
WCSGNet: a graph neural
network approach using
weighted cell-specific networks
for cell-type annotation in
scRNA-seq

Yi-Ran Wang and Pu-Feng Du*

College of Intelligence and Computing, Tianjin University, Tianjin, China

Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for
understanding cellular heterogeneity, providing unprecedented resolution in
molecular regulation analysis. Existing supervised learning approaches for cell
type annotation primarily utilize gene expression profiles from scRNA-seq data.
Although some methods incorporated gene interaction network information,
they fail to use cell-specific gene association networks. This limitation overlooks
the unique gene interaction patterns within individual cells, potentially
compromising the accuracy of cell type classification. We introduce
WCSGNet, a graph neural network-based algorithm for automatic cell-type
annotation that leverages Weighted Cell-Specific Networks (WCSNs). These
networks are constructed based on highly variable genes and inherently
capture both gene expression patterns and gene association network
structure features. Extensive experimental validation demonstrates that
WCSGNet consistently achieves superior cell type classification performance,
ranking among the top-performing methods while maintaining robust stability
across diverse datasets. Notably, WCSGNet exhibits a distinct advantage in
handling imbalanced datasets, outperforming existing methods in these
challenging scenarios. All datasets and codes for reproducing this work were
deposited in a GitHub repository (https://github.com/Yi-ellen/WCSGNet).
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1 Introduction

Single-cell RNA sequencing (scRNA-seq) is a high-throughput and highly sensitive
technology that allows for transcriptome analysis at the individual cell level, significantly
enhancing our understanding of cellular heterogeneity and molecular regulatory
mechanisms (Eberwine et al., 2014; Kolodziejczyk et al., 2015; Stegle et al., 2015; Potter,
2018). scRNA-seq analysis consists of two main stages: pre-processing and downstream
analysis (Luecken and Theis, 2019). The pre-processing stage addresses data quality and
variability through steps such as quality control, normalization, batch-effect correction
(Tran et al., 2020), feature selection (Deng et al., 2023), and dimensionality reduction (Koch
et al., 2021). Downstream analysis then focuses on extracting biological insights, including
cell clustering (Petegrosso et al., 2020), pseudotime trajectory inference (Saelens et al.,
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2019), cell type annotation (Cheng et al., 2023), and differential
expression analysis. As scRNA-seq datasets accumulate rapidly,
accurate and efficient automatic cell-type annotation have
become a crucial step for downstream analyses. It becomes an
important approach to a deeper understanding of cellular
composition and phenotypic heterogeneity in complex biological
systems and diseases (Shao et al., 2021; Jia et al., 2023; Xu
et al., 2024).

Traditional cell type annotation primarily relies on manual
methods. Experts use known marker genes and related literatures
to accurately identify cell types (Clarke et al., 2021; Chen et al., 2023).
However, as the volume of data grows rapidly, manual annotation
has become increasingly time-consuming and laborious. Moreover,
it is highly dependent on expert knowledge and may provide a
subjective result (Huang and Zhang, 2021).

As a result, automatic cell-type annotation methods have been
developed rapidly. They generally fall into three categories: marker
gene database-based, correlation-based, and supervised
classification-based (Pasquini et al., 2021; Cheng et al., 2023).
Marker gene database-based methods, like scType (Ianevski et al.,
2022) and scCATCH (Shao et al., 2020), typically start by clustering
cells into distinct groups, followed by using marker gene databases,
such as CellMarker (Zhang et al., 2019) and PanglaoDB (Franzén
et al., 2019), to identify relevant marker genes. Feature gene selection
(Deng et al., 2023) can be applied to refine cell clustering by
identifying genes that are most critical for distinguishing clusters,
thereby enhancing both resolution and biological relevance. The
expression levels of these marker genes within each cluster are
subsequently analyzed to map the clusters to their corresponding
cell types (Jia et al., 2023). Correlation-based cell-type annotation
methods rely on statistical correlations to analyze gene expression
data. They automatically compare unlabeled datasets with reference
datasets (Pasquini et al., 2021). In contrast to methods that rely
solely on marker gene scoring, correlation-based approaches
calculate the expression levels of gene sets or entire
transcriptomes, thereby enabling a more precise assessment of
similarities between datasets (Ranjan et al., 2021). For example,
SingleR (Aran et al., 2019) calculates the correlation between a cell’s
gene expression and reference cell types to iteratively selecting the
optimal gene set to accurately distinguish the most similar cell types.
CHETAH (de Kanter et al., 2019) is another correlation-based tool
that employs a hierarchical classification approach to annotate
cell types.

Supervised classification-based methods train classification
models on reference datasets to label cell types in unlabeled
datasets. Traditional machine learning algorithms, such as SVM,
LDA, NMC, and Random Forest (RF) have been applied in this field
(Pedregosa et al., 2011; Abdelaal et al., 2019). Recently, deep learning
approaches have also been increasingly adopted. For example,
ACTINN (Ma and Pellegrini, 2020) employs a neural network
model to learn patterns from gene expression data for cell type
annotation. CIForm (Xu et al., 2023) leverages expression data from
highly variable genes, using a Transformer architecture to predict
cell types based on these features. scDeepInsight (Jia et al., 2023)
generates t-SNE feature images based on reference datasets to train a
CNN for cell type prediction. However, these methods primarily rely
on gene expression information and do not fully leverage gene
association information. Consequently, graph representation

learning has increasingly been applied in cell type annotation
research. For instance, scGraph (Yin et al., 2022) utilizes graph
neural networks to integrate gene association information, thereby
enhancing cell type recognition performance. scPriorGraph (Cao
et al., 2024) introduces a dual-channel graph neural network that
combines multi-level gene bio-semantics to effectively aggregate
feature values of similar cells, achieving efficient cell classification.
Beyond cell type annotation, scGNN (Wang et al., 2021) leverages
graph neural networks to integrate cell–cell relationships and gene
regulatory signals, achieving strong performance in gene
imputation, cell clustering, and complex disease analysis like
Alzheimer’s. DeepMAPS (Ma et al., 2023) uses a heterogeneous
graph transformer to infer cell-type-specific biological networks
from scMulti-omics data, integrating cells and genes into a
unified graph.

Existing supervised learning methods have yet to incorporate cell-
specific networks (CSN) in cell type annotation. CSN is an innovative
approach based on scRNA-seq data that constructs a unique gene
association network for each cell (Dai et al., 2020; Dai et al., 2019).
Traditionalmethods for gene association network construction typically
infer a single network from grouped cell expression data. Among these,
WGCNA employs weighted correlation network analysis to construct
weighted gene co-expression networks (Langfelder and Horvath, 2008).
PCA-PMI utilizes the PC algorithm (Zhang et al., 2012), combined with
Part Mutual Information to construct network structures by accurately
quantifying nonlinear direct dependencies among genes (Zhao et al.,
2016). GRNBoost2 employs gradient boosting within the GENIE3
(Huynh-Thu et al., 2010) framework to infer gene regulatory
networks by predicting target gene expression based on the
importance of input genes in regression models (Moerman et al.,
2019). In contrast to these methods, CSN captures the
characterization of individual cellular states and preserves
heterogeneity. The network of a cell provides a more reliable
representation of its biological system or state (Dai et al., 2019; Li
et al., 2021; Wang et al., 2023). Gene interaction strength is related to
cellular functions and varies across different cell types. Highly variable
genes, which exhibit significant expression differences across cell types,
provide valuable information for classification. By integrating the
expression profiles and interaction networks of these genes, we can
more accurately characterize cell-specific features. In this context, we
propose WCSGNet, a graph neural network-based computational
approach that utilizes cell-specific interaction networks for automatic
cell type annotation. Firstly, highly variable genes are selected. Next, a
weighted cell-specific network (WCSN) is constructed based on their
expression data to capture gene interaction strengths. This is achieved
through an improved CSN construction method (Dai et al., 2019).
Finally, a graph neural network is employed to extract features from the
WCSN, enabling accurate cell type annotation.

2 Materials and methods

2.1 Dataset curations

We curated nine benchmarking scRNA-seq datasets,
encompassing two species (human and mouse) and three tissue
types: pancreas, brain, and peripheral blood. We also applied a
comprehensive single-cell atlas for the mouse. The datasets were
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generated using four sequencing platforms: inDrop, Smart-Seq2,
CEL-seq2, and 10X Genomics. The pancreas datasets come from
four studies: Baron H. et al. (2016), Baron M. et al. (2016), Muraro
et al. (2016), and Segerstolpe et al. (2016). The peripheral blood
datasets comprise Zheng 68k (Zheng et al., 2017) and Kang et al.
(2018). The Zhang T dataset comes from peripheral blood, normal
colorectal, and tumor tissue samples (Zhang et al., 2018). The mouse
brain dataset comes from the AMB dataset (Tasic et al., 2018), while
the comprehensive mouse cell atlas is the TabulaMuris (TM) dataset
(Tabula Muris Consortium, 2018). Among these, the Muraro,
Segerstolpe, Zheng 68k, Baron, AMB, and TM datasets are
available for direct download from Zenodo (https://doi.org/10.
5281/zenodo.3357167). The Zhang T dataset (GEO accession:
GSE108989) and the Kang dataset (GEO accession: GSE96583)
were obtained from the Gene Expression Omnibus (GEO)
database. A detailed summary of the datasets is provided in Table 1.

For each dataset, we first filter out cell types with fewer than
10 cells and cells with ambiguous annotations. Next, we remove
genes expressed in fewer than 10 cells. Subsequently, we normalize
each cell’s gene expression data by dividing each gene’s expression
level by the cell’s total expression and scaling by a factor of 106

(Luecken and Theis, 2019).
Let E be the gene expression matrix after normalization, we have

E � ei,j{ }n×m ∈ Rn×m, where n is the number of cells andm the initial
number of genes. We applied the log transformation on each
element of the matrix E to generate a transformed matrix
E′ � {ei,j′ }n×m ∈ Rn×m, as shown in Equation 1.

ei,j
′ � ln ei,j + ε + 1( ), (1)

where ε ≥ 0 is a regularization factor. We used the scanpy package
(Wolf et al., 2018) to select top p highly variable genes (HVGs) from
E′. The remaining part of E′ is denoted as E0 � e0,i,j{ }

n×p
∈ Rn×p,

which corresponds to the datamatrix consisting of the selectedHVGs.

2.2 Overview of WCSGNet

WCSGNet is a deep learning model consisting of two modules,
as depicted in Figure 1, including the weighted cell-specific gene

association networks, and a classifier based on a graph convolutional
network. The model takes only scRNA-seq datasets as the inputs to
annotate cell types.

2.3 Construction of WCSN

We constructedWCSN based on E0, using an algorithm which is
derived from a literature (Dai et al., 2019). Given the u-th gene and
v-th gene in the k-th cell, we have the expression value of these two
genes as e0,k,u and e0,k,v. As in Figure 1A, we have two ranges Ru ⊆ R
and Rv ⊆ R, which satisfy (e0,k,u, e0,k,v)∈Ru × Rv. We then calculate the
number of neighboring cells of the k-th cell regarding the u-th gene
and the v-th gene, as shown in Equations 2, 3.

nk u( ) � # i
∣∣∣∣e0,i,u ∈ Ru{ } (2)

nk v( ) � # i
∣∣∣∣e0,i,v ∈ Rv{ } (3)

where # is the cardinal operator in the set theory. We calculate the
marginal frequencies of cells that have similar expression values, as
shown in Equations 4, 5.

fk u( ) � nk u( )/n (4)
fk v( ) � nk v( )/n (5)

Similarly, we can calculate the joint frequency of cells when both
the u-th gene and the v-th gene are considered, as shown in
Equations 6, 7.

fk u, v( ) � nk u, v( )/n (6)
where

nk u, v( ) � # i
∣∣∣∣ e0,i,u, e0,i,v( ) ∈ Ru × Rv{ } (7)

The difference between fk (u,v) and the product of fk(u) and fk(v)
represents the statistical relationship between the u-th gene and the
v-th gene in the k-the cell, as shown in Equation 8.

ρk u, v( ) � fk u, v( ) − fk u( )fk v( ) (8)

According to literature (Dai et al., 2019), the ρk (u, v)
approximately follows a normal distribution N (0, σk (u, v))

TABLE 1 An overview of the data set used in this study.

Dataset Tissue # cell type # cell # gene Protocol Accession ID

Baron (Human) Human pancreas 14 8569 17499 inDrop GSE84133

Baron (Mouse) Mouse pancreas 13 1886 14861 inDrop GSE84133

Muraro Human pancreas 9 2122 18915 CEL-Seq2 GSE85241

Segerstolpe Human pancreas 12 2133 22757 Smart-Seq2 E-MTAB-5061

AMB Mouse Brain 4 12832 42625 Smart-Seq2 GSE115746

TMa Mouse 55 54865 19791 10X Genomics GSE109774

Zheng 68k Human PBMC 11 65943 20387 10X Genomics SRP073767

Zhang T Human PBMC 20 8530 23459 Smart-Seq2 GSE108989

Kang Human PBMC 8 14617 35635 10X GSE96583

aTM, tabula muris.
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when u and v are independently expressed, where σk (u, v) is shown
as Equation 9.

σk u, v( ) �






































nk u( )nk v( ) n − nk u( )[ ] n − nk v( )[ ]n−4 n − 1( )−1

√
(9)

We calculate the normalized ρk (u, v) as shown in Equation 10:

ρ′k u, v( ) � ρk u, v( )
σk u, v( ) �







n − 1

√
n · nk u, v( ) − nk u( )nk v( )( )





























nk u( )nk v( ) n − nk u( )( ) n − nk v( )( )√ (10)

For computation, we adjusted Ru and Rv to cover a fixed
proportion of cells that are nearest neighbors of the k-th cell.
Essentially, this equals to fix nk(u) = nk(v) = 0.1n. We applied

one-sided z-test to test every gene pair (u, v) for ρ′k (u, v) in the k-th
cell. If ρ′k (u, v) is large enough to produce a p-value less than the
threshold α = 0.01, the u-th gene and the v-th gene are associated
with a weight ρ′k (u, v) in the k-th cell.

2.4 Classifier based on graph convolution
neural network

We applied the GraphConv package (Morris et al., 2019) to
aggregate the gene expression value and their associations, as shown
in Equation 11:

FIGURE 1
The schematic overview of WCSGNet. (A) Construction of weighted cell-specific gene association networks (WCSN). For the training set, WCSN is
constructed based on independence tests among genes within the dataset. For the testing set, the construction of WCSN for each cell is based on the
gene expression of the current cell and the training dataset. e0,k,u the expression value of the u-th gene in the k-th cell. Each gray area represents the
neighborhood range of gene expression corresponding to the current cell. (B) The structure of the classifier. The GraphConv layer aggregates
features of the current gene node with the interaction features of its neighboring nodes to generate an updated gene embedding. This is followed by
Layer Normalization (LayerNorm) and a ReLU activation function. The processed embeddings are then passed through two convolutional layers (CNN)
which include Conv2d, ReLU activation function, BatchNorm2d and Dropout. The CNN output is flattened, and two fully connected layers are
subsequently applied to extract higher-level features, ultimately predicting the cell type labels.
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hd+1 v( ) � A1hd v( ) + A2 ∑
j∈N v( )

wv j( )hd j( ) (11)

where hd(v) is the d-th layer representation of the v-th gene,N(v) the
neighboring nodes in WCSN of the v-th gene, wv(j) a serial of
weights in aggregating gene representations, andA1 andA2 trainable
parameters. After graph convolution, each gene is represented as a
16-D feature vector. We applied two 2-D convolutional layers, the
output channels of these two layers are 12 and 4, respectively. After
that, all gene representations are flattened. A MLP was trained on
the flattened features to produce cell-type annotations. Figure 1
presents the detail design of the classifier.

2.5 Performance estimation

The benchmarking dataset was balanced by up-sampling. If the
size of a cell type is less than 5% of the largest cell type. The cells of
this type are randomly duplicated so that the size of the type is at
least 5% of the largest cell type. We used 5-fold cross-validation to
estimate the predictive performance of ourmethod. Tominimize the

risk of information leak, the partition of training and testing
happens before the construction of WCSN. Each testing cell was
supplied to the training set individually to construct its WCSN only,
while the WCSNs of all training cells are constructed without any
information from the testing set. We applied Kaiming Normal
Initialization (He et al., 2015) for parameter initialization, with
the weighted cross-entropy loss function as shown in
Equations 12–14:

L � −1
n
∑n
i�1
∑c
j�1
bj[yi,j log pi,j( ) + 1 − yi,j( )log 1 − pi,j( )⎤⎥⎥⎦ (12)

where

bj �
min max b′j, 1( ), 50( )
∑c
t�1
min max b′t, 1( ), 50( ) (13)

b′j �
max n t( )|t ∈ 1, ..., c( )( )

n j( ) (14)

n(j) the number of the j-th type cells, n the number of all cells, c the
number of all possible cell types, bj the weight of the j-th type, yi,j a

TABLE 2 Benchmark results on nine different scRNA-seq datasets in terms of mean F1.

Method Zhang Ta Kanga Zheng 68ka Baron humana Muraro Segerstolpe AMBa TMa Baron mouse

LDA 0.757 0.633 0.556 0.940 0.964 0.987 0.858 0.873 0.895

NMC 0.722 0.753 0.527 0.836 0.763 0.930 0.949 0.745 0.922

RF 0.562 0.727 0.495 0.788 0.963 0.989 0.906 0.803 0.773

SVM 0.805 0.853 0.558 0.967 0.970 0.998 0.967 0.910 0.980

SingleR 0.746 0.767 0.517 0.953 0.953 0.997 0.920 0.809 0.914

CHETAH 0.695 0.677 0.338 0.927 0.938 0.968 0.934 0.789 0.880

ACTINN 0.741 0.843 0.623 0.904 0.970 0.996 0.965 0.886 0.894

scGraph 0.839 0.877 0.681 0.969 0.961 0.984 0.976 0.921 0.950

WCSGNet 0.768 0.865 0.703 0.978 0.966 0.993 1.000 0.927 0.972

aThe mean F1 of the baseline methods across these six datasets are derived from scGraph (Yin et al., 2022).

Note: The best results for each dataset are shown in bold.

TABLE 3 Benchmark results on nine different scRNA-seq datasets in terms of accuracy.

Methods Zhang Ta Kanga Zheng 68ka Baron humana Muraro Segerstolpe AMBa TMa Baron mouse

LDA 0.813 0.743 0.662 0.978 0.970 0.991 0.901 0.954 0.940

NMC 0.769 0.881 0.597 0.912 0.758 0.958 0.976 0.854 0.960

RF 0.718 0.884 0.674 0.962 0.973 0.992 0.985 0.949 0.953

SVM 0.862 0.929 0.701 0.986 0.977 0.998 0.992 0.977 0.984

SingleR 0.790 0.879 0.673 0.968 0.962 0.997 0.962 0.889 0.910

CHETAH 0.717 0.674 0.298 0.925 0.927 0.955 0.939 0.850 0.895

ACTINN 0.662 0.881 0.468 0.953 0.976 0.996 0.857 0.761 0.967

scGraph 0.834 0.926 0.729 0.983 0.971 0.992 0.991 0.973 0.974

WCSGNet 0.822 0.939 0.765 0.987 0.973 0.994 1.000 0.957 0.981

aThe accuracy of the baseline methods across these six datasets are derived from scGraph (Yin et al., 2022).

Note: The best results for each dataset are shown in bold.
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binary indicator that the i-th cell belongs to the j-th type, pi,j the
probability that the i-th cell is predicted as the j-th type.

2.6 Performance measures

To evaluate the predictive performance, accuracy and mean F1-
Score were utilized as performance measures. Accuracy is defined as
the ratio of correct predictions made by the model to the total
number of predictions, as shown in Equation 15.

Accuracy � TP + TN

TP + TN + FP + FN
(15)

where TP, TN, FP and FN are the numbers of true positives, true
negatives, false positives, and false negatives. Mean F1-score is
calculated by averaging the F1-scores across all cell types, as
shown in Equations 16–19.

mean − F1 � 1
c
∑c
k�1

F1k (16)

where

F1k � 2 · precisionk · recallk
precisionk + recallk

(17)

precisionk � TPk

TPk + FPk
(18)

recallk � TPk

TPk + FNk
(19)

TPk, TNk, FPk and FNk the numbers of true positives, true
negatives, false positives, and false negatives for the k-th cell type,
and c the number of cell types.

2.7 Parameter settings

The parameters in our study are set as follows: ε = 0 when
constructing WCSN and ε = 10–5 when extracting gene expression

features and selection HVGs. This ensures that the gene expression
features are not zero, mitigating dropout effects caused by
sequencing errors and retaining certain gene expression features.
For the construction of the WCSN, we adopted the data processing
approach outlined in the CSN paper (Dai et al., 2019) to ensure that
genes with an original expression value of 0 remain 0 after log
transformation. If a gene pair contains a zero expression value, the
edge between them is considered nonexistent (Dai et al., 2019). This
computational approach, as set in CSN, aligns with the previously
mentioned setting of ε = 0, ensuring consistency. Specifically, if a
gene pair includes a gene with an expression value of 0, it indicates
that there is no association between these two genes (Dai et al.,
2019). As for extracting gene expression features, the log
transformation is based on the method outlined in the scGraph
paper (Yin et al., 2022), which enhances computational stability. We
set p = 2000 when selecting HVGs. The kernel size and stride of the
two 2-D convolutional layers are set to (1, 1) and 1, respectively. The
MLP in the classifier contains two hidden layers with 256 and
64 neurons, respectively. We applied Adam optimizer with an initial
learning rate of 0.01 and incorporates a weight decay. An
Exponential Learning Rate Scheduler (ExponentialLR) (Li and
Arora, 2019) with a decay factor γ = 0.8 is applied to gradually
decrease the learning rate during training, aiding the model for
stable convergence. The number of training epochs is set to 30, and
the weight decay 10–4.

3 Results

3.1 Performance analysis and comparison

We compared the performance of WCSGNet with 8 state-of-
the-art methods across 9 datasets using 5-fold cross-validations. A
fixed data split was used for all datasets, and the data splits are
available on GitHub repository (https://github.com/Yi-ellen/
WCSGNet). The experiments were conducted with a single
round of cross-validation using this fixed split, ensuring the

FIGURE 2
WCSGNet performance across Zheng 68k, Baron Human, and AMB Datasets. Sankey diagrams illustrating the performance of WCSGNet’s 5-fold
cross-validation on (A) Zheng 68k, (B) Baron Human dataset, and (C) AMB dataset. The left side represents predicted cell types, while the right side
denotes the true cell types. The width of the flows corresponds to the number of cells, providing a visual representation of accurate classification across
both major and minor cell types.
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reproducibility of the results. The performance values, in terms of
mean F1 and accuracy, are listed in Tables 2, 3. The 8 methods in
comparison are LDA (Pedregosa et al., 2011), NMC(Pedregosa et al.,
2011), RF (Pedregosa et al., 2011), SVM(Pedregosa et al., 2011),
SingleR (Aran et al., 2019), CHETAH (de Kanter et al., 2019),
ACTINN(Ma and Pellegrini, 2020), and scGraph (Yin et al., 2022).

In the comparisons, WCSGNet achieves comparable or better
performance than other methods. WCSGNet consistently ranks
among the leading methods across all benchmarking datasets.
WCSGNet achieved the best mean F1 on 4 of 9 datasets (Zheng
68k, Baron Human, AMB, TM) and the second to the best mean
F1 on two datasets (Kang, Baron Mouse). It also achieved the best
accuracy on 4 of 9 datasets (Kang, Zheng 68k, Baron Human, AMB),
and second to the best accuracy on the Baron Mouse dataset. In
particular, WCSGNet demonstrated consistently superior
performance on the Zheng 68k, Baron Human and AMB

datasets. Although the cell type distributions are highly
imbalanced, the details of the results (Figures 2A–C) support that
WCSGNet has an expectable stable performance.

WCSGNet demonstrated strong classification performance even
on imbalanced datasets. The degree of dataset imbalance was
assessed using the Imbalance Degree metric (Jia et al., 2024), as
shown in Supplementary Table S1. Among the datasets, AMB,
Baron Mouse, and Baron Human exhibited the highest levels of
imbalance. On the AMB dataset, WCSGNet achieved a mean F1-
score improvement of 2.46%, 3.41%, and 3.63% over the top three
existing methods (scGraph, SVM, and ACTINN), respectively.
Similarly, on the Baron Human dataset, WCSGNet surpassed the
top three methods (scGraph, SVM, and SingleR) by 0.93%, 1.14%,
and 2.62% in mean F1-score. For the Baron Mouse dataset,
WCSGNet’s mean F1-score was comparable to the highest-
performingmethod (SVM), with only a marginal difference of 0.008.

FIGURE 3
Comparison of rare cell type identification performance across nine scRNA-seq datasets. (A) Zhang T dataset, (B) Kang dataset, (C) Zheng68k
dataset, (D) Baron Human dataset, (E) Muraro dataset, (F) Segerstolpe dataset, (G) AMB datcaset, (H) TM dataset, (I) Baron Mouse dataset. Each panel
presents a bar chart showing the mean F1-score for WCSGNet and eight baseline methods.
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To further analyze the classification performance for each cell
type, we conducted experiments across all datasets using various
methods, obtaining the F1-score for each cell type, as detailed in
Supplementary Table S2. In addition, we examined the recognition
performance for rare cell types, defined as those constituting less
than 3% of the total cells in the dataset (Wang et al., 2024). As shown
in Figure 3, WCSGNet achieved the highest mean F1-score on five
out of nine datasets (Kang, Baron Human, AMB) and the second-
best mean F1-score on the Baron Mouse dataset. Notably,
WCSGNet delivered superior performance in identifying rare cell
types across almost all datasets, achieving average improvements in
mean F1-score of 1.99% and 3.69% compared to the top two existing
methods (SVM and scGraph), respectively.

In addition to its performance on imbalanced datasets,
WCSGNet excels in handling large and complex cell datasets. On
the TM dataset, which contains 55 cell types and 54,865 cells
(Supplementary Table S3), WCSGNet’s mean F1-score surpasses
the top three existing methods (scGraph, SVM, ACTINN) by 0.65%,
1.87%, and 4.63%, respectively. Similarly, on the Zheng 68k dataset,
which contains 65,943 cells, WCSGNet achieves remarkable

improvements in mean F1-scores. It outperforms the top three
existing methods (scGraph, ACTINN, SVM) by 3.23%, 12.84%,
and 25.99%. On smaller datasets with fewer cell types, like the
Muraro datset, WCSGNet still has a good performance, ranking top-
three among the 9 methods in comparison.

3.2 Analysis of different gene association
network construction methods

We compared WCSGNet with different gene association
network construction methods, including WGCNA, PCA-PMI,
and GRNBoost2, using five-fold cross-validation. Both WGCNA
and PCA-PMI generate a symmetric weighted network for each
training set, while GRNBoost2 produces an asymmetric weighted
network for each training set. The unified network generated from
the training set is used for prediction on the test set cells. WGCNA is
implemented in the R package “WGCNA”, PCA-PMI is available at
https://github.com/Pantrick/PCA-PMI, and GRNBoost2 can be
accessed at http://arboreto.readthedocs.io.

FIGURE 4
Comparison of WCSGNet performance using different gene association networks across nine scRNA-seq datasets. (A) Mean F1-score (bar plot) of
WCSGNet using WCSN, WGCNA, PCA-PMI, and GRNBoost2 across the nine datasets. (B) Accuracy (bar plot) of WCSGNet using WCSN, WGCNA, PCA-
PMI, and GRNBoost2 across the nine datasets.
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The comparison results, presented in Figures 4A, B, show that
WCSN performs similarly to other methods across the Kang, Baron
Human, Muraro, Segerstolpe, AMB, TM, and BaronMouse datasets.
However, a minor performance difference is noted in the Zhang T
and Zheng 68k datasets. To address this, we further analyzed and
refined the weight representation method used in WCSN.

In constructing the WCSN, we used Equation 10 to assign
weights for every edge in the WCSN. However, the edge weights
spread to many orders of magnitude if they are assigned only in this
way. Therefore, we tried to compensate this using two
transformations. One is the logarithmic transformation. The
other is the binary transformation. The logarithmic
transformation converts each edge weight ρ′k (u, v) to ln (ρ′k (u,
v) + 1), which is applied primarily to address the long-tailed
distribution of the original edge weights. By compressing the
range of these weights, the log transformation mitigates the
impact of extreme values, thereby enhancing the stability and
robustness of the model during both training and evaluation.
Supplementary Figure S1 illustrates the distribution of edge

weights before and after the logarithmic transformation for the
training sets in the five-fold cross-validation across all datasets. The
binary transformation assigns 1 to all edges, focusing on the
network’s topological properties without considering the
magnitude of the edge weights.

We compared the performance of these three weight
representations. As shown in Figures 5A, B, all three methods
demonstrate consistently high mean F1-score and accuracy across
all methods. However, logarithmic transformation and binary
transformation achieve notable improvements over the original
on the Zhang T and Zheng 68k datasets.

On the Zhang T dataset, both logarithmic transformation and
binary transformation significantly outperformed the original
values, with increment in mean F1-score by 6.38% and 7.03%,
respectively. Similarly, accuracies improved by 4.01% and 4.14%
over the original values. On the Zheng 68k dataset, logarithmic
transformation and binary transformation also demonstrated
superior performance, with mean F1 score improvements of
2.28% and 1.85%, respectively. Likewise, accuracies increased by

FIGURE 5
Comparison of WCSGNet performance using different edge weight representation methods on nine scRNA-seq datasets. The methods include the
original method, as well as the two improved methods: logarithmic transformation and binary transformation, for WCSN construction. (A) Cell-type
annotation performance of WCSGNet with three weight representation methods by mean F1-score (bar plot). (B) Cell-type annotation performance of
WCSGNet with three weight representation methods by accuracy (bar plot).
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3.27% and 3.14%. Therefore, we believe these transformations
improve the performance of our method.

We analyzed the sparsity of the datasets, defined as the
proportion of zero elements in the count matrix (Jia et al., 2024).
Among all datasets, Zheng68k exhibits the highest sparsity
(Supplementary Table S4). The logarithmic transformation
outperforms existing gene association network methods

(WGCNA, GRNBoost2) by 1.41% and 1.55% in mean F1-score,
and by 1.41% in accuracy. The binary transformation outperforms
WGCNA and GRNBoost2 by 0.99% and 1.13% in mean F1-score,
and by 1.28% in accuracy. These results indicate that the improved
weight representation method effectively enhances performance,
particularly on sparse datasets, where it demonstrates a notable
advantage over other network construction methods.

FIGURE 6
Hub genes analysis of WCSN for different cell types on the Baron Human dataset. (A–M) Venn diagrams showing the top 100 hub genes for 13 cell
types, derived from their respective WCSNs across five folds in 5-fold cross-validation on the Baron Human dataset. Each diagram illustrates the overlap
of hub genes for the corresponding cell type across the five folds. The cell type for each diagram is labeled below the plot, and the colors within the
diagrams represent the individual folds of the 5-fold cross-validation. (N) UpSet diagram visualizing intersections of characteristic gene sets across
13 cell types, showing only intersections containing more than 2 genes. The intersections represent the overlap of gene sets across the different cell
types, with only those exceeding the size threshold included. The left bar chart represents the size of each individual gene set for each cell type, while the
top bar chart shows the size of each intersection, sorted by size. In the main diagram, solid dark blue-gray dots indicate the gene sets that are part of the
intersection. This diagram helps identify common and unique gene sets among the cell types.
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FIGURE 7
High-weight edges analysis of WCSNs for different cell types in the Baron Human dataset. (A–M) Venn diagrams display the top 100 high-weight
edges for 13 cell types, derived from their respective WCSNs across five folds in 5-fold cross-validation on the Baron Human dataset. Each diagram
illustrates the overlap of high-weight edges for the corresponding cell type across the five folds. The cell type for each diagram is labeled below the plot,
and different colors within the diagrams represent the individual folds of the 5-fold cross-validation. (N) The UpSet diagram presents the
intersections of characteristic edge sets across cell types, with intersection size threshold >2. The intersections represent the overlap of edges sets across
the different cell types, with only those exceeding the size threshold included. The left bar chart represents the size of each individual edge set for each
cell type, while the top bar chart shows the size of each intersection, sorted by size. In the main diagram, solid dark blue-gray dots indicate the edge sets
that are part of the intersection. This diagram helps identify common and unique edge sets among the cell types.
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FIGURE 8
t-SNE visualization and feature analysis of the Baron Human dataset using WCSGNet. (A, B) t-SNE visualization of high-level features extracted by WCSGNet,
coloredby (A) truecell typesand (B)predictedcell types. (C)VisualizationofADAMTS17, a tophubgeneuniquely identified in thecharacteristicgenesetofbetacells,with
t-SNE coloring representing its degree inWCSNs. (D–H)Visualizations of five additional hub genes, showcasing cell type-specific connectivity patterns. The top titles of
eachplot include thegenenames,with eachplot representing specificgeneconnectivity patterns in (alpha, acinar, endothelial, activated stellate,macrophage) cell
types. (I) Visualization of IL21R-SLC35F5, a top high-weight edge uniquely identified in the characteristic edge set of alpha cells, with t-SNE coloring indicating its
interaction strength inWCSNs. (J–N)Visualizationsoffiveadditional high-weightedges, highlightingcell type-specific interactionpatterns acrossdifferent cell types. The
top titles of each plot include the gene pairs, with each plot depicting interaction patterns specific to (beta, acinar, activated stellate, macrophage, mast) cell types.

Frontiers in Genetics frontiersin.org12

Wang and Du 10.3389/fgene.2025.1553352

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1553352


3.3 WCSN analysis

To investigate how WCSNs contribute to the high performance
of cell type classification, we focused on two key topological features:
(1) hub genes, which are defined by their degree distribution, and (2)
high-weight edges, which represent interaction strengths.

For each cell type, we identified top 100 hub genes and high-
weight edges from the test set in each fold of the cross-validation,
based on average gene degree and average edge weight. We then
analyzed the consistency of WCSN structures within the same cell
type across folds. Structural consistency was assessed using a
coverage metric, defined as the proportion of elements (e.g., hub
genes, edges) shared across all five folds, divided by the total number
of elements identified in each fold. The union of the top 100 hub
genes or high-weight edges from different folds was designated as
the characteristic gene set or characteristic edge set, representing the
key elements consistently associated with each cell type. To evaluate
heterogeneity among cell types, we introduced the Uniqueness
metric, which quantifies the proportion of cell type-specific
elements (e.g., hub genes, edges) relative to the total number of
elements in the corresponding characteristic set. This metric
highlights the distinctiveness of WCSN features for each cell type.

We take the Baron Human dataset as an example. As in Figures
6A–M, nearly all cell types in the Baron Human dataset
demonstrated high structural consistency, as evidenced by the
consistent overlap of the top 100 hub genes across all five folds.
The acinar, alpha, and beta cells exhibited high coverage rates of

90%, 91%, and 88%, respectively. In contrast, the epsilon and
schwann cells showed lower coverage rates of 7% and 16%, likely
due to smaller sample sizes (Supplementary Table S5). However,
non-unique genes from these cell types accounted for 50.18% and
54.32% of the total genes identified across all five folds, supporting
the stability of their network structures despite lower coverage rates.
As depicted in Figure 6N, the upset diagram demonstrated
significant cell type specificity in characteristic gene sets. For
instance, the acinar, beta, mast, and schwann cells displayed
uniqueness values of 29.73% (33/111), 14.55% (16/110), 34.25%
(62/181), and 19.34% (47/241), respectively. These findings
underscore the strong cell type specificity of hub genes identified
through WCSNs and highlight the importance of network
topological features in distinguishing cell types.

Similarly, Figures 7A–M reveals robust stability in high-weight
edges across most cell types in the Baron Human dataset, paralleling
the previously observed stability of hub genes. Notably, high-weight
edges showed distinct, mutually exclusive distributions among
different cell types (Figure 7N).

Based on the above analysis, we generated the hub genes and
high-weight edges for each cell type (Supplementary Tables S6, S7).
To illustrate the role of cell type-specific hub genes and high-weight
edges in cell type annotation, we applied t-SNE on the BaronHuman
dataset for visualization (Figure 8). As in Figures 8C–H, unique hub
genes for each cell type clearly distinguish the corresponding cell
types. Likewise, unique high-weight edges significantly contribute to
cell type classification (Figures 8I–N).

FIGURE 9
Analysis of hub genes and high-weight edges in WCSN for different cell types on the AMB Dataset. (A–C) Venn diagrams showing the top 100 hub
genes for GABAergic, Glutamatergic, and Non-Neuronal cell types across five folds in 5-fold cross-validation. Each diagram highlights the overlap of top
100 hub genes within the respective cell type, with colors representing the individual folds of the 5-fold cross-validation. (D) Venn diagram showing the
characteristic gene sets for the 3 cell types, emphasizing shared and unique hub genes. Colors represent the respective cell types. (E–G) Venn
diagrams illustrating the top 100 high-weight edges for GABAergic, Glutamatergic, and Non-Neuronal cell types across five folds in 5-fold cross-
validation. Each diagram represents the overlap of high-weight edges for the corresponding cell type across the five folds, with colors indicating the
individual folds. (H)Venn diagrampresenting the characteristic edge set across five folds for the 3 cell types, highlighting the unique gene pairs with strong
interactions specific to each cell type. Colors represent the cell types.
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Figure 9 demonstrates that the AMB dataset exhibits patterns that
are in consistent with the BaronHuman dataset. This figure highlights
the consistency of top hub genes and high-weight edges across folds,
as well as the specificity of characteristic gene and edge sets for various
cell types. These results confirm that key patterns identified in the
human dataset are conserved in the mouse dataset, further validating
the robustness and generalizability of the analytical approach.

Our analysis demonstrates that both hub gene degree and
interaction strength in WCSNs are biologically meaningful and
critical for distinguishing cell types. The stability of these features
across folds within the same cell type, as well as their specificity
across different cell types, highlights their robustness in capturing
cell-specific regulatory patterns. These findings provide strong
evidence that WCSGNet leveraging WCSNs, is an effective tool
for cell type classification and offers novel insights into the
molecular mechanisms underlying cellular heterogeneity.

4 Discussions

In construction of the WCSN in this study, we primarily
followed the methodology outlined in the CSN paper. In this
approach, the settings for Ru and Rv are based on a fixed ratio of
the total number of cells, simplifying the network construction. An
alternative approach is to set Ru and Rv as a fixed ratio of the overall
expression range of the u-th gene and v-th gene, which could offer
more biological relevance. Future studies could explore and
potentially improve upon this approach.

To address class imbalance among cell types, we implemented up-
sampling in the training dataset. However, this method carries some
risks, such as overfitting, since the randomduplication of samplesmay
lead the model to rely too heavily on repeated instances, particularly
for rare cell types. Furthermore, up-sampling does not introduce novel
information, which limiting the diversity and variability of the rare cell
types. To overcome these limitations, future research could investigate
advanced techniques such as the Synthetic Minority Over-sampling
Technique (SMOTE) (Chawla et al., 2002), which generates synthetic
samples to increase cell type diversity while mitigating overfitting
risks. Additionally, we employed a weighted cross-entropy loss
function to address class imbalance by assigning higher weights to
rare cell types. Although effective, this method may inadvertently
overemphasize the rare cell types, increasing the risk of overfitting.
Future work should refine these strategies to better balance class
representation and generalizability.

Furthermore, the network construction method used in
WCSGNet still has potential for performance improvement.
Future research will focus on further enhancing both the network
construction and weight representation methods to improve the
network’s stability and biological relevance, allowing for more
effective handling of sparse datasets.

5 Conclusion

We developed WCSGNet, an innovative approach for cell type
annotation using scRNA-seq data. WCSGNet generates weighted, cell-
specific gene association networks for individual cells and employs
graph neural networks to extract informative features. Comparative

analyses demonstrate that WCSGNet achieves comparable or better
performances than state-of-the-art methods.WCSGNet integrates gene
expression features with cell-specific network features for cell
representations. This opens a new way for cell representations based
on scRNA-seq data. We anticipate that WCSGNet will serve as a
valuable tool for automated cell type annotation.
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