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Introduction: The role of syngameons in adaption to microgeographical
environmental heterogeneity is important and could be one of the sources of
rich species diversity in tropical forests. In addition, negative frequency- or
density-dependent selection is one of the major processes contributing to the
maintenance of genetic diversity.

Methods: To assess genetic factors that affect the fitness of seedlings of
Rubroshorea curtisii, a dominant canopy tree species in hill dipterocarp
forests, the inter- and intra-population genetic structure of individuals from
natural populations and individuals at two permanent plots in a hill
dipterocarp forest with reproductive stage was studied. Further, a total of 460
seedlings derived from six mother trees in the plot were raised in a nursery, and
their pollen donors were identified using genetic marker based paternity
assignment. Seed weight, bi-parental genetic relatedness, and bi-parental
genetic heterogeneity based on the clustering analysis were used to analyze
their effects on seedling fitness.

Results: A Bayesian based clustering analysis revealed that three genetically
distinct clusters were observed in almost all populations throughout the
distributional range of the species in Malay Peninsula and provided the
optimum explanation for the genetic structure of 182 mature individuals in the
plots. The two clusters showed larger genetic differentiation from the ancestral
admixture population, but the other one was not differentiated. The bi-parental
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larger genetic heterogeneity was associated with a significantly higher probability
of seedling survivorship, and likewise, higher performance of vertical growth of the
seedlings; but the seed weight and genetic relatedness did not significantly
affect those.

Discussion: This evidence suggests that fitter seedlings derived from mating
between parents with different genetic clusters contribute to maintaining
genetic diversity through negative frequency-dependent selection and may
have an important role in adaptation in the tropical forest plant community.

KEYWORDS

dipterocarp, syngameon, genetic structure, fitness, frequency-dependent selection,
tropical rainforest

1 Introduction

Stochastic and deterministic ecological mechanisms affect
species co-existence in populations with high diversity and can
allow the maintenance of a high diversity of species (Connell, 1961;
Janzen, 1970; Hubbell, 1997; Webb and Peart, 1999; Wright, 2002;
Usinowicz et al., 2017). The unified neutral theory of biodiversity
and biogeography has provided an ecological null-model against
which to test patterns of species diversity and composition within
populations (Hubbell, 2001). However, species richness in tropical
forests has been discussed as being the result of highly specialized
adaptation to the biotic and physical environment, especially caused
by forest disturbance (Ashton, 1969; Molino and Sabatier, 2001;
Schnitzer and Carson, 2001; Alroy, 2017). Mechanisms to maintain
species diversity in tropical forests have been studied; however, the
adaptative potential of genetic diversity within tropical tree species
and its effect on species diversity are poorly understood, despite the
fact that genetic diversity is the basis of species diversity. It is
frequently observed that tree species do not act as discrete
evolutionary units (Cronk and Suarez-Gonzalez, 2018; Cannon
and Petit, 2020). Closely-related and sympatric species often
maintain some level of inter-specific fertility (Seehausen, 2004;
Givnish, 2010; Schley et al., 2022), which can generate genotypes
that facilitate further ecological diversification (the syngameon
hypothesis; (reviewed in Seehausen, 2004). Therefore, the role of
syngameons in adaption to microgeographical environmental
heterogeneity is important and could be one of the sources of
rich species diversity in tropical forests. In addition, negative
frequency- or density-dependent selection is one of the major
processes contributing to the maintenance of genetic diversity. At
the species level, the high richness and co-existence of species in
tropical forests has been partly maintained by density-dependent
effects, appearing as reduced seed and seedling survival in areas with
high densities or close proximity to conspecifics (the Jansen-Cornell
hypothesis) (Janzen, 1970; Connell, 1971; Bagchi et al., 2010a;
Bagchi et al., 2010b; Levi et al., 2019; Jia et al., 2020). This effect
should also operate at syngameon and intra-species genetic diversity
scales. Although negative-frequency dependent selection has
theoretically been shown to be one of the mechanisms that
maintains genetic diversity within populations, through the
relative advantage of rare genotypes (Haldane, 1949; Ayala and
Campbell, 1974; Antonovics, 1976), our understanding of the
impact of frequency-dependent selection at syngameon and intra-
species scales has focused on its maintenance of genetic and species

diversity (Browne and Karubian, 2016; 2018; Eck et al., 2019;
Cannon and Petit, 2020).

Tree species in the Dipterocarpaceae are highly diversified and
form major components of the rainforest in Southeast Asia, in
particular, the tribe Shoreae sensu Ashton (1979), which comprises
five genera, Dryobalanops, Hopea, monotypic Neobalanocarpus,
Parashorea and the large genus Shorea consisting of around
360 species. The genus Shorea has been traditionally classified
based on timber characteristics (Symington, 1943) and
Rubroshorea (= red meranti) is the largest among the six sections
of Shorea (Maury-Lechon, 1978). Molecular phylogenetic
approaches using various types of markers, such as PCR-RFLP
(Tsumura et al., 1996; Indrioko et al., 2006) and plastid DNA
sequences (Kajita et al., 1998; Dayanandan et al., 1999; Tsumura
et al., 2011), have been used to examine these taxa. However,
phylogenetic relationships have remained unclear, especially
within the Rubroshorea due to low resolution of plastid DNA
sequences (Tsumura et al., 2011). On the other hand, high-
density genome wide DNA polymorphisms may be able to
deliver high resolution of the species in the tribe Shoreae, similar
to the traditional classification (Heckenhauer et al., 2018). Finally,
Rubroshorea was proposed to dissected from genus Shorea based on
molecular phylogenetic evidences (Ashton and Heckenhauer, 2022).
Therefore, the highly diversified and closely related species
belonging to Rubroshorea may be ideal models to study the
evolutionary significance of syngameon complexes. Rubroshorea
curtisii is commonly found in coastal and inland ridge forests
throughout the Malay Peninsula (Symington, 1943) and is also
confined to well-drained and fairly low nutrient soils along the
northern coastal area in Borneo (Ashton et al., 1982). A low level of
genetic differentiation between populations on the Malay Peninsula
has been revealed by DNA polymorphisms in the chloroplast
genome. However, chloroplast capture occurred through ancient
hybridization events between R. curtisii and some unknown related
species (Kamiya et al., 2012), and DNA sequences of two nuclear
genes and the chloroplast have shown that hybridization occurs
commonly between R. curtisii and R. leprosula and rarely between R.
curtisii and R. parvifolia in natural populations (Kamiya et al., 2011).
These species are morphologically distinct and, it has been
suggested, are highly specifically adapted to their biotic and
physical environments (Ashton, 1969; Brown and Whitmore,
1992; Potts et al., 2002; Dent and Burslem, 2016; Kenzo et al.,
2019; Kenzo et al., 2023). Therefore, the genetic diversity and
structure of R. curtisii are the result of stochastic processes,
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population history and hybridization events with extant (and
ancient) closely related species.

We hypothesized that the multiple historical population and
hybridization processes in R. curtisii caused the complex pattern of
genetic diversity, which probably played an important role in
adaption to the biotic and physical environments. To examine
the hypothesis, the pattern of intra-specific genetic structure of R.

curtisii in Malay Peninsula was assessed and the fitness of the
seedlings categorized according to bi-parental genetic relationship
and the pattern of genetic diversity. This approach can help in the
understanding of the evolutionally and ecological importance of
syngameons through detection of negative frequency dependent
selection during mating and the subsequent regeneration of the
forest ecosystem.

2 Materials and methods

2.1 Population sampling, seed collection and
growth observation of seedlings

Leaf or inner bark tissue was collected from 134 R. curtisii
individuals, representing nine natural populations throughout the
natural distribution across Malay Peninsula (Table 1; Figure 1). The
tissues were collected from R. curtisii individuals that were at least
20 m apart, to avoid collecting samples from genetically related
individuals, regardless of age or size of trees. Samples were stored
at −20°C, prior to DNA extraction. Semangkok Forest Reserve, a
designated hill dipterocarp forest conservation area, is in and
governed by the Selangor state; it is 60 km north of Kuala
Lumpur, on the Malay Peninsula and is a designated hill
dipterocarp forest conservation area. In 1993, Niiyama et al.
(1999) established a 6-ha permanent plot (200 m × 300 m) in an
undisturbed forest on a narrow ridge and steep slope, ranging from
340 to 450 m above sea level (3°37′07″N, 101°44′15″E). Another ca.
4-ha (100 m × 400 m) permanent plot was established within a
selectively logged area of forest in 1994 and was extended to about
5.4-ha (ca. 140 m × 400 m) in 2007 (3°37′23″N, 101°44′15″E); this is
only 200 m away from the 6-ha permanent plot (Yagihashi et al.,
2010). Leaf or inner bark samples were collected from 144 to 38 R.
curtisii individuals (with dbh more than 20 cm) from the
undisturbed plot and the logged plot, respectively, of which
17 and three trees were growing in areas of the study plots
adjacent to the undisturbed and the logged plots, respectively. A
total of 17 and three trees growing in areas of the study plots adjacent
to the undisturbed plot have previously been identified as the

TABLE 1 Location and number of samples from the Rubroshorea curtsii population on Malay Peninsula.

No Population name Abbreviation State Sample size Location

Latitude Longitude

1 Gunung Basur BASUR Kelantan 17 N 05°38′02.8″ E 101°47′23.3″

2 Hulu Besut BESUT Trengganu 11 N 05°26′25.4″ E 102°25′21.9″

3 Gunung Bongs BONGS Kedah 5 N 05°20′45.4″ E 100°39′45.6″

4 Gunung Budu GBUDU Perak 6 N 04°39′19.8″ E 100°50′55.6″

5 Gunung Jerai JERAI Kedah 7 N 05°49′03.1″ E 100°40′27.4″

6 Kledang Saiong KLEDA Perak 32 N 04°32′48.7″ E 100°59′58.2″

7 Koh Moi KOHMO Kedah 3 N 06°26′04.0″ E 100°33′22.9″

8 Bukit Larut LARUT Perak 18 N 04°51′59.5″ E 100°46′28.5″

9 Semangkok SEMAN Selangor 35 N 03°38′31.9″ E 101°44′47.2″

FIGURE 1
The locations of the sampled population of Rubroshorea curtisii
trees on the Malay Peninsula and bar plot of Q values from
STRUCTURE analysis for sampled individuals from nine populations.
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candidate pollen donors (Tani et al., 2012; Tani et al., 2015). Samples
were also stored at −20°C, prior to DNA extraction.

A sporadic synchronized flowering event was observed in
Semangkok Forest Reserve in October 2011, and fruit set
occurred around February 2012. Seeds were collected from six
selected mother trees in the undisturbed plot. After removal of
wings from the seeds, seed weight was measured, then the seeds were
placed on seedbeds consisting of river sand on 20 February 2012 to
investigate germination. The result of the germination test is
presented in Table 2. The germinated seedlings were potted in a
mixture of river sand and soil without fertilizer on 26 March
2012 and maintained in the nursery of the Forest Research
Institute Malaysia (FRIM, 3°14′01″N, 101°38′00″E) under 50%
shade, with a water sprinkler system for irrigation. Height and
survival of seedlings were monitored weekly before transplantation
and monthly after transplantation. The data of seedling survival and
growth were deposited in Dryad (https://doi.org/10.5061/
dryad.nzs7h451m).

2.2 Molecular analysis

Genomic DNA was extracted, using the method described by
Murray and Thompson (1980). The material analyzed came from
inner bark tissue samples of the adult trees from the research plots,
material from either the inner bark or leaf tissues for the population
samples, and from the leaves of seedlings. The extracted DNA from
the adult trees and population samples was further purified using a
High Pure PCR Template Preparation Kit (Roche). After RNA
digestion, the DNA was diluted to a concentration of about 2 ng/
μL. All samples were genotyped on the basis of ten microsatellite
markers (shc04, shc07, and shc09 from Ujino et al. (1998), sle074,
sle384, sle392, sle562, and sle566 from Lee et al. (2004), and slu044,
and slu175 from Lee et al. (2006), see these references for details of
microsatellite markers). Polymerase chain reaction (PCR)
amplifications were carried out in total reaction volumes of
10 μL using a GeneAmp 9700 (Applied Biosystems). The PCR
mixture contained 0.2 μM of each primer, 1x QIAGEN Multiplex
PCR Master Mix (Qiagen), and 0.5–3 ng of template DNA. The

temperature profile used was: 15 min at 95°C, then 30–35 cycles of
30 s at 94°C, 90 s at 50oC–57°C and 90 s at 72°C, with a 10 min final
extension step at 72°C. Amplified PCR fragments were
electrophoretically separated using a 3100 genetic analyzer
(Applied Biosystems) with a calibrated internal size standard
(GeneScan ROX 400HD). The genotype of each individual was
determined from the resulting electropherograms using
GeneMarker (SoftGenetics). The microsatellite genotypic data
from population samples, adult trees from the plots and seedlings
from the nursery are referred as population genotype, plot genotype
and seedling genotype, respectively. Due to fine-scale population
structure and family structure in genotypes from adult trees and
seedlings, quality of the microsatellite markers was checked using
population sample in Semangkok forest reserve (abbreviated as
SEMAN in Figure 1). No null alleles were detected in the
Semangkok population, indicating a Hardy-Weinberg equilibrium
state (Supplementary Table S1) by Micro-Checker analysis (Van
Oosterhout et al., 2004). The plot genotypes were obtained in
previous studies (Tani et al., 2012; Tani et al., 2015), and were
already deposited in Dryad (http://dx.doi.org/10.5061/dryad.
7k434). The population and seedling genotypes were separately
deposited in Dryad (https://doi.org/10.5061/dryad.nzs7h451m).

2.3 Clustering analysis and paternity
assignment

The Bayesian model-based clustering method implemented in
STRUCTURE 2.3.4 (Pritchard et al., 2000) was used to estimate the
optimal number of genetic clusters and probability of individuals
belonging to each cluster (k) for population and adult data
separately. A burn-in of 5 × 104 steps followed by 105 steps of
MCMC (Markov chain Monte Carlo) simulations for both
genotypes were performed using the admixture and allele
frequency correlated model without the LocPrior option. Each
analysis was run five times for the range k = 1 - 6 for both sets
of data. In order to evaluate the likelihood of K, we uploaded the
structure-generated results to a web-based program structure
harvester (Earl and von Holdt, 2012) and obtained plots of mean

TABLE 2 Germination test for Rubroshorea curtsii seeds collected from six mother trees and result of paternity analysis for germinated seedlings with DNA
retrievable.

Paternity analysis

Mother
tree ID

Number
of soaked
seeds

Number of
germinated
seedlings

Number of
seedlings
with DNA

Selfing Paternity
donor
unidentified
(immigrants)

Multiple
paternity
donors
identified

Single
paternity
donor
identified

Number of
paternity
donors
identified

E301 100 99 96 5 8 5 78 21

E311 99 78 71 3 12 4 52 14

F278 98 96 76 3 5 8 60 13

F324 100 79 60 11 4 5 40 19

G002 98 94 88 7 13 0 68 12

G108 93 77 69 12 6 4 47 15

Total 588 523 460 41 48 26 345 94
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likelihood value (Ln PrX/K) and Delta K for successive values of K.
We then determined the optimum values of K, following Evanno
et al. (2005). For the selected K values, replicated results were aligned
using CLUMPP version 1.1.2 (Jakobsson and Rosenberg, 2007), and
visualized using distruct (Rosenberg, 2004) for population data.

We used categorical allocation in combination with an exclusion
procedure to identify candidate paternal trees. The paternity of each
offspring was determined based on likelihood ratios, and their
confidence levels (greater than 95%) were derived using CERVUS
ver. 3.0 (Marshall et al., 1998; Kalinowski et al., 2007). To conduct
likelihood tests in CERVUS, we created 100,000 simulated offspring
genotypes from 600 potential paternal candidates, with a mistyping
rate of 0.1% in the categorical allocation. However, if the paternal
candidates identified by the likelihood procedure had more than two
loci mismatches in the simple exclusion procedure, we assumed that
the paternal tree of the offspring was located outside the plot.
Electropherograms were double-checked to confirm mismatches
between the offspring and paternal candidates to minimize
genotyping errors.

2.4 Survival and growth analysis

2.4.1 Genetic relationship between parents
of seedlings

We estimated the genetic relatedness (rij) between the ith mother
tree and the jth pollen donor within plots based on the microsatellite
genotypes, using ML-Relate software (Kalinowski et al., 2006). Besides
genetic relatedness, we also calculated two parameters to reflect the
genetic heterogeneity between the parents of each seedling based on
cluster analysis. As the probability of adult trees being assigned to the
kth cluster was estimated as the Qk value, the attributional difference of
the STRUCTURE cluster between the ithmother tree and the jth pollen
donor using Q values (referred to as the ‘qdis’ statistic) was calculated,
which is an application of Rogers’ statistic for genetic distance between
populations (Rogers, 1972), as follows,

qdisij � ∑
3

k�1
Qik − Qjk( )

2
/2

We also calculated another statistic whereby the attributional
difference between the STRUCTURE cluster (Qk),and the genetic
differentiation between the kth cluster and assumed ancestral admixed
populations (fstk) were considered. The estimates of fstk from
STRUCTURE analysis were: 0.10552, 0.00044 and −0.10342 for 1st,
2nd and 3rd cluster (kth), respectively. This was used to calculate the
so-called “fdis” statistic, calculated as follows,

fdisij � ∑
3

k�1
Qik + Qjk( ) × fstk/2

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

After these calculations, we assigned values of these statistics (r,
qdis and fdis) to the parental pair of each seedling, based on the
result of the paternity analysis.

2.4.2 Survival analysis
In the seedling survival model, the status of the sth seedling at

census time t, Ns(t), was coded as 0 until the seedling was found

dead, at which point it was set to Ni(t) = 1 and no subsequent
changes were considered. We used a proportional hazards model in
the R statistical software using the package survival (Andersen and
Gill, 1982; R Core Team, 2014; Therneau and Lumley, 2015) to fit
maternal (seed weight represented as w) and biparental effects (r,
qdis and fdis) to the survival of seedlings. As qdis and fdis were
analyzed separately, we did not consider interaction between the
explanatory variables. To select a best fit model among the
combinations of the explanatory variables, and fixed or mixed
models, we compared log-likelihood scores between candidate
and null models and report the AICs of the models here.

2.4.3 Seedling growth analysis
We analyzed the height-based relative growth rate for each

seedling in response to the maternal (w) and bi-parental effects
(r, qdis and fdis) using a generalized linear mixed model (GLMM)
with normal distribution error structure. Although we monitored
the seedling height growth every month, the vertical growth during
each 6-month period was used for the estimation of relative growth
rate (RGR) after transplantation into individual pots. RGR from t-1
to t observation dates for the sth surviving seedling was calculated
as follows:

RGRst �
ln Hst

Hst−1( )
Tt − Tt−1

whereHst is the seedling height in centimeters at Tt observation date
and Hst-1 is the seedling height at Tt-1 observation date (about
6 months before Tt, the observation dates are shown in Table 4).
A normal distribution was assumed for RGRst for the GLMM. As the
survival analysis, qdis and fdis were analyzed separately, no
interaction between the explanatory variables was considered.
Uninformative priors were given for the parameters’ initial
distribution, then the distribution was re-parameterized with a
Hamiltonian Monte Carlo sampler using the No-U-Turns
algorithm. These models were implemented in stan 2.5
(Carpenter et al., 2017) using the package “Rstan” in R 3.1.1 (R
Core Team, 2014; Gelman et al., 2015; Stan Development Team,
2020) and glmmstan function (Shimizu, 2016). Three chains were
run for each survival and growth model with explanatory variables.
All models were run for 150,000 iterations, discarding the first
30,000 as a burn-in period. We used the Rhat statistic, together with
a visual inspection of the chains, to assess convergence (Gelman and
Rubin, 1992). The effect of the explanatory variables on the growth
of seedlings was evaluated according to whether the 95% posterior
credibility intervals of the estimated coefficients included the
value of zero.

3 Results

3.1 Genetic structure of R. curtisii at whole
distribution and fine scales

The software structure applying a Bayesian estimate without
prior population information produced the highest Delta K when
the number of populations was set at three clusters (K1 to 3) for
population genotype (Supplementary Table S2). We applied three
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clusters for the subsequent analyses. Although the genetic
differentiation between the ancestral admixed population and
clustered populations showed that two of the clusters were well
differentiated (Fst1 and Fst3 were 0.16698 and 0.16244, respectively),
the genetic component of the second cluster was similar to that of
the admixed population (Fst2 was 0.0006) when the population
genotype was considered. On the other hand, the genetic
differentiation between populations was lower (Fst = 0.082),
which suggested that genetic components of the three clusters
were distributed among most of the populations (Figure 1). This
genetic clustering was also identified in adult tree populations in the
plots. However, only the KLEDA population had a lower proportion
for the K2 cluster and was like the genetic composition of
the admixture.

At the fine scale, STRUCTURE analysis was also conducted
using the plot genotypes in Semangkok Forest Reserve (the
population genotypes of 9. Seman were collected from the
vicinity of the forest monitoring plots, not within the plots). The
adult trees in the plots also separated into three clusters at the fine
scale. The fine-scale geographical distribution of Qk showed some
aggregation of large Qk value individuals in all k clusters (Figure 2).
Genetic differentiation between the ancestral admixed population
and clustered populations showed the same tendency as the
population genotypes, with Fstk values as follows, Fst1: 0.10552,
Fst2: 0.00044, and Fst3: 0.10552. These Fstk values were used for
the calculation of fdis.

3.2 Germination, DNA collection and
seedling paternity assignment

We collected nearly 100 seeds from each mother tree, which we
soaked and placed on a seedbed of river sand on 30–31 January 2012.
Seeds from three mother trees (E301, F278, and G002) showed
almost 100% germination, while the other three mother trees (E311,
F324, and G108) produced seeds with a lower germination rate,
about 80%. After transplantation to pots, DNA was collected from
leaf tissues of 60–96 individuals from each of the six mother trees,

and this was used for paternity analysis (Table 2). Although the high
exclusion power of the microsatellite markers was generally capable
of assigning paternity to a single candidate or immigrant pollen from
outside of the plot, 26 seedlings were excluded from subsequent
analysis because there was no significant difference between the first
and second candidate pollen donors. The paternity analysis showed
48 and 41 seedlings, respectively, derived from immigrant paternal
donors and self-fertilization, and these were also excluded from
subsequent analysis. As a result, 345 seedlings with single paternal
donors inside the plots were used for further analysis (Table 2).
Based on the paternity analysis, we evaluated the genetic relatedness
between parents of the seedling (r), the attributional difference of
clusters between the parents of seedling (qdis) and attributional
difference of clusters with genetic differentiation (Fst) between the
parents of the seedling (fdis). The most of seedlings were the result of
genetically unrelated mating between paternal donors and mother
trees; therefore, the distribution of rij was skewed to the left
(Figure 3A). However, the distribution of qdisij was almost
normal, with the exception of many mating pairs between
parents that belonged to distinct clusters (less than 0.1 qdisij,
Figure 3B). On the other hand, the effect of multiplying Fst
changed the distribution of fdis. In particular, the difference in
the probability of being assigned to the k2 cluster (Q2) between the
parents of a seedling was masked by an almost zero value of Fst2 and
differences in the probability of being assigned to the k1 and k3
clusters were offset by subtraction of the difference for cluster k1
from cluster k3 (Figure 3C).

3.3 Survival, growth of seedlings of R. curtisii
and the relationship with their genotype

Based on paternity assignment, maternal and biparental effects
on seedling survival and growth were investigated using the
proportional hazards model (“cox” in the R package) and GLMM
using a Bayesian approach, respectively. For survival analysis, the p
value of the estimated coefficient of w was slightly significant in
Models 1 and 5, and the p value of the estimated coefficient of r was

FIGURE 2
The distribution of adult trees of Rubroshorea curtisii (with dbh greater than 20 cm) in the 6-ha undisturbed plot at Semangkok Forest Reserve,
Selangor, Malay Peninsula. The diameters of red, green and blue circles of the adult trees represent Q values for cluster 1, cluster 2 and cluster 3,
respectively, from structure analysis.
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not significant in Models 2 and 5 in the “cox” analysis. However, the
values of the qdis and fdis statistics consistently had a high level of
significance throughout the models (Table 3). Among the models
including fdis and qdis, the ones with w and fdis or qdis parameters
showed the best prediction based on AIC and BIC (Models 6 and 7).
In the comparison between qdis and fdis, the residual deviance of
Model 7 (involving w and qdis parameters) was slightly smaller than
that of Model 6 (involvingw and fdis), but there was slight difference
of 3.37 between them (Table 3). The biparental effect, represented by
the attributional difference of clusters between the parents of
seedling (qdis) and the attributional difference of clusters with
genetic differentiation (Fst) between the parents of the seedling
(fdis), showed the best predictive ability to explain survival of R.
curtisii seedlings in the nursery. The negative estimate of the qdis
parameter represents the lower survival rate of seedlings with

parents in the same cluster (based on the Q value in
STRUCTURE). The positive estimate of the fdis parameter
represents higher survival rates for seedlings resulting from
mating between k1 and k3 type parents or mating between k2
type parents.

The observation period (about 2 years and 8 months) during
which seedling growth was measured was separated into the period
of growth in the seedbed and five subsequent periods (each lasting
6 months) in the nursery after transplantation. The 95% credibility
intervals of estimated parameters relating to seed weight and genetic
relatedness between parents (rij) included zero in all terms for both
the qdis (Table 4) and fdis models (Table 5). However, the 95%
credibility intervals of the estimated parameters for qdis were
positively skewed from zero in the first and second 6-month
periods in the nursery (Table 4). Those for fdis were negatively

FIGURE 3
Frequencies of the genetic relationship between mother trees and pollen donors. Histogram (A) represents the distribution of relatedness between
mother trees and pollen donors. Histogram (B) represents the distribution of qdis betweenmother trees and pollen donors. Histogram (C) represents the
distribution of fdis between mother trees and pollen donors.

TABLE 3 Effects of seedweight, genetic biparental relatedness and difference of clustering attribution between parents onmortality of seedlings using COX
proportional hazard model.

Model
1

Model
2

Model
3

Model
4

Model
5

Model
6

Model
7

Model
8

Model
9

Model
10

Model
11

w 1.09*a 1.23** 0.74 0.79 0.81 0.85

(0.44)b (0.46) (0.44) (0.43) (0.45) (0.44)

r 0.91 1.36 0.27 0.19 0.57 0.51

(0.80) (−0.81) (0.76) (0.76) (0.78) (0.78)

fdis 21.77 *** 20.83 *** 21.48 *** 20.13 ***

(4.66) (4.76) (4.72) (4.85)

qdis −3.4 *** −3.28 *** −3.37 *** −3.2 ***

(0.72) (0.73) (0.73) (0.74)

df 2 2 2 2 3 3 3 3 3 4 4

AIC 1009.50 1014.1 992.75 989.91 1009.09 991.99 988.62 994.63 991.85 993.49 990.22

BIC 1012.06 1018.73 995.31 992.47 1014.13 997.04 993.66 999.67 996.89 1001.01 997.74

Deviance 1007.50 1012.11 990.75 987.91 1005.09 987.99 984.62 990.63 987.85 987.49 984.22

aThe number of astarisks represents significance level of estimated parameter, *, **, and *** indicate 5%, 1%, and 0.1%, respectively.
bNumber in pearenthesis is standard error of estimated parameter represented above.
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skewed from zero in the first and second 6-month periods in the
nursery (Table 5). Any significance disappeared in the subsequent
observation periods (Tables 4, 5). Only in the model involving fdis,
was seed weight (w) positively correlated with seedling growth up to
the third of the 6-month periods (Table 5), but the model involving
qdis did not indicate any positive effect of seed weight (w) during any
observation period (Table 4).

4 Discussion

4.1 Population genetic structure of R. curtisii

The pattern of genetic structure of forest tree species has been
shown to be related to only a few traits, such as mating system for the
nuclear genome and seed dispersal mode or geographic range size

TABLE 4 Effects of attributional difference of clusters between the parents of seedling (qdis), relatedness (r) and seed weight (w) on relative vertical growth
of seedlings in every 6 month period after transplantation.

Mean sd 2.5% 97.5% Rhat

Vertical growth on seed bed (Feb/20/2012 - Mar/20/2012)

Intercept 0.035 0.010 0.016 0.054 1.000

qdis −0.005 0.013 −0.030 0.021 1.000

r −0.010 0.019 −0.047 0.028 1.000

w 0.008 0.009 −0.010 0.026 1.000

sigmaa 0.001 0.001 0.005 0.041 1.003

taub 0.026 0.011 0.146 2.059 1.004

Vertical growth in the first 6-month period (Apr/17/2012 - Oct/23/2012)

Intercept 0.003 0.000 0.002 0.004 1.136

qdis 0.001 0.001 0.000 0.002 1.071

r 0.001 0.001 0.000 0.002 1.009

w −0.001 0.000 −0.001 0.000 1.110

sigma 0.000 0.000 0.000 0.000 1.213

tau 0.001 0.000 0.000 0.002 1.160

Vertical growth in the second 6-month period (Oct/23/2012 - Apr/8/2013)

Intercept 0.004 0.000 0.003 0.005 1.002

qdis 0.002 0.001 0.001 0.003 1.004

r 0.000 0.001 −0.002 0.002 1.003

w 0.000 0.000 −0.001 0.001 1.004

sigma 0.000 0.000 0.000 0.000 1.012

tau 0.001 0.000 0.000 0.002 1.010

Vertical growth in the third 6-month period (Apr/8/2013 - Oct/23/2013)

Intercept 0.002 0.000 0.001 0.003 1.002

qdis −0.001 0.000 −0.001 0.000 1.004

r −0.001 0.001 −0.002 0.000 1.000

w 0.000 0.000 −0.001 0.000 1.001

sigma 0.000 0.000 0.000 0.000 1.017

tau 0.001 0.000 0.000 0.001 1.011

Vertical growth in the fourth 6-month period (Oct/23/2013 - May/15/2014)

Intercept 0.002 0.000 0.001 0.002 1.002

qdis 0.000 0.000 −0.001 0.000 1.046

r −0.001 0.001 −0.002 0.000 1.011

w −0.001 0.000 −0.002 0.000 1.002

sigma 0.000 0.000 0.000 0.000 1.127

tau 0.001 0.000 0.000 0.001 1.090

Vertical growth in the fifth 6-month period (May/15/2014 - Dec/24/2014)

Intercept 0.000 0.000 0.000 0.001 1.001

qdis 0.000 0.000 −0.001 0.000 1.005

r 0.000 0.001 −0.001 0.002 1.000

w 0.000 0.000 0.000 0.001 1.002

sigma 0.000 0.000 0.000 0.000 1.008

tau 0.001 0.000 0.000 0.001 1.007

aSigma is a parameter of gaussian distribution of vertical growth.
bTau is a parameter of individual differences represented in random effect.
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for organelle markers (Duminil et al., 2007). The majority of
dipterocarps adopt a mixed mating system (Kitamura et al., 1994;
Lee et al., 2000c; Nagamitsu et al., 2001; Tani et al., 2009) and this is
the case for R. curtisii (Obayashi et al., 2002; Tani et al., 2012; Tani
et al., 2015). These species exhibit weak genetic differentiation
between populations when there is no long-term geographic
isolation, as is the case with other tree species in Malay

Peninsula (Lee et al., 2000a; Lee et al., 2000b; Ng et al., 2017; Ng
et al., 2019; Ng et al., 2024). On the other hand, comprehensive
studies on the genetic structure of tropical tree species have
suggested that limited seed dispersal enhances the genetic
structure of populations (Hamrick et al., 1993; Lowe et al., 2018).
Tropical tree species in Malay Peninsula with limited seed dispersal
because of having wingless fruits also exhibit distinct genetic

TABLE 5 Effects of attributional difference of clusters with genetic differentiation (Fst) between the parents of the seedling (fdis), relatedness (r) and seed
weight (w) on relative vertical growth of seedlings in every 6 month period after transplantation.

Mean sd 2.5% 97.5% Rhat

Vertical growth on seed bed (Feb/20/2012 - Mar/20/2012)

Intercept 1.751 0.441 0.879 2.590 1.003

fdis −7.160 4.678 −16.213 2.206 1.001

r −0.052 0.920 −1.868 1.760 1.000

w 2.669 0.473 1.745 3.604 1.002

sigmaa 2.160 1.402 0.059 4.328 1.012

taub 1.258 0.600 0.146 2.059 1.012

Vertical growth in the first 6-month period (Apr/17/2012 - Oct/23/2012)

Intercept 4.628 0.968 2.706 6.523 1.000

fdis −35.816 10.225 −55.932 −15.657 1.000

r 3.128 2.034 −0.833 7.134 1.000

w 2.974 1.046 0.919 5.029 1.000

sigma 9.859 6.839 0.234 20.317 1.003

tau 2.725 1.350 0.264 4.477 1.003

Vertical growth in the second 6-month period (Oct/23/2012 - Apr/8/2013)

Intercept 11.382 2.089 7.298 15.548 1.000

fdis −76.300 22.427 −119.675 −31.527 1.001

r 4.126 4.675 −5.013 13.183 1.001

w 7.172 2.255 2.676 11.596 1.001

sigma 42.489 33.436 0.558 90.406 1.031

tau 5.535 3.188 0.500 9.491 1.028

Vertical growth in the third 6-month period (Apr/8/2013 - Oct/23/2013)

Intercept 6.543 1.801 3.044 10.101 1.001

fdis −24.362 19.107 −61.071 13.423 1.001

r −2.44 3.927 −10.035 5.266 1.001

w 3.81 1.962 −0.086 7.594 1.002

sigma 31.356 21.971 0.59 62.881 1.004

tau 4.499 2.524 0.442 7.844 1.005

Vertical growth in the fourth 6-month period (Oct/23/2013 - May/15/2014)

Intercept 10.451 2.082 6.225 14.243 1.008

fdis 6.078 22.33 −38.528 47.322 1.012

r −7.234 4.596 −15.837 2.173 1.006

w −2.852 2.295 −7.035 1.841 1.007

sigma 33.336 28.316 0.224 77.084 1.012

tau 5.519 2.826 0.635 8.894 1.009

Vertical growth in the fifth 6-month period (May/15/2014 - Dec/24/2014)

Intercept 1.703 2.467 −3.21 6.481 1.002

fdis −4.873 26.497 −56.909 46.138 1.003

r 4.331 5.633 −6.872 15.269 1.006

w 4.789 2.71 −0.49 10.152 1.001

sigma 47.138 36.755 0.834 102.204 1.004

tau 5.983 3.275 0.608 10.072 1.005

aSigma is a parameter of gaussian distribution of vertical growth.
bTau is a parameter of individual differences represented in random effect.
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structure even though these species employ a mixed mating system
(Ng et al., 2016; Lee et al., 2018; Ng C. H. et al., 2020). In the whole
distributional scale, R. curtisii shows only two major distinct genetic
clusters laying on northern major part and on southern tip of Malay
Peninsula possibly due to the relatively larger genetic distinction at
the southern populations (Ng et al., 2024). On the other hand, our
analyzed population is within the range of main cluster of recent
genetic diversity analysis. Although weak genetic differentiation was
detected for the study species in Malay Peninsula, the Fst estimates of
k1 and k3 in the Bayesian clustering analysis indicated large
differentiation from the ancestral admixed population, which was
the case in all studied populations except KLEDA (Figure 1),
contributing to low genetic differentiation between populations.
To date, there is no definitive evidence showing large genetic
differentiation between the ancestral admixed population and the
two clusters. However, a phylogenetic study using nucleotide
variation of the chloroplast genome revealed that two distinct
cpDNA haplogroups existed, differentiating the Malay peninsula
and Borneo populations of R. curtisii, with several closely related
species lying between the two lineages (Kamiya et al., 2012). Further,
a nuclear PgiC phylogeny showed that samples from Malaysia
Peninsula and Borneo were clustered together and were distinct
from other closely related species (Kamiya et al., 2005). The
incongruence between cpDNA and nuclear DNA-based
phylogenies may be caused by organelle capture during historical
hybridization events with closely related species. Currently, natural
hybridization events have been reported between R. crtisii and R.
leprosula especially in the coastal distribution area of Malay
Peninsula (Kenzo et al., 2019; Ng K. K. S. et al., 2020).
Dipterocarp species may include large groups of species that
exchange genes forming syngameon complexes or interfertile
species (Cannon and Lerdau, 2015). The large differentiation of
k1 and k3 clusters from the ancestral admixed population (which is
close to the k2 cluster) may have possibility resulted from historical
interspecific gene exchange between ancestral closely related species
constituting a syngaemon. However, this would not be the result of
current inter-specific hybridization between R. curtisii and R.
leprosula, because the hybrids can be distinguished from the
parent species by several leaf morphological characters, and some
characters of the hybrids resemble R. leprosulamore closely (Kamiya
et al., 2012; Kenzo et al., 2019). None of our seedlings exhibited the
intermediate type of leaf morphology (observation in nursery). On
the other hand, a subspecies has been reported (R. curtisii Dyer ex
King ssp. grandis P. S. Ashton), although this is rare and has been
found only in two limited areas close to the KLEDA population. The
wide distributional ranges of the three clusters, covering most of the
studied populations, may indicate the maintenance of a syngaemon
formed by ancestral genetic differentiation within species and
among closely-related species. Further studies are required to
gain an understanding of the population history and evolution of
R. curtisii.

4.2 Seedling viability in relation to genetic
composition of the parents

Two evolutionary episodes were assumed to explain the effect of
the putative syngameon on seedling fitness. Seedlings with large qdis

were the offspring of parents with very different Qk estimates from
each other. The fdis was designed to express the fact that the k2
cluster was intermediate between the k1 and k3 clusters. For example,
the largeQ1 value for ith mother tree of a seedling is neutralized by a
large Q3 for jth paternal donor of the seedling when estimating fdis.
In other words, a hybrid derived frommating between an individual
with a high likelihood of belonging to the k1 cluster and another with
a high likelihood of belonging to the k3 cluster is assumed to
resemble the k2 cluster showing, with less genetic differentiation
from the genetic make-up of the ancestral admixed population. The
analyses to test the effects on survival showed that the absolute
values of the qdis and fdis estimates are always larger than those of
the other estimates, r, w (Table 3). Comparing qdis and fdis,
deviances of models including qdis were always a little smaller
than the corresponding models with fdis, indicating that the
models with qdis explained survival of seedlings slightly better
than those with fdis. Similarly, the early stages of growth were
affected more by qdis and fdis than r and w, however, this tendency
declined in the later stage of growth (Tables 4, 5). Thus, these
variables indicating genetic differentiation between the parents of
seedlings (qdis and fdis) can provide a sound explanation for the
survival and initial growth of seedlings. This result helps us to
understand the advantages of genetic differentiation, including the
syngameon hypothesis, which may be linked to the maintenance of
high tree species diversity in tropical rainforests. Seed dispersal
limitation is typically associated with a spatially aggregated
distribution pattern in tropical rainforest (Condit et al., 2000),
which prevents tree species from recolonization and facilitates
further aggregation of species complexes with intercrossing-
ability (Cannon and Lerdau, 2015). The proximity of these mixed
offspring could effectively allow them to back-cross, thus increasing
mate choice with congeners and potentially re-establishing the local
population (Baskett and Gomulkiewicz, 2011). This mechanismmay
enhance the fitness of seedlings from mother trees sired by pollen
donors with different genetic backgrounds.

In the mating and seedling establishment processes, inbred
offspring (both selfing and biparental inbreeding) tend to be less
successful due to inbreeding depression during fruit maturation
(Tani et al., 2015) and the early stage of seedling establishment
(Naito et al., 2005); therefore, r contributes less to survival and
growth of seedlings in the subsequent stages of establishment. In the
early stage of seedling development, ca. 40% of seedlings were
derived from mating between parents with a similar probability
of being assigned to clusters with less inbred mating (Figures 3A,B).
These outcrossed seedlings produced by mating between parents
with similar probabilities of being assigned to a particular cluster
exhibited poorer survival throughout the observation period
(Figure 4) and lower growth rates during the first year after
transplantation (Table 4). This selection process can maintain
genetic diversity through effects of overdominance and negative
frequency-dependent selection (Ayala and Campbell, 1974;
Asmussen and Basnayake, 1990). These effects have been noted
as a mechanism to maintain genetic diversity in tropical forest tree
species (Browne and Karubian, 2016; 2018). In natural stands,
genetic diversity and the effects of overdominance and negative
frequency-dependent selection may have positive effects with
respect to escaping pathogens and herbivores of other trees. The
Janzen-Connell hypothesis states that seeds or seedlings occurring at
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high densities or close to adult conspecifics are more vulnerable to
attack from natural enemies such as pathogens and herbivores
(Janzen, 1970; Connell, 1971). If a difference of compatibility
between the enemies and genotypes exists, this may be another
reason to maintain genetic diversity. Our seedings were grown in
river sand in the seed bed and a mixture of river sand and organic
soil in pots, produced by FRIM, so it was impossible to show that
negative frequency dependent selection (represented by higher
fitness of seedlings sired by a father with a different type of
genetic diversity) protects offspring from enemies present on the
mother trees. Therefore, it is very important that, in the future, we
study survival and growth of seedlings in natural stands in relation
to the genotypes of the seedlings and nearby adult trees.

We observed maintenance of strong genetic differentiation of
the clusters in adult trees in the plots, the Semangkok population
and at other levels (Figures 1, 2), which affected fitness of their
seedlings. However, our seedling monitoring was conducted in a
nursery, which can provide an ideal environment, including
controlled light intensity and sufficient water. In natural stands,
many dipterocarp species spend decades or more in the forest
understory as seedlings (Delissio et al., 2002) and their ability to
persist in the face of multiple stresses (e.g., pests, light, water and
nutrient limitation) determines their chances of reaching the
reproductive stage (Comita and Engelbrecht, 2014). Many studies
have shown that drought is a major stress causing mortality of
dipterocarp seedlings (e.g., Turner, 1990; Delissio and Primack,
2003; Bebber et al., 2004). Therefore, survival and growth of
seedlings in relation to qdis and fdis statistics may represent
different consequences under natural conditions. To understand
the maintenance and evolutionary significance of the genetic
differentiation pattern of clustering, the demographic analysis of
natural seedlings with clear genetic structure is required. El Niño
causes drought in Southeast Asian tropical forests and a greater
possibility of drought is projected as a result of climate change in the
near future (Amnuaylojaroen and Chanvichit, 2019; Rifai et al.,
2019); this has the potential to cause failure of seedling recruitment

and adversely affect seedling growth (Curran et al., 1999; Bebber
et al., 2004; Condit et al., 2004; Itoh et al., 2012). Therefore,
understanding adaptation of the species under various
conditions, such as in managed and natural stands, is essential
for conservation of tropical forests, especially in relation to
climate change.
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