022). Though, the relation between the motif
sequence and activity of enhancers is unknown till now.

The relationship between sequence motifs and enhancer
performance, as well as gene expression, needs to be better
understood. Further research is required to explore the
association between TFs and enhancer, and their role in opening
of chromatin material (Hasanuzzaman et al., 2013). A positive and
strong association between TFs and enhancer is crucial for higher
gene expression (Andersson and Sandelin, 2020). This association is
directly linked to histone modifications, ultimately leading to
increased transcription of desired genes. Hence, it is essential to
understand the linkage between enhancer and gene transcription in
cotton to withstand harsh environmental conditions like heat stress
(Wang R. et al., 2024).

Enhancers are often underestimated for their role in gene
transcription. Enhancers comprised the sequences
complementary to the TFs, but the relationship between the TFs
sequences and enhancers in chromatin opening o remains unclear
and needs to be elaborated (Panigrahi and O’Malley, 2021). Multiple
methodologies have been developed, such as formaldehyde assisted
selection of regulatory elements, to investigate the relation between
active enhancers and DNA sequences/regions (Seuter et al., 2020).
Techniques like FAIRE-seq, along with high-throughput sequencing
and DNase-seq, are used to identify the positions of enhancers and
promoters on chromosomes (Peng et al., 2017). Past studies have
shown that enhancing dinucleotide repeat motifs (DRMs) can boost

the activity of enhancers, which are wide distributed (Peng
et al., 2017).

TFs play a crucial role in chromatin structure, which is essential
for understanding gene functionality. In silent chromatin, specific
group of TFs, such as pioneer TFs, play important role in
determining the fate of the cell (Raccaud and Suter, 2018). This
specific group of pioneer TFs was thought to be involved in
reprogramming of the cell and have the capability to identify and
engage genes that were developmentally silenced. In inactive
(closed) chromatin, silenced genes are suspected to be present
(Lai et al., 2018).

Applying epigenetics modifications to enhance cotton and other
crop species resistance to heat stress presents several challenges and
limitations. Due to variations in the composition of the epigenome
among species, research has predominantly focused on specific
epigenetic processes within different plant species (Langfordet al.,
2024). In certain plants, the primary emphasis has been on DM,
followed by histone modifications. Conversely, in species where DM
levels are low or absent, studies have centered on non-coding RNAs
or histone modifications alone (Liu and Zhong, 2024; Ding et al.,
2022; Budak et al., 2020). However, these epigenetic mechanisms are
interlinked. For example, in plants, the presence of H3K4me3 and
H3K4me2 (Sharifi-Zarchi et al., 2017; Beacon et al., 2021) is typically
associated with unmethylated DNA, whereasH3K36me3 (Lam et al.,
2022) is linked to the presence of DNAmethylation. Additionally, in
germ cells, histone modifications are believed to play a role in
guiding DNA methylation machinery (He et al., 2011). Similarly,
ncRNAs contribute to epigenetic regulation by recruiting binding
proteins, influencing histone modifications, and ultimately affecting
DNA methylation (Dávalos et al., 2019). A major limitation in
current epigenetic research is the lack of focus on the interactions
between these interconnected mechanisms.

The complexity and stability of epigenetic modifications in
another major limitation. Epigenetic modifications, such as DM
and histone alterations, are dynamic and can be reversible, making it
challenging to maintain these changes over time and across
generations (Manav et al., 2024). While some epigenetic changes
can be inherited, the stability and consistency of these modifications
across generations remain uncertain, affecting their potential use in
breeding programs (Cao and Chen, 2024). Moreover, the selection of
proper model plant to investigate the research question properly in
epigenetics is another challenge (Kakoulidou et al., 2021). For
example, Arabidopsis thaliana is one of the plant models of
choice to investigate epigenetic regulations and modifications
(Zhang et al., 2023). Selecting crops with less generations and
complex epigenetic regulations makes it difficult to predict the
outcomes and gain a clear understanding of the results. To gain
a more comprehensive understanding of epigenetic regulations and
mechanisms in nature, research should slightly extend beyond
model species to a broader range of organisms. Of course, the
selection of species must be carefully aligned with the research
objectives, as it directly influences the availability of epigenetic
mechanisms and the number of generations required to observe
transgenerational effects (Gallusci et al., 2023). To avoid conducting
blind experiments or working with non-model plant species that
may be costly and challenging to maintain, an initial approach could
involve comparative studies using existing data. This would help
identify both common and unique epigenetic mechanisms, which
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could then be further explored in other species of interest
(Doddavarapu et al., 2024).

4 Role of breeding, molecular breeding
and omics approaches in developing
heat tolerant cotton

Cotton cultivars often endure extreme heat, reaching
temperatures as high as 50°C during May and June more than
20°C above the optimal range for healthy growth. This extreme heat
significantly impacts crop yield, making the development of heat-
tolerant cotton varieties a pressing need (Saud and Wang, 2022).
Identifying traits that enable seedlings to resist heat stress is
challenging due to their complex and dynamic responses (Abro
et al., 2024). Researchers are actively exploring strategies to manage
plants in high temperature conditions, including pharmacological,
metabolic, and genomic adaptations (Li et al., 2022c). For example,
Abro et al. (2015) developed fifty-eight cotton lines and screened
them for heat stress in the field. Heat-tolerant genotypes were
identified based on morphological traits, physiological traits, cell
injury levels, and susceptibility indices. Seventeen out of the
58 genotypes were found to be highly heat-resistant. Developing
enhanced heat resistance genotypes could improve yield and fiber
quality in regions prone to high temperatures. Field-based methods
are widely employed to assess heat tolerance, offering valuable
insights into plant behavior in natural ecosystems. However, such
studies face limitations in controlling environmental variables
compared to controlled experimental setups (Khalid et al., 2023).

4.1 Conventional and molecular breeding

Traditional breeding for heat-resistant crops primarily relies on
selection and genetically diverse germplasm under high-
temperature testing environments to identify lines with superior
yields (Nadeem et al., 2024; Majeed et al., 2021). However,
improving cotton lines through conventional breeding under heat
stress conditions often reduces yield losses. In regions with high
temperatures, genetic lines are carefully selected at critical growth
stages to ensure resilience. Germplasm evaluation is a fundamental
step in breeding for stress tolerance, and numerous studies have
focused on identifying heat-tolerant genotypes from existing genetic
resources (Sharif et al., 2024; Ahmed et al., 2023b; Ali Z. et al., 2023).

Additionally, the use of crop wild relatives in plant breeding is
gaining traction due to their unique traits, often absent in
domesticated cultivars. These traits are commonly associated with
resistance to biotic and abiotic stresses. Screening wild species and
related relatives is highly recommended to expand the genetic
diversity of breeding programs (Bohra et al., 2022). While
transferring genes from wild species to cultivated crops can be
challenging and often requires recombinant DNA technology,
advancements in plant sciences have made it increasingly feasible
to transfer genes across species boundaries (Kashyap et al., 2022).
Once a desirable gene or trait is identified, it must be transferred into
a suitable genotype or the selected plant purified through breeding.
Classical methods such as single-plant selection, bulk selection, and
pedigree selection remain widely used in cotton breeding

(Munaweera et al., 2022). These traditional approaches,
combined with molecular breeding tools, enable faster and more
efficient screening and genetic improvement of cotton lines.

Transfer of a desirable gene(s) from one plant to another to
improve a particular trait has also been widely used in almost all
plant species, including cotton. Several traits in cotton including
resistance to heat stress have been improved through different
transgenic approaches. Recently, Batcho et al. (2021) applied
Agrobacterium mediated technique to transferred Agave sisalana
extracted AsHSP70 gene in cotton to develop resistance against heat
stress. The transformed gene exhibited highest expression in all
tissues and improve physio-biochemical attributes significantly
under heat stress. Similarly, Zhang L. et al. (2021) identified a
gene called SikCuZnSOD3 (associated with resistance to salt,
drought, and elevated temperature) and transferred it to cotton
using an agrobacterium-mediated technique. The transgenic cotton
lines showed better growth with enhanced sugar, proline, water, and
antioxidant content than regular cotton under stress conditions.
Moreover, Esmaeili et al. (2021) revealed that the transfer of both
OsSIZ1 andAVP1 genes in cotton improved cotton lint yield with an
improvement in photosynthesis rate. Before heat stress, the
photosynthesis rate in transgenic lines was about 72% as
compared to non-transgenic lines, and this percentage increased
to 108% under heat stress. Another HSP called AtHSP101
(discovered in Arabidopsis), which is responsible for resistance to
heat stress, enhanced pollen tube length and germination percentage
in cotton upon transformation under heat stress as compared to
non-transgenic lines (Burke and Chen, 2015). Developing heat
resistance in cotton at the vegetative and reproductive stages is
therefore essential to enhance yield. Furthermore, the transfer of the
Arabidopsis AtSAP5 gene into cotton improved overall plant growth
and carob intake under combined heat and drought stress. These
genetic improvements offer promising solutions for sustainable
cotton production in extreme climates.

Besides conventional breeding, several other molecular breeding
approaches such as marker-assisted breeding (MAB) and
biotechnological tools have been discovered that are speedy and
more accurate (Hassan et al., 2023). So far, several markers such as
AFLP, RFLP and RAPD have been used across different crop species
to identify the genotypic markers associated with abiotic stresses
(Kundu et al., 2024; Gocer and Kulak, 2023). However, SNPs and
SSR are currently the most widely used markers to identify QTLs
associated with heat stress and other abiotic stresses in plants. For
example, Rani et al. (2022), identified 26 linkage groups along with
175 marker loci in cotton heat resistant and susceptible genotypes.
They identified about 17 QTLs that were strongly associated with
23 different morpho-physio heat resistant traits of cotton. The
studied QTLs associated traits not only identified the heat
resistant genotypes but also determined the most important traits
to be focused on during developing heat resistant cotton lines.
Demirel et al. (2014) also conducted an experiment to identify
the marker QTLs associated with heat resistance in cotton by
sequencing 25 expressed sequence tags (ESTs). During heat stress
the expression of two markers, namely, IAR3 and FPGS3 were
upregulated confirming the resistance to heat stress. Furthermore,
GhHS126 and GhHS128 (non-annotated ESTs) were also found to
be upregulated during heat stress. Another study was conducted to
investigate the genetic based heat tolerance mechanisms of cotton.
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The expression level of few genes was quantified using real time
PCR. Genes belonging to four different groups, i.e., transcription
factors (HSFA2 and HSFA1b), HSP (GHSP26, HSP70-1, and
HSP101), calcium signaling (ANNAT8) and antioxidant activity
(APX1). The expression level of all genes increased significantly
under heat stress across different plant traits at seedling levels such
as leaves, roots and ovaries confirming resistance to heat stress
(Zhang Jin et al., 2016). Shaheen et al. (2009) identified 21 heat
resistance SNPs marker located on different chromosomes across
different cotton species including Gossypium herbaceum,Gossypium
laxum, Gossypium arboreum, Gossypium aridum, Gossypium
stocksii, Gossypium gossypioides, and Gossypium sturtianum.
These SNPs can be useful in developing heat tolerant cotton and
other crop varieties in a short period of time.

4.2 Genome editing (GE)

Although latest biotechnological/transgenic techniques are
efficient, however due to their complicated protocols and lengthy
procedures, prolong incubation period, the rate of transformation is
comparatively low in case of cotton (Wang et al., 2022b). The
CRISPR/Cas9 system has two subunits/parts 1: a clustered
regularly interspaced palindromic repeat and 2: associated
protein known as Cas9, the source of both the components is a
bacteria named as Streptococcus pyogenes (Synefiaridou and
Veening, 2021; Ali A. et al., 2023; Basu et al., 2023). This system
is predominantly used for gene editing in plants to induce resistant
against different stresses. It has been efficiently used for genome
editing of many model plants (Kumari et al., 2024; Qurashi
et al., 2024).

The use of CRISPR/Cas9 was found successful in case of
standard/model plant, i.e., Arabidopsis (Belhaj et al., 2015).
However, previous reports have confirmed the successful targeted
genome editing of the cotton genome. Multiple genome editing has
also been performed in allotetraploid cotton through targeting of
GhARG and GhCLA1 genes simultaneously (Shan et al., 2013). The
main regulatory elements of genes are cis-sequences which is
responsible for stress response (Liu J.-H. et al., 2014). These
sequences also play important role in regulation of stress. To
increase the tolerance of abiotic stresses and for the development
of desirable QTLs to achieve phenotypic/genotypic variations of
interest cis-sequences are targeted in CRISPR/Cas9 system (Zafar
et al., 2020). However, there are certain technical hurdles and low
efficiency of desirable transformation. Its use is limited to the cotton
crop and needs to be further developed (Shan et al., 2013).

A comprehensive examination of the expression patterns of heat
stress responsive genes in cotton subjected to prolonged periods of
high temperatures demonstrated a notable increase in the
expressions of IAR3, TH1, FPGS, HS128, and HS126 genes.
Conversely, the expressions of RPS14, LSm8, CTL2, CIPK, and
ABCC3 genes were observed to be downregulated in response to
the heat stress conditions (Demirel et al., 2014). Hence, the precise
manipulation of these genes that are overexpressed or under
expressed in cotton using the CRISPR-Cas system presents an
intriguing prospect for addressing the detrimental effects of heat
stress. Additionally, several TFs and HSPs linked to heat stress-
responsive genes have been suggested as promising candidates for

enhancing plant heat tolerance (Ahmed et al., 2024). Utilizing the
advanced CRISPR/Cas9 system, scientists have effectively
manipulated the heat-stress sensitive albino-1 (HSA1) gene in
rice, resulting in increased heat vulnerability when compared to
natural plant variants (Qiu et al., 2018). Additionally, in the
investigation of facultative parthenocarpy, the slagamous-like 6
(Slagl6) gene was identified as a potential candidate. Through
precise alterations made to the SlAGL6 gene using CRISPR-Cas9
technology, researchers have successfully produced heat-tolerant
parthenocarpic tomato fruits (Klap et al., 2017).

The CRISPR activation system can selectively activate positive
gene regulators associated with TFs and stress-related HSPs with
remarkable specificity. On the other hand, negative regulators can be
effectively suppressed using the CRISPR interference system
(Kumari et al., 2024). In a particular study, researchers utilized
the CRISPR activator and interference systems to modulate the
expression of the BZR1 gene. The findings revealed that
upregulation of the BZR1 gene through the CRISPR activator
system led to an increase in H2O2 production and improved heat
tolerance in rice. Conversely, plants with suppressed expression of
the BZR1 gene exhibited impaired H2O2 production in the apoplast
and reduced heat tolerance. These results highlight the potential of
the CRISPR activation and interference systems in regulating gene
expression to influence stress responses and enhance desirable traits
in plants (Yin et al., 2020). Until recently, the functions of MAP3Ks
in cotton were not well comprehended. However, recent findings
have shed light on their significance. It has been revealed that the
expression of the MAP3K65 gene is stimulated by various signaling
molecules, pathogen invasion, and heat stress. This particular gene
exacerbates susceptibility to pathogen infections and heat stress by
exerting negative control over growth and development-related
processes. Intriguingly, when GhMAP3K65 was silenced, it
resulted in an increased resistance to both pathogen infections
and heat stress in cotton. Consequently, GhMAP3K65 emerges as
a promising target gene for the application of the CRISPR-Cas9
genome editing system, which could facilitate the engineering of
heat tolerance in cotton (Zhai et al., 2017). GhCKI has been
identified as a negative regulator of male fertility in upland
cotton under heat stress. However, traditional genetic
modifications of GhCKI result in male sterility, limiting its
potential use in breeding programs. Li et al. (2025) introduced
controlled variations in anther heat tolerance traits by developing
weak promoter alleles of GhCKI using CRISPR/Cpf1 and CRISPR/
Cas9 genome editing techniques. As a result, they characterized and
identified two novel upland cotton lines with enhanced heat
resistance, attributed to modifications in the GhCKI promoter.
Further analysis demonstrated that the improved heat stress
tolerance in these mutants is due to the inability of trans-acting
factors including GhMYB4 and GhMYB73, which normally
upregulate GhCKI under heat stress, to bind and activate its
expression. This study presents an efficient approach for
generating advantageous alleles while also providing valuable
germplasm resources and molecular insights for breeding heat-
tolerant crops. In another study, Khan et al. (2023b) investigated
the impact of heat stress on male sterility in cotton, revealing that
heat stress suppressed the expression of GhAOC2, a key gene in the
jasmonic acid (JA) biosynthesis pathway. This suppression led to
male sterility and reduced JA levels in the heat stress sensitive cotton
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line H05. However, applying methyl jasmonate (MeJA) to early buds
restored anther fertility. To further understand the role of GhAOC2
in JA biosynthesis and its involvement in the anther response to heat
stress, CRISPR/Cas9 gene editing was used to create Ghaoc2
knockout cotton plants. The mutant lines exhibited male sterility
with reduced JA levels in anthers at anther dehiscence stage (ADS),
tapetum degradation stage (TDS) and tetrad stage (TS). MeJA
application to early-stage mutant buds (with TDS or TS anthers)
restored pollen viability and anther dehiscence, while ROS
accumulation in ADS anthers was reduced. These results suggest
that heat stress induced suppression of GhAOC2 disrupts JA
biosynthesis, leading to excessive ROS buildup and male sterility.
Their study highlights the exogenous JA application as a potential
approach to improving male fertility in cotton under heat stress.
Moreover, plants continuously perceive and adapt to changing light
and temperature conditions throughout the circadian cycle.
However, the molecular mechanisms governing plant adaptability
under warm daytime conditions remain largely unknown. Abdullah
et al. (2023) uncovers the role of GhHRP (protein associated with
response to heat stress) in regulating cotton survival and adaptation
under heat stress by influencing phytohormone signaling.
According to their results, increased ambient temperatures
enhance the binding of the phytochrome interacting ethylene-
insensitive 3 (GhEIN3) and factor 4 (GhPIF4) complex to the
GhHRP promoter, leading to elevated GhHRP mRNA levels.
Overexpression of GhHRP promotes temperature-dependent
accumulation of GhPIF4 transcripts, facilitating hypocotyl
elongation by activating heat responsive growth-related genes.
Notably, upregulation of the GhPIF4/GhHRP complex enhances
plant growth by regulating the expression of A. thaliana auxin
biosynthetic gene AtYUC8 and AtACS8, thereby fine-tuning the
auxin-ethylene balance and reducing ethylene biosynthesis. GhHRP
further protects chloroplasts from photo-oxidative stress by
suppressing AtACS7 and AtACS8 while enhancing AtYUC8,
HSP20 and HSP70 and heat shock transcription factor (HSFA2).
Interestingly, the mutant exhibited impaired production of
YUC8 and HSP, resulting in a contrasting phenotype with
reduced ability to respond to high temperatures. These findings
highlight GhHRP as a crucial heat-responsive signaling component
that enables plants to adapt to temperature fluctuations by
modulating auxin signaling, ensuring continued growth during
warm conditions. Recently, Yu et al. (2023) developed an
optimized CRISPR–dCas9–6×TAL-2×VP64 (TV) system to
achieve controlled and strong activation of target genes in cotton.
Various transcriptional activators, including EDLL, TAL, VP64 and
were fused with dCas9 in different configurations, and their
effectiveness in activating the LUC (pGhTULP34-luciferase)
reporter gene was evaluated in tobacco. Multiple sgRNAs were
designed, with sgRNA19 being selected for screening
transcriptional activation domains. The efficiency of LUC
transcription activation varied significantly among different
combinations, with the dCas9–TV fusion demonstrating the
highest activation efficiency, reaching up to a 51.9-fold increase.

Zinc-finger nucleases (ZFNs) and transcription activator-like
effector nucleases (TALENs) have been utilized to carry out a diverse
range of genetic modifications (Sprink et al., 2015). These techniques
achieve this by introducing DNA double-strand breaks, thereby
triggering two repair mechanisms: error-prone non-homologous

end joining (NHEJ) or homology-directed repair (HDR) at precise
genomic sites. This broadens the scope of genetic alterations that can
be accomplished (Gaj et al., 2013). ZFNs are a type of targeting
reagents comprising two essential components: zinc-finger-based
DNA-recognition modules and the DNA cleavage domain derived
from the FokI restriction enzyme (Carroll, 2011; Zhang et al., 2018).
The recognition and binding process of zinc fingers involves each
individual zinc finger identifying and attaching to a nucleotide
triplet. These zinc fingers then come together to form groups
that bind to specific DNA sequences. However, designing ZFNs
with a strong affinity for a particular sequence is challenging, and
they often exhibit a high rate of off-target effects (Cui et al., 2021).
The journey from the development of ZFNs to the groundbreaking
achievement of the first ZFN-based plant genome editing spanned a
period of 9 years (Lloyd et al., 2005).

4.3 Genome wide association
studies (GWAS)

Recent advances in sequencing technologies have allowed the
plant breeders and geneticist to explore the underlying genetics of
complex plant traits. GWAS detects millions of genetics variants
called SNPs across plant genome to identify association between
genotype and phenotype (Ahmed et al., 2024). GWAS offers a
convenient alternative to the challenges posed by screening
extensive biparental mapping populations. Consequently, GWAS
has gained widespread application across various research studies
(Nie et al., 2016), to identify quantitative trait nucleotides (QTNs)
for quantitative traits (Spindel et al., 2015). Over the past decade,
extensive research has focused on exploring the genetic correlations
between SNP markers and phenotypes in order to identify candidate
regions within the genome. This approach has allowed for the
identification of potential QTLs and causal genes through high-
resolution mapping facilitated by linkage disequilibrium (LD)
analysis (Liu et al., 2018). These advancements have greatly
contributed to our understanding of the genetic foundations
underlying numerous traits in crop species (Phan et al., 2019;
Tian et al., 2020).

GWAS has garnered substantial recognition and success in the
field of human genetics, especially when combined with
advancements in sequencing technologies. In recent times,
GWAS has emerged as an invaluable tool in the study of crop
plants, facilitating the identification of natural genetic variations that
underlie the intricate characteristics of these agricultural species
(Gupta et al., 2014). Association mapping is typically conducted
using SNPs markers in combination with the phenotype of interest.
By employing DNA sequencing, SNPs can be detected within diverse
individuals or plants, and a comparison of their DNA sequences
uncovers shared genetic variations in the genome (Su et al., 2024).

A thorough GWAS has successfully detected 4,820 genes
associated with 13 fiber-related traits in cotton, offering valuable
genetic reservoirs for enhancing fiber quality and performance (Ma
et al., 2018). Through the examination of transcriptome variations
and the utilization of GWAS, three specific loci associated with
thermal tolerance were successfully detected. These loci encompass a
total of 75 protein coding genes and 27 long noncoding RNAs.
Moreover, expression quantitative trait loci (eQTLs) were identified
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for a remarkable 13,132 transcripts, shedding light on the
relationship between gene expression and thermal tolerance (Ma
et al., 2021). Recently, Han et al. (2022a) identified a total of
30,089 eQTLs laid on around 10 thousand genes while
performing GWAS. Only 19 candidate genes such as Ga14G1716,
Ga14G0186, Ga13G2529, Ga13G1949, Ga13G1920, Ga13G1306,
Ga08G1884, Ga01G1789, Ga04G1991, Ga11G2943, Ga10G2229,
Ga10G0833, Ga08G2627, Ga08G1871, Ga02G0149, and
Ga08G1873 distributed across chromosome 1, chromosome 5,
chromosome six and chromosome eight were identified to be
strongly associated with salt and heat resistance in cotton. Several
other studies have also reported different SNPs, genes and alleles
that are associated with different cotton traits and can be used to
improve cotton resistance to various abiotic stress.

There are several challenges that limit the application and power
of GWAS in detecting true associations between genetic makeup and
observable traits. Variation in phenotypic data: before conducting
GWAS, it is essential to carefully analyze phenotypic data and
identify any outliers (Xiao et al., 2022). Significant variation in
the data can reduce GWAS accuracy and may lead to false-negative
or false-positive associations (Jiang et al., 2025). If outliers are
present, their impact on GWAS should be assessed before
proceeding. A boxplot is often used to visualize data and check
for outliers, which should be removed if they are extreme (Rolling
et al., 2025). However, removing outliers must not significantly alter
overall phenotypic variance, as this is crucial for establishing
associations. Once the data is filtered, traits with moderate to
high heritability should be prioritized, as heritability indicates the
extent to which genetic factors influence the phenotype (Gesteiro
et al., 2025). The size of the study population is a second critical
factor in GWAS, as reliable results depend heavily on sample size. A
larger population improves the chances of detecting true
associations, overcoming rare variants, and maintaining an
appropriate frequency within the population (Tibbs Cortes et al.,
2021). Typically, a sample size between 100 and 500 (or more)
individuals is suitable for GWAS, while smaller samples (fewer than
100) may weaken the study’s power. Selection of individuals for
GWAS often depends on specific traits of interest, genetic
background, growth patterns, biological status, or geographic
location (Clauw et al., 2024). While phenotypic variations can be
directly observed, genetic variation is assessed using genotypic data.
Population structure is the third major limitation as it plays a crucial
role in GWAS. It determines the genetic relationships between
individuals in a study group (Gowda et al., 2023). Understanding
historical or genealogical connections among individuals is essential
because uneven genetic relationships can impact the accuracy of
results. If population structure is not accounted for, it may lead to
misleading associations between genotype and phenotype (Altaf
et al., 2025). One widely used software, STRUCTURE (version
2.3.4), helps analyze population structure by grouping individuals
into subpopulations (Q-matrix) (Liu et al., 2025; Tian et al., 2025).
Managing population structure is a significant challenge, as
structured associations must often be adjusted to avoid bias.
However, completely removing structured associations is not
always the best solution, as it can affect the number of clusters
and their proper assignment (Liu et al., 2025). Allele frequency
distribution is another key factor influencing GWAS effectiveness is
allele frequency distribution. In most populations, only a few genetic

variants appear in a small number of individuals. If certain alleles are
rare, detecting them becomes difficult unless they have a major effect
on the trait being studied (Ahmed et al., 2024). Neglecting allele
frequency during GWAS can result in inaccurate conclusions
(Naveed et al., 2025). Most GWAS studies focus on common and
rare variants, often considering allele frequencies greater than 5%
(Mir et al., 2021). For instance, in a population of 500 individuals, an
allele present in only 25 individuals is classified as rare, with a minor
allele frequency (MAF) below 5%. Although rare alleles influence
only a specific subset of the population, they may still be valuable for
future breeding programs (Zhao N. et al., 2022). Linkage
disequilibrium (LD) is also a major challenge that limits the
power of GWAS. LD refers to the non-random association of
alleles at different genetic loci within a population (Abdela,
2024). It is an important factor in GWAS, especially when
identifying closely linked genetic markers (SNPs) that help
pinpoint significant genomic regions (Clauw et al., 2024). If LD
is not considered, both relevant and irrelevant alleles may be
included in the analysis, leading to incorrect associations. LD
analysis helps determine how many genetic markers are needed
to cover the genome effectively (Peng et al., 2021). High LD values
indicate that fewer markers are required. However, long-range LD
can increase the likelihood of false associations, so calculating LD
early in the analysis is necessary. LD values are typically measured
using a disequilibrium matrix, which compares loci in pairs, using
the most common statistical measures, D′ and r2 (Shi et al., 2022).

4.4 Multi-omics approaches to mitigate
heat stress

The physical appearance of plants, i.e., their phenotype in
response to abiotic stresses, including heat stress, depends on the
regulation of genes, mRNA, ions, metabolisms, and proteins.
Recently, extensive use of omics approaches in elucidating plant
tolerance mechanisms and stress response has helped to develop
stress-resilient varieties. Despite the outstanding move forward in
genomics (Yang et al., 2023; Sun et al., 2022; Purugganan and
Jackson, 2021), there is still a need to explore the other omics
approaches, such as ionomics, phenomics, metabolomics,
proteomics, and transcriptomics to further improve our
knowledge of genotype-to-environment and genotype-to-
phenotype interaction. Before implementing any omics approach,
it is essential to collect diverse plant germplasm, i.e., plant
population comprised of both stress-susceptible and tolerant
genotypes, to better understand the mechanisms associated with
resistance.

4.4.1 Transcriptomics
Transcriptomics, an important omics approach, used to

understand and analyze gene expression at the transcription
level, post transcriptional modifications, related transcripts and
regulatory pathways (Corona-Gomez et al., 2022).
Transcriptomics is also essential to explain how plants quickly
reprogram transcriptional networks under stress, including heat
stress (Satrio et al., 2024). NGS based transcriptomics appliances
have laid the foundation for developing gene-specific molecular
markers, identifying novel genes associated with heat resistance and
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facilitating marker-assisted breeding. For example, Masoomi-
Aladizgeh et al. (2022) evaluated the effect of heat stress (>40°C)
on different pollen development stages (from tetrads to mature
pollen) in cotton. They exposed cotton plants to two different
temperatures, i.e., 38°C during day and 28°C at night for five
consecutive days and then subjected to transcriptomics analysis.
According to their results, during pollen development, the molecular
signatures were progressively downregulated under heat stress. This
was more profound in leaves where most of the important protein’s
abundance decreased significantly. At tetrads (early pollen
development stage), genes activity upregulated and resulted in
increased translation (support cell adaptation to heat stress) but
significantly decreased as the pollen started developing towards
maturity. Moreover, HSP were observed to be present in
abundant quantity at tetrad stage but during lateral pollen stages
and leaves their quantity reduced significantly. The study suggests
that early pollen cells may prioritize processes that are not directly
useful for heat tolerance, making them more vulnerable to stress.
These molecular insights could help identify markers for breeding
cotton varieties that are more resistant to heat, which is increasingly
important in a warming climate. Similarly, Zhang et al. (2022)
conducted transcriptomics analysis in cotton to identify the
pollen specific genes associated with response to heat stress. In
total, they identified 833 pollen DEGs, 1,066 anther and 1,111 pollen
specific genes. They observed that both hormones and heat
responsive cis-regulatory elements were abundant in the promoter
region of anther specific genes indicating that these genes might be
associated with response to heat stress. Moreover, only 10 DEGs out
of 833 were found to be common with 1,111 pollen-specific genes,
suggesting that pollen-related genes are only involved in pollen
development rather than responding to heat stress. The promoter
regions of these 10 genes were also found to be enriched in both
MeJA and stress-related cis-regulators, confirming their involvement
in both pollen development and heat stress responses. Besides
cotton, transcriptomics has also been successfully implemented in
other crops against heat stress. Hosseini et al. (2021) exposed
different lentil genotypes to heat stress for a period of 4 h and
based on transcriptomics analysis, identified around 4,327 DEGs
(2,368 downregulated and 1959 upregulated). Downregulated genes
were found to be associated with the ion’s transportation and
membrane stability under heat stress. While upregulated genes
were associated with the binding of microtubules, proteins and
cell division as well as cell cycle. In another study, elevated night
temperature in rice downregulated 695 DEGs associated with heat
stress, protein folding and photosynthetic activities. On the other
hand, 415 DEGs were upregulated associated with protein
modifications, kaurene synthesis, RNA processing, carbohydrates
metabolism and other signaling pathways. Liu et al. (2021) exposed a
potato cultivar (Hezu088) to heat stress for a period of 8 h. The
results showed that 160 DEGs associated with various cell activities
such as HSPs, secondary metabolism, hormonal metabolism,
protein and cell wall degradation as well as amino acid
production. 538 DEGs were also downregulated associated with
cytokinin metabolism, lipid metabolism, RNA regulation and signal
transduction.

These findings from the above-mentioned studies illustrate the
importance of transcriptomics in unraveling the plant responses to
heat stress, identifying novel genes and useful insights into pathways

associated with cotton and other plant’s adaptation to heat stress.
Furthermore, transcriptomic studies have also contributed to
understanding the underlying plant mechanisms, facilitating the
introduction of climate smart heat resistance plant varieties in a
short period.

4.4.2 Proteomics
Proteomics is another omics approach that deals with the

determination of protein components in plants and other organisms
at a specific period of time and serves as an important link between
transcriptomics and metabolomics (Niu et al., 2023). Proteomics
analysis was introduced about 20 years ago (Hirano et al., 2004), but
has recently been improved by the development of high-resolution and
more accurate instruments (Aydoğan, 2024). These instruments have
helped the breeders and plant scientist in understanding the plant
response to changing environments at proteins levels (Raza et al., 2024).
Heat stress is known to disrupts the proteins balance at cell level and
ultimately regulates different mechanisms (Wu et al., 2021). For
example, Khan et al. (2022) evaluated the effect of heat stress on
cotton pollen development, i.e., pollen abortion by exposing two cotton
cultivars HT-84021 (heat tolerant) and HT-H05 (heat sensitive) to
various temperatures using 2-dimensional electrophoresis. According
to their results, heat stress significantly disrupts the protein formation,
translation, post translation modifications and discovered 307 DEPs
spots in the anther of bothHT-84021 andHT-H05. GO analysis further
revealed that protein processing pathways in endoplasm play a crucial
role in anther responses to elevated temperatures in combination with
HSP. Among HSPs, BiP5 and HSP-70–17 were found to be involved in
tolerance to heat stress and it was confirmed by Western blot gene
expression analysis, respectively. Further, they observed that under heat
stress the accumulation of ROS reduced significantly by the exogenous
application of BiP5 and HSP-70–17 proteins. Thus, their finding
suggests that both BiP5 and HSP-70–17 are the key cotton proteins
in anther and can be helpful in developing high yielding and heat
resistant cotton varieties. In another study, Zhang X. et al. (2021)
investigated the effect of heat stress (>38°C) on insecticidal proteins
concentration in a BT cotton cultivar Sikang-3 using label free
quantitation proteomic technique. The concentration of insecticidal
proteins significantly reduced, i.e., 65.2 ng/g under heat stress. The
proteomic approach further revealed the downregulation and
upregulation of 104 and 83 proteins, respectively. They also
discovered 122 new proteins associated with heat stress response.
Additionally, they further identified 14 KEGG pathways associated
with protein synthesis. Out of 14, three KEEG pathways (endoplasmic
protein processing, protein export and carbohydrates absorption and
digestion) were more closely related to protein synthesis. In
endoplasmic protein processing, through ubiquitin mediated
proteolysis, plant ability to break down damage and misfold proteins
increased. In protein export, the production of peptides was not
significantly affected but their transportation to endoplasm reduced.
In carbohydrates absorption and digestion pathway, plant ability to
break down starch increased but had reduced efficiency to
phosphorylate glucose, fructose and hexose. Proteomics analyzes
have also been successfully implemented to other crops to discover
novel proteins associated with resistance to heat stress and understand
in details the proteomic based mechanisms linked to heat stress (Lee
et al. 2007). For example, Castander-Olarieta et al. (2021) exposed Pinus
radiata embryos to two different temperatures ranges, i.e., 60°C for
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5 min and 40°C for 4 hours. According to their results, heat stress
reduced initial embryonal masses around by 44% to 30.5%, while
increasing somatic embryo production by 121.87–170.83 per Gram.
Heat stress also caused long term alterations to proteins production
machinery such as increased production of ribosomal proteins and
decreased output of methionine-tRNA ligase enzymes. Proteomics
analysis also displayed increase in proteins and fatty acids
biosynthesis, proteins post transcriptional modifications, chaperones
and HSPs, proteins transportation across cell membrane and
carbohydrates. Heat stress also decreased enzymes associated with
oxidative stress, nitrogen assimilation, glycolytic pathways and
adenosylhomocysteinase protein. Similarly, another study conducted
by Wang et al. (2021) discovered 1,591 DAPs associated with
metabolites and carbohydrates transport, energy conversion and
production, catalytic activity, molecular transporter and structural
activities in two Capsicum cultivars (heat sensitive 05S180 and heat-
tolerant 17CL30) under elevated temperature. It has been reported that
in wheat under heat stress, DAPs are involved in reduced glycolysis and
photosynthesis but more gliadins and translation (Chunduri et al.,
2021). Moreover, Brachypodium distachyon proteomics analysis
discovered 46 DAPs (42 downregulated and four upregulated)
associated with lower protease activities, lignification and expansion
of cell wall (Pinski et al., 2021).

Proteomic studies have uncovered how plants respond and
adapt to temperature stress by altering proteins involved in
photosynthesis and defense. Identifying these key proteins
provides valuable insights for breeding temperature-resilient crops.

4.4.3 Ionomics
Ionomics helps in determining how plants accumulate, absorb and

distributes nutrients from soil to cells under different environmental
conditions including heat stress (Xiao et al., 2021). The word ionome
refers to the sum of inorganic essential nutrient that are necessary for
plant adaptation and different cell mechanisms in small amount.
Techniques linked to ionomics, involves elements composition
profiling and deviations under different stresses (Singh et al., 2022).
Ionomics is mostly used to study plant response to drought, salinity and
metal stress, relatively few studies other than cotton have explored the
application of omics in understanding plant responses to heat stress. A
study was conducted to profiled the ionomic of a mutant and wild-type
tobacco plants subjected to heat stress. The results revealed a significant
decrease in Zn and Fe concentrations and an increase in Mg and Ca.
The concentrations of these ions also greatly varied in roots and ariel
parts of plants, suggesting the alterations in ions uptake due to heat
stress (Ardini et al., 2016). Another study conducted to elucidate
ionomics analysis of quinoa seeds exposed to different regimes of
heat stress. Prolonged exposure to heat stress significantly alters the
nutrient composition, quality, size and development of the seed (Tovar
et al., 2022). These studies offer valuable insights in understanding the
role of ions in heat stress. However, these studies can be used as an
example or footprint in cotton to identify the role of ions related to
heat stress.

4.4.4 Metabolomics
Metabolomics is another omics approach equipped with

modern computational biology tools, that provides detailed
analysis of hormones and metabolites (both primary and
secondary) produced by an organism or cells during biological

process (Sprink et al., 2015). Metabolomics helps uncover how
plants interact with their environment, particularly under
changing climatic conditions like elevated temperatures Figure 2.
Certain metabolites have the ability to specify mechanisms
associated with stress adaptation by modulating physiological
responses, growth patterns and signaling cascade networks (Niu
et al., 2023; Gupta et al., 2014). Recently, researchers are focusing on
identifying stress associated pathways and metabolites in cotton as
well as in other plants. For example, Melandri et al. (2021) evaluated
the effect of heat stress on the metabolomics of 22 cotton genotypes
grown continuously for 2 years (2018 and 2019). Results revealed
significant negative impact of heat stress on the metabolome of
almost all genotypes across both growing seasons, where reduced
lint length, quality, quantity, leaf area and plant height. In 2018, a
total of 307 metabolites, 217 were identified to be significantly
affected (approximately 70.7%). While in 2019, a total of
521 metabolites, 451 were identified to be significantly affected
(approximately 86.6%). However, few genotypes displayed a great
tolerance to heat stress by altering membrane lipid chemical
composition. In another comparative analysis study, the effect of
heat stress on fiber metabolome was analyzed. Heat stress
significantly decreased fiber quality by reducing sugar phosphate,
sugar acids, sugar alcohols and free sugars. Moreover, metabolomic
process linked with cytoskeleton, cell wall, and biosynthesis of
carbohydrates were also suppressed (Naoumkina et al., 2013).
Besides cotton, metabolomics has also been successfully applied
to other crop against heat stress. For example, to understand the
effect of heat stress on metabolomics in cucumbers and tomato. The
results from each study revealed that know-down of HsfB1 gene in
tomato under stress accumulated putrescine, sucrose and glucose
which are involved in response to heat stress. While overexpression
of HsfB1 produced substances from the phenylpropanoid and
flavonoid pathways, as well as some caffeoyl quinic acid
compounds, which improved heat tolerance (Paupière et al.,
2020). In the other study, when cucumber plants exposed to high
temperature (30°C at night and 38°C during the day for consecutive
12 h), identified in total 125 metabolites (26 downregulated and
99 upregulated) that changed under heat stress. These changes
occurred in four key pathways, first, threonine, serine, and
glycine metabolism, second, chlorophyll and porphyrin
metabolism, third, nucleotide and amino sugar metabolism, and
fourth, plant hormone signaling (Chen et al., 2023b).

Metabolomics studies have provided valuable insights into the
complex responses of plants to heat stress, uncovering adaptive
strategies and dynamic metabolic pathways. The identification of
key markers enhances our understanding of stress adaptation and
tolerance mechanisms across various plant species. These findings
have deepened our knowledge of plant × environment interactions
and contribute to the development of temperature-resilient crop
plants in a short period of time.

4.4.5 Phenomics
Phenomics also called phenotype, is the study of physical

appearance of plant, has gained notable importance in the post-
genomic era to understand plant responses to environmental
stressors, such as heat stress (Singh et al., 2018). Phenomics
analysis requires highly accurate phenotypic data on various
plant’s traits, collected through advanced high through
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phenotyping tools and complemented by genomic insights.
Analyzing phenomic traits can reveal mechanisms that are
associated with genotypes to specific phenotypes (Houle et al.,
2010). Various techniques are employed to study plant
phenomes, including integrated imaging, spectroscopy,
fluorescence, thermal imaging, infrared and visible light
approaches (Singh et al., 2018). Numerous studies have
effectively utilized phenomics to investigate cotton and other
plants responses to heat stress. For example, Wu et al. (2014)

evaluated the effect of heat stress (45°C for 24 h) on 44 wild-
types of cotton using phenomics technique called Chlorophyll
Fluorescence Imaging (CFI). The results revealed alterations in
photosynthetic rates (especially in photosystem II) by reducing
total chlorophyl contents significantly under heat stress. CFI
helped in selecting tolerant lines based on PSII performance. In
another study, Pauli et al. (2016) applied a high-throughput
phenotyping system across the cotton field and equipped it with
a group of sensors to collect phenotypic data for traits like plant

FIGURE 2
A systematic biological approach is utilized to integrate large-scale data for the identification and characterization of plant cellular molecular
mechanisms and pathways. Advancements in high-throughput technologies across various omics fields including phenomics, metabolomics,
proteomics, transcriptomics, epigenomics and genomics have significantly enhanced the exploration of plant genetic resources, aiding in the discovery
of novel alleles. Multi-omics datasets undergo preprocessing steps such as data cleaning, feature selection, and dimensionality reduction to refine
the information. Deep learning and machine learning methodologies systematically integrate these multi-omics layers, offering a comprehensive
understanding of the pathways and molecular mechanisms that contribute to complex agricultural traits. Note: this figure was generated
using BioRender.
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height, reflectance, leaf area, vegetative index and canopy
temperature. According to their results, leaf area, vegetative index
and canopy temperature showed moderate-to-high heritabilities,
suggesting that these traits were reliable and consistent for
measuring genetic differences among cotton varieties. Moreover,
for traits like vegetative index and canopy temperature, QTL
expression changed at different growth stages of the plant. This
suggest that certain genes played a stronger role at specific times.

Phenomics can still be considered in its early stages, especially
when it comes to understanding how heat stress affects crops growth
and development. However, it shows great potential and can be very
useful in accelerating crop breeding programs to improve heat stress
tolerance (Basavaraj and Rane, 2020). Combining high throughput
genomics (i.e., NGS technologies) with phenomics (phenotype) can
offer valuable insights and help in developing climate-smart crops
(Marsh et al., 2021). By using bioinformatics tools to integrate
phenotypic and genotypic data, scientists can build detailed and
huge datasets for each plant species or groups specifically. This can
defiantly make it easier to identify and select plant traits that help
crops adapt to climate challenges (Marsh et al., 2021). Although
combining different omics strategies as well as approaches is highly
beneficial but it might be a challenging task to do. New technologies,
like rapid genomic advancements, high-throughput phenomics, and
tools that analyze environmental relationships, are essential for
improving traditional breeding methods and increasing genetic
progress (Crossa et al., 2021).

4.4.6 Integration of multi-omics approaches
Multi-omics data integration is a valuable strategy combining

information from various high-throughput omics technologies,
including ionomics, metabolomics, proteomics, transcriptomics
and genomics to comprehensively understand the complex
biological systems. This approach has been extensively applied in
different crops, including cotton, to explore the molecular
mechanisms involved in abiotic stress tolerance, such as heat
stress (Singh S. et al., 2024; Fang et al., 2023; Lu et al., 2025).
Understanding these mechanisms is essential for developing stress-
resistant crop varieties. By integrating multi-omics data, researchers
can obtain a more complete picture of how plants respond to heat
stress at the molecular level (Han et al., 2022b). The process of
integrating multi-omics data to study crop stress tolerance follows
several key steps. The first step, experimental design, involves
planning and structuring experiments to expose crops to specific
abiotic stress conditions while including appropriate control groups
for comparison (Fan et al., 2025). This step ensures proper sample
collection across different omics platforms, including metabolites,
proteins, RNA and DNA. The second step, data generation, uses
high-throughput omics technologies such asmetabolomics to profile
metabolism, RNA-seq for transcriptomics, proteomics through
mass spectrometry and whole genome sequencing for genomics
(Roychowdhury et al., 2023). These methods generate large-scale
datasets for each omics layer. In the data pre-processing step,
preprocessing procedures and quality control specific to each
omics dataset are applied. This includes metabolomic and
proteomic data missing values imputation and normalization,
quality control, and transcriptomic and genomic data alignment
and read trimming (Ahmed et al., 2024). If multiple experiments are
conducted, batch effects are also removed to ensure data

consistency. The final step, data integration, involves
computational techniques to merge multi-omics datasets. This
step requires robust statistical methods to achieve meaningful
integration of different omics layers (Naveed e al., 2025).
Functional and statistical networks are employed to analyze the
interconnections between datasets, allowing for better validation
and visualization of results obtained through multi-omics
approaches. For example, Wang et al. (2015), conducted a
proteomic analysis using iTRAQ on ovules of upland cotton and
its fuzzless-lintless mutant under heat stress, identifying
2,729 proteins that accumulated predominantly at anthesis in
wild-type ovules. RNA sequencing (transcriptomics) further
confirmed that 2,005 of these proteins were also upregulated at
the transcript level. Proteins associated with lipid metabolism,
hormone regulation, small-molecule metabolic processes abd
carboxylic acid metabolism showed significantly higher
expression in wild-type ovules. qrt-PCR validated the increased
expression of 26 genes involved in these pathways. Among these,
GhPAS2 catalyzes the third step in VLCFA biosynthesis, was highly
accumulated in wild-type ovules at anthesis. Heterologous
expression of GhPAS2 restored viability in a Saccharomyces
cerevisiae haploid strain lacking PSH1, which is essential for
PAS2 activity. Furthermore, the application of acetochlor (ACE),
a VLCFA biosynthesis inhibitor, along with gibberellic acid,
significantly inhibited fiber cell initiation in unfertilized cotton
ovules. This study provides new insights into cotton fiber cell
development under heat stress by integrating transcriptomic and
proteomic data. Similarly, Han et al. (2022a), conducted integrated
multi-omics analysis to understand the molecular mechanisms of
cotton’s response to both drought and heat during the boll and
flowering stages, metabolomic and transcriptomic analyses were
conducted on two introgression lines: T307 and S48. The results
revealed that drought-sensitive and drought and heat tolerant lines
activated broad-spectrum drought responses, including MAPK
signaling pathway, ABA signaling and amino acid synthesis.
However, the genotype T307 exhibited additional responses due
to its imported gene fragments and missing sequences, leading to
enhanced endoplasmic reticulum protein processing, improved
photosynthetic pathways in leaves, and increased membrane
solute transport in roots. These mechanisms were either absent
or not activated in the drought-sensitive line S48, explaining their
differences in drought resistance. A virus-induced gene silencing
(VIGS) assay of differentially expressed ATP-binding cassette
transporter genes (particularly in roots) and HSP genes
(primarily in leaves) confirmed their significant roles in drought
and heat tolerance. The combined metabolomic and transcriptomic
analysis highlighted the importance of ER stress-related root-
specific ABC transporter genes and HSP genes in cotton’s
adaptation to drought and heat stress. These findings offer new
insights into the molecular basis of drought and heat resistance in
cotton. Wang Z. et al. (2023), conducted integrated multi-omics
approaches in colored cotton also known as eco-cotton, produces
naturally pigmented fibers but has lower yield and quality compared
to white cotton. The regulatory genes controlling pigment synthesis
and fiber quality are not well understood. They analyzed proteomic
and transcriptomic changes during fiber development a white cotton
cultivar and in a brown cotton cultivar (Z161) to identify key
molecular mechanisms. Differentially expressed genes and
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proteins showed a significant positive correlation in their expression
trends. Enrichment analysis revealed that Z161 exhibited
upregulation of genes involved in glutathione metabolism,
phenylalanine metabolism, flavonoid biosynthesis and fiber
elongation. Additionally, 15 MYB-bHLH-WD40 complex genes,
164 glycosyltransferase genes and transcription factors such as
NAC (7), ERF (11) and C2H2 (12) and were preferentially
expressed in Z161. Weighted correlation network analysis
highlighted energy metabolism and fatty acid synthesis as key
pathways influencing fiber development in both cultivars. The
identification of 15 hub genes provides valuable insights for
improving balancing pigment and fiber quality in brown cotton
through genetic modification. Besides heat stress, integrated multi-
omics approaches have also been applied to studying salt stress in
cotton. For example, Ju et al. (2023), examined how cotton roots
respond to salt stress using metabolome and transcriptome analyses,
supported by physiological measurements. Cotton roots were
treated with three salt and potassium supplementation
conditions. The findings revealed that ROS scavenging pathways,
hormone metabolism and ion transport play essential roles in cotton
root adaptation to salt stress. Salt stress led to ion toxicity and
oxidative damage by disrupting hormone balance and reducing the
expression of antioxidant and potassium transporter genes.
However, potassium supplementation helped mitigate salt stress
damage by maintaining hormone homeostasis and ion and
enhancing ROS removal. They identified key metabolites,
regulatory genes and biological pathways involved in potassium
mediated salt stress adaptation. It constructed a gene metabolite
interaction network, providing new insights into how potassium
helps cotton and other crops cope with salt stress. These findings
contribute to cotton genetic improvement and optimized cultivation
strategies. Peng et al. (2018), combined transcriptomics and
proteomic data to identify genes that show differential expression
at both the mRNA and protein levels. However, for most highly
differentially abundant proteins, no significant changes were
observed in their corresponding mRNA levels. This discrepancy
may be due to global shifts in alternative splicing and miRNA
activity under salt stress. Their findings suggest that certain salt
stress-responsive proteins can influence miRNA levels and regulate
alternative splicing in upland cotton. A detailed comparison
between salt-sensitive and salt-tolerant genotypes identified
85 and 63 candidate proteins/genes linked to salt tolerance,
respectively. Further analysis predicted an interaction network of
158 proteins/genes, revealing two key clusters centered around
cytochrome oxidase and ATP synthase in mitochondria. These
results highlight the critical role of mitochondria in energy
metabolism and the production of resistance related proteins
during salt stress adaptation.

Moreover, various strategies can be utilized for data integration,
including ML algorithms, network and correlation-based
approaches (Roychowdhury et al., 2023). PaintOmics 4, a web-
based platform, facilitates the integration of multi-omics datasets by
mapping them onto biological pathways (Liu et al., 2023). Effective
data integration is essential for combining information from diverse
sources to develop models capable of predicting complex traits and
improving prediction accuracy. To enhance phenotype prediction, a
range of statistical models including both nonlinear and linear have
been developed and are widely applied. Linear models such as

BSLMM, LMMs, GBLUP and PLMM with Generalized Method
of Moments Estimator are commonly used for modeling multi-
omics data with high predictive accuracy (Ahmed et al., 2024). On
the other hand, ML techniques, which encompass unsupervised and
supervised learning approaches, utilize statistical inference to
analyze large and complex datasets. In supervised learning, the
primary goals are regression and classification, while
unsupervised learning is often employed for dimensionality
reduction (DR), association and clustering (Roychowdhury et al.,
2023). DR is particularly useful in high-dimensional biological data,
as it reduces the number of variables considered, aiding in data
interpretation. These methodologies help uncover relationships and
interactions among molecules across various omics layers (Fuck
et al., 2024). Functional analysis plays a key role in interpreting
integrated multi-omics data by identifying molecular mechanisms
underlying abiotic stress responses. This includes functional
annotation of crucial metabolites, proteins and genes, pathway
enrichment and Gene Ontology analysis (Khan et al., 2023a).
Network analysis, on the other hand, constructs biological
interaction networks, such as protein to protein interactions
networks and co-expression to pinpoint key regulatory genes or
proteins involved in stress responses (Kan et al., 2023). Finally,
experimental validation is crucial for confirming the biological
significance of metabolites, proteins and candidate genes
identified through integrated analyses. Techniques such as
targeted metabolomics, Western blotting and qPCR can be used
to validate these findings and elucidate post-translational and post
transcriptional mechanisms regulating gene expression (Khan et al.,
2022). Experimental verification is a critical step in ensuring the
reliability of data and uncovering regulatory mechanisms in stress
adaptation.

5 Conclusion

Heat stress is one of the prime factors limiting the yield of cotton
around the world and need to be addressed. It causes membrane
leakage, production of ROS, nutritional imbalances and leads to
water logging condition and unavailability of water and oxygen to
roots and all these changes collectively have adverse effect on the
growth and development of crop. It has been reported that every 1°C
increase in temperature leads to a 10% decrease of cotton yield. Due
to continuous rise in temperature, cotton crop is facing serious
issues in growth and development. Most of the cotton genotypes are
sensitive to elevated temperature and do not perform well under
heat stress in field. As cotton is known as heat loving plant, still its
response to heat stress at different developmental stages is diverse.

An efficient approach to face heat stress is the production of heat
tolerant varieties. However molecular mechanisms of heat tolerance
have been explored in many crops and this knowledge could be utilized
to breed for heat tolerant cultivars in cotton. In cotton, abiotic stresses
are seen to be interrelated, such as heat stress being accompanied by
drought stress, and these stresses are thought to share some genetic
elements. Heat stress severely affects the cotton crop’s biochemical,
physiological, and molecular processes, which ultimately lead to poor
growth of the crop, accompanied by low photosynthetic rate and yield.

These biochemical, molecular, and physiological parameters
could be used to screen for heat tolerant genotypes under field

Frontiers in Genetics frontiersin.org20

Luqman et al. 10.3389/fgene.2025.1553406

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1553406


and glasshouse conditions. As yield has negative correlation with
abiotic stress tolerance, linkage drag has proved to be fatal for
improvement of cotton germplasm for heat tolerance by direct
selection. However molecular markers played revolutionary part
in the identification of desired QTLs in diverse populations and
proved extraordinarily helpful in understanding the genetic base of
heat tolerance. The development of mapping technologies and
discovery of molecular markers has enabled the scientists to
transfer the desired genes from one genotype to the other by the
MAS (molecular assisted breeding) process.

By using wild genetic resources in MAS, the linkage drag could
be avoided. With the development of this field and due to its
efficiency, scientists started doing work in this domain, which led
to the discovery of many desired QTLs in diverse crop species for
heat tolerance. However, a little work has been done to identify the
genes for heat tolerance, research is still in process to identify more
genes with the help of transgenic techniques. Through the use of
genetic engineering, many genes associated with heat tolerance have
been inserted in cotton to improve genetic resource/germplasm for
heat tolerance. However, these identified genes are not used
commercially in breeding programs for the improvement of
cotton. Due to the complex nature of heat response and
interconnection with other processes of development and growth,
unfavorable impacts of genetic transformation have been reported.

The present status of transformed cotton with increased heat
tolerance is not according to the demand. This gap between demand
and requirements is the result of less attention paid by scientists to
this topic in the past. Future research should be designed with the
main focus on the usage of heat tolerant genes onmaximum, and the
production of more heat tolerant materials. It is now projected that a
more diverse population will be developed with a combination of
parent genomes with more resolving QTL mapping and intensive
phenotyping for multiple abiotic stresses with the help of single
nucleotide markers (SNPs).

The QTLs suspected to have more heat tolerance will be
explored through marker assisted selection (MAS) and heat-
tolerant genes will be introduced into the high yielding genotypes
of cotton. Moreover, to increase the efficacy of developing heat
tolerant materials rapid, accurate, and high throughput procedures
should be developed to screen the available germplasm for multiple
stresses at the same time.

Genome editing, molecular breeding and next-generation
sequencing tools including CRISPR-Cas and multi omics approaches
have also laid the foundation for developing climate resilient crop
varieties. CRISPR has revolutionized the field of genetics by introducing
and removing the wanted and unwanted genes with plant species
making them tolerant to adverse climatic conditions. Advancements in
sequencing technologies have let scientists to study the underlying plant
genetics in more detail and find the causal genetic variants that are
responsible or associated with responses to heat stress. The new era of
GWAS, PWAS and TWAS have made the development of new crop
varieties easier in a very short period of time just by dealing with a single
SNP rather than a whole gene. The combination of multi omics
approaches such as genomics with high throughput phenotyping
and also with genome editing in the future can be very helpful in
speeding up the breeding programs and developing climate
smart varieties.
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