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Despite high-throughput and large-scale phenotyping becoming easier,
interpretation of such data in cattle production remains challenging due to
the complex and highly correlated nature of many traits. Underlying biological
traits (UBT) of economic importance are defined by a subset of easy-to-measure
traits, leading to challenges in making appropriate selection decisions on them.
Research on UBT in beef cattle is limited. In this study, the phenotypic data of
admixed beef heifers (n = 336) for reproductive, body conformation, and carcass-
related traits (traits, t = 35) were used to identify latent variables from factor
analysis (FA) that can be characterized as UBT. Given sample size constraints for
carcass (n = 161) and other body size-related traits (n = 336), two models were
explored. In Model 1, all individual traits were considered (n = 161), while in Model
2, the dataset was split into body size (n = 336) and carcass (n = 161) traits to
maximize available heifers per dataset. A combination of FA and Bayesian network
(BN) learning was adopted to develop UBT and infer BN structure for subsequent
analyses. All heifers (n = 336) were genotyped using GeneSeek Genomic Profiler
150K for Beef Cattle. Following quality checks, 117,373 autosomal SNP markers
were retained and used for genomic estimated breeding values (gEBV) in BN
learning steps. Using exploratory and confirmatory FA, Body Size (BS) and Body
Composition (BC) were identified as UBT for Model 1, explaining 14 phenotypic
traits (t = 14). For Model 2, BS, Ovary Size, and Yield Grade (YG) were identified as
UBT, explaining 12 phenotypic traits (t = 12). When using gEBV, the causal network
structure inferred showed BS contributed to BC in Model 1 and to Ovary Size in
Model 2. Therefore, a structure equation-based approach should be used in
subsequent modeling for these traits. From Model 2, YG should be modeled
univariately. This study is the first to identify UBT in growing admixed heifers using
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body size, conformation, and carcass traits. We also identified that BC and YG did
not explain intra-muscular fat and body density, indicating these two traits should
also be modeled univariately.

KEYWORDS

Bayesian network, latent phenotypes, multi-trait modeling, factor analytic models, heifer
development, phenomics

1 Introduction

Development of high throughput genotyping technologies
paved the path for phenome to genome translation, but
challenges in obtaining economically important phenotypes are
still present (Yu et al., 2020b). Advanced phenotyping
technologies present opportunities to obtain these phenotypes,
but they also introduce challenges in animal selection given the
amount of data collected and interpreted in terms of related
phenotypes (Silva et al., 2021). Single trait-based estimation of
breeding values (EBV) either through pedigree records or
estimation of genomic EBV (gEBV) through genome-wide
studies are well-established (Guo et al., 2014). However, due to
increased phenotypic data complexity, multi-trait genome-wide
modeling using gEBV may be necessary to handle associations
considering interrelated traits (Henderson and Quaas, 1976; Guo
et al., 2014). The multi-trait EBV approach, as explained by
Henderson and Quaas (1976), treats each trait as a separate
measure in the selection model. This can be problematic when
variables explained by the same underlying phenotypic trait are
included, potentially causing the model to overfit. Due to this, not
all variables can be included as a separate measure in the model,
thereby demanding a different strategy to handle their
correlated nature.

The concept of an underlying biological trait (UBT), a hidden
trait representing a set of interrelated traits, is becoming more
frequent due to the development of robust interrelated
phenotypic measures captured through technological
advancement (Mccormick et al., 2016). The UBT are termed as a
combined influence of observed phenotypic traits but there is no real
structure to find out the contributing phenotypic traits making these
traits biologically meaningful (Olasege et al., 2019). For example, a
recent approach to handling interrelated linear traits in Holstein
cattle has used 9-point scales for traits such as body conformation,
foot and leg conformation, udder conformation, dairy capacity, and
total score (Čítek et al., 2022) in multi-trait modeling of these
composite traits (Lu et al., 2018). Even so, these are subjective
scales captured holistically rather than by individual trait attributes,
therefore the understanding of their biological correlation can be
influenced strongly by the evaluator. Therefore, this approach is
prone to error and likely inconsistent in application across
populations based on evaluator experience. To minimize
subjectivity and adopt a better data-driven approach to explain
the structure of interrelated underlying phenotypic traits, factor
analysis can be a way forward (Campos et al., 2012; Olasege et al.,
2019). Factor analysis is a computationally efficient data-driven
approach to investigate possible latent variables, leading to the
development of UBT when individual and correlated traits are
available (Olasege et al., 2019), but its application in livestock,

especially cattle, remains limited (Yu et al., 2020a; Pegolo
et al., 2021).

Factor analysis initially was developed by psychologists to
identify interrelated measurements (Vincent, 1953) and later for
data reduction (Tavakol and Wetzel, 2020). This approach has also
been adopted in other fields such as plant sciences for improved
selection decisions. Factor analysis efficiently explains correlations
among interrelated traits, leading to biologically and economically
relevant UBT (Toker and Ilhan Cagirgan, 2004). Factor analysis was
also adopted for improved genome-wide association of complex
traits in dairy (Macciotta et al., 2012; Lurdes Kern et al., 2014) and
dual-purpose cattle breeds in China (Xu et al., 2022). Exploratory
factor analysis (EFA), as introduced by Hartley (1954), identifies a
method to learn about the pattern present in interrelated traits,
whereas confirmatory factor analysis (CFA) assumes there is
previous knowledge of possible UBT. It is rare to start directly
with CFA in most cases, therefore EFA is used initially.

To ensure the appropriate application of UBT in genome-wide
analysis or genetic evaluation models, a joint application of factor
analysis and Bayesian network learning (BNL) approaches was
recently demonstrated in wheat yield and pathophysiology data
(Momen et al., 2021), and agronomic traits data in rice (Yu et al.,
2019). Exploratory factor analysis, previously known as inferential
factor analysis, is used to infer underlying hidden latent variables
and demands no previous knowledge of variable structure (Haig,
2018). The EFA is then followed by CFA to refine the variable
structure provided by EFA and to develop values of the UBT for
subsequent analyses. The CFA output is followed by BNL to infer the
potential causal network structure(s) among latent traits (Momen
et al., 2019; Yu et al., 2020a). This approach has been adopted in
plant models such as rice (Yu et al., 2019) and wheat (Momen et al.,
2021), in dairy cattle for genome-wide association of milk protein
fraction (Pegolo et al., 2021), and in beef cattle to compare
temperament scoring methods (Yu et al., 2020a). Even so, further
exploration of this approach is still warranted, especially by
adjusting it with genomic data in cattle. The directed trait
network developed through BNL is adjusted based on genomic
breeding values that are transformed to be uncorrelated to avoid
false network structure, the primary assumption of a Bayesian
network (Töpner et al., 2017; Yu et al., 2019).

A unique research population of admixed beef cattle available
through the North Dakota State University (NDSU) Dickinson
Research Extension Center (DREC) provides an opportunity to
explore the use of EFA and BNL on a combined dataset of
reproductive, body conformation, and carcass composition
measures collected at yearling age. The interrelated nature of
these measures is unclear and not reported previously; therefore,
this dataset provides an opportunity to explore the latent structures
and networks present in growing admixed beef heifers to better
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design genome-wide modelling. Objectives of this study are 1) to
identify possible latent traits underlying reproductive, body
conformation, and carcass composition measures collected from
admixed beef heifers using exploratory and confirmatory factor
analysis and 2) to identify interrelations among these latent
traits by including the genomic breeding values in the BNL
structure. The latent traits identified are expected to explain

most of the variation of the associated traits, developed UBT,
and identify their interrelationship for subsequent genome-wide
studies modelling.

2 Methods

All procedures involving data collection were approved by the
NDSU Institutional Animal Care and Use Committee (IACUC
reference No. A15062 and A18065). Data used in this study were
sourced from yearling admixed beef heifers (n = 336, average age of
12.71 ± 0.51 months) produced at NDSUDREC and who completed
a feed trial at the NDSU Beef Cattle Research Complex (BCRC). This
population was previously described by Bhowmik et al. (2023),
where heifers considered for this study are daughters of the
admixed base herd born from 2014 to 2017 (n = 254) along with
their subsequent daughters born in 2016 and 2017 (n = 81). Based on
pedigree and following Bhowmik et al. (2023), primary breed types
of heifers considered in this study included influenced (I, ≥50%) of
American Aberdeen (ADI; n = 59), Angus (ANI, black Angus; n =
42), Red Angus (ARI; n = 136), Gelbvieh (GVI; n = 15), Limousin
(LMI; n = 4), Shorthorn (SHI; n = 10), and Simmental (SMI; n = 35),
as well as true first crosses of available purebreds (F1; n = 33). Final
sample sizes overall and by primary breed type depended on traits
considered and available records.

2.1 Phenotypic data pre-processing

Phenotypic measurements were recorded to explore UBT for
reproductive performance, body conformation, and carcass
composition. The heifer calves included in the data collection
were born and raised at the NDSU DREC ranch near Manning,
ND. The animals underwent a 105-day feeding period at the NDSU
BCRC in Fargo, ND before and during their first breeding season.
The data available for heifers were collected year-wise as 89, 73, 100,
and 72 heifers from 2015 to 2018, respectively. All reproductive tract
measurements (see Figure 1) were collected from all heifers at the
start of the feeding period (n = 336 heifers) according to the protocol
described by Cushman et al. (2009), while body conformation traits
characterizing body size were measured at the start and end of the
feeding period using a measuring tape or ultrasound equipment. The
data associated with an average daily gain were calculated by taking
differences in initial and final weight divided by the number of days
in the trial (Bhowmik et al., 2023). A total of 161 heifers had
ultrasound carcass measurements (see Figure 1) specifically from
2014 to 2015 born heifers. The ultrasound measurements were
recorded following Wall et al. (2004) using an Aloka500V
equipped with a 3.5-MHz linear array transducer (Corometrics
Medical Systems Inc., Wallingford, CT). In addition to multiple
phenotypic traits per heifer, most traits also had repeated
measurements and averages of repeated measures available (see
Figure 1). Considerations were placed with how repeated measures
were used so that each timeframe across traits were aligned
appropriately and modeled separately of other timeframes to
avoid confounding data series. Due to this, it was found that
body size measures in 2014-born heifers had errors associated
with final feeding period measures that could not be resolved,

FIGURE 1
Phenotypic measurements (direct and calculated) of yearling
beef heifers available for use in exploratory factor analysis. *Initial, final,
average, and daily gain measurements were recorded for these
parameters but only initial measurements were used for the rest
of the analyses; 1Radius at end girth = end girth/2π; 2Radius in the
middle =mid-girth/2π; 3Volume (L) = ((π × body length × (radius at end
girth ∧2 + (2 × radius in themiddle ∧2)))/3)/1000; 4Density (kg/L) = body
weight/volume (L).
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therefore only initial measures were used for further analyses for
these heifers relative to body size and carcass traits as well.

The phenotypic data recorded were then filtered for missing
values and outliers, where data points were considered outliers based
on limits described by Tukey’s outlier rule (Iglewicz, 2011). After
filtering for outliers and missing values, traits with correlation
(Pearson correlation, r2 ≥ 0.85) and sample adequacy (measure of
sample adequacy, MSA <0.5) were removed to ensure variables used
in EFA would provide the best outcome. Filtering traits prioritized
measures captured on the animal over calculated measures given the
applicability and feasibility of producer implementation while also
following recommendations by Akoglu (2018).

2.2 Exploratory factor analysis (EFA)

Following approaches established by Momen et al. (2021) for
EFA, the R v4.1.3 package psych v2.3.3 (Revelle, 2017) was used to
identify the hidden latent factors as complex underlying biological
phenotypes, accommodating the effect of multiple traits (see
Figure 1). Sample adequacy is assessed by the Kaiser-Meyer-
Olkin criterion, which ranges from 0 to 1. Adequate datasets
should fall between 0.5 and 1 to ensure factor analysis can
proceed (Kaiser, 1958), therefore a threshold of 0.5 was used to
measure sample adequacy (MSA) in this study. The factor retention
decision for EFA procedures was made based on parallel analysis
using 1,000 simulations per group of traits analyzed (Horn, 1965;
Hayton et al., 2004).

2.3 Confirmatory factor analysis (CFA) and
bayesian network learning (BNL)

The downstream confirmatory factor analysis (CFA) was
performed based on the EFA latent structure for each latent trait
using blavaan v0.4-7 (Merkle and Rosseel, 2015) package in R with
priors set to default values. The CFA approach was adopted to refine
the variable structure and to further remove the cross-loading of
latent factors provided by EFA. The Markov chain Monte Carlo
(MCMC) sampling method employed in blavaan was set to
10,000 iterations, where 5,000 samples were retained in all given
analyses after discarding the first 5,000 as burn-in samples to meet
the convergence criteria. The convergence criteria of the model were
diagnosed by calculating posterior standard deviations of the model,
where a value at or close to 1 indicated convergence was achieved
(Gelman and Rubin, 1992). The coefficient of determination (R2) for
each trait in the model was also estimated to see how much these
values align with factor loading criteria, defining the latent variable
structure for underlying biological phenotypes. The posterior mean
values of the model were then assigned to UBT as a new phenotype
score for BNL.

The Bayesian network is a directed graphical representation of
conditional independence of random variables (Heckerman et al.,
1995). In this study, we applied a score-based algorithm, Tabu, and a
hybrid algorithm, Max-Min Hill Climbing, to identify underlying
latent traits’ network at the genetic level using the bnlearn v4.8.1 R
package (Scutari and Denis, 2021). The latent variables produced
from CFA in both models were then processed in Bayesian network

learning algorithms to identify latent variable interrelationships per
model. The network directional uncertainty and strength were
measured through bootstrapping (Scutari and Denis, 2021).

2.4 Genomic data processing to adjust
BNL structure

The BNL structure inferred based on estimated latent traits may
not be accurate and requires adjustments for the gEBV to remove the
confounding effects within traits and to model them either through
univariate, multivariate, or structure equation-based genome-wide
association analysis (Töpner et al., 2017; Yu et al., 2019). To get
the genotypic relationship matrix, the initial population of heifers (n =
336) was genotyped using the GeneSeek Genomic Profiler 150K for
Beef Cattle (Neogen GeneSeek, Inc., Lincoln, NE) and quality checked
(QC) as described by Bhowmik et al. (2023). Briefly, genotyping
resulted in 138,893 SNP markers, but only 132,368 autosomal SNP
markers were further analyzed for this study. The QC criteria of minor
allele frequency (MAF) threshold of 5%, call rate of markersmore than
95%, and an exact Hardy-Weinberg equilibrium (P < 0.0001)
(Wigginton et al., 2005) resulted in 117,373 SNP markers. All these
QC analyses were conducted through R v4.1.3 and markers were
retained for further analysis. The relationship matrix generated using
AGHmatrix v2.1.4 (Amadeu et al., 2023) package of Rwas then used in
multi-trait mixed model as random effect along with fixed effects of
data collection year, dam-age, breed-influenced group, and generation
of heifers to estimate gEBV. The generated gEBVwere further adjusted
to remove the sample dependencies and then used as adjusted input
for the BNL network structure (Töpner et al., 2017; Momen
et al., 2021).

3 Results

3.1 Data pre-processing

The phenotypic data in this study were processed into two
models given unsupervised (Model 1) and semi-supervised (Model
2) data-driven approaches. For Model 1, heifer data (n = 336, t = 35)
were pre-processed for missing data and outliers given Tukey’s
formula (Iglewicz, 2011), leaving us with 159 heifers (t = 35). After
filtering for outliers and missing values, the highly correlated traits
(Pearson correlation, r2 ≥ 0.85; see Supplementary Tables S1–S3)
were removed. Additionally, traits whose effects were explained in
calculated measures like AFC (sum of all small, medium, large, and
extra-large follicular count), LOD (average of left ovarian length and
height), and ROD (average of right ovarian length and height),
density (covers VOL effect) were also excluded to have enough
sample adequacy as explained later in exploratory factor analyses.
For Model 2, after filtering, the reproductive and body size datasets
were left with a sample size of 298 heifers, while for carcass
composition there were 161 heifers remaining. Considering this,
two models were run, Model 1 with reproductive, size, and carcass
data (n = 159, t = 16, overall MSA = 0.63) and Model 2 with the split
dataset (i.e., reproductive and body conformation-only data, n =
298, t = 11, overall MSA = 0.57; and carcass composition data, n =
161, t = 5, overall MSA = 0.59).
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3.2 Exploratory factor analysis (EFA)

For Model 1, factor loading values are shown in Figure 2.
Some variables, such as ribeye area and body weight,
contributed to multiple factors: ribeye area to factors 1 and
4, and body weight to factors 1 and 2. The latent variable

structure was refined by a factor diagram, restricting the
assignment of variables to the factor with the highest loading
values when present in multiple latent variables (Figure 3),
efficiently handling cross-loading. The EFA approach for
Model 1 identified two latent variables of interest, which
included body size (ML1 as BS; Figure 3) and body

FIGURE 2
Heatmap of factor loading scores for Model 1 (all adequate variables) identifying latent variables (ML 1–4) from exploratory factor analysis.
Abbreviations: MG, mid girth; HG, heart girth; FG, flank girth; BL, body length; HH, hip height, BWT, body weight; HW, hip width; DENS, body density; MF,
intramuscular fat; REA, rib eye area; RMP, rump fat; UHD, uterine horn diameter; LOD, left ovary diameter; AFC, antral follicular count; YG, yield grade; and
ROD, right ovary diameter.

FIGURE 3
Factor diagram for Model 1 (all adequate variables) when assigning traits to their highest loading latent variable (ML).
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composition (ML4 as BC; Figure 3). These two latent variables
were used in subsequent steps. The intramuscular fat (IMF) and
body density (DENS) variables were not associated with either
of these two latent variables when the EFA network was refined
through CFA.

InModel 2, the first EFA was performed for a combine dataset of
body conformation and ovarian traits. The factor loading values for
the first EFA of Model 2 are shown in Figure 4. As with Model 1,
some variables had sufficient loading scores for more than one
variable (i.e., body length was common to latent factors 1, 2, and 3,

FIGURE 4
Heatmap of factor loading scores for Model 2 combine data for body conformation and ovarian traits identifying latent variables (ML 1–5) from
exploratory factor analysis. Abbreviations: DENS, body density; AFC, antral follicular count; UHD, uterine horn diameter; LOD, left ovary diameter; ROD,
right ovary diameter; BL, body length; MG, mid girth; HW, hip width; HG, heart girth; BWT, body weight; and HH, hip height.

FIGURE 5
Factor diagram for Model 2 (combined body conformation and ovary traits dataset) when assigning traits to their highest loading latent variable (ML).
Abbreviations: BWT, body weight; MG,mid girth; HG, heart girth; HH, hip height; BL, body length; HW, hipwidth; DENS, body density; AFC, antral follicular
count; ROD, right ovary diameter; LOD, left ovary diameter; and UHD, uterine horn diameter.
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and heart girth was common to factors 1 and 5). The factor diagram
shown in Figure 5, displays the latent variable with each variable’s
highest loading score. Proceeding with the carcass-only dataset of
Model 2, Figure 6 shows the factor loading scores from the second
EFA, and the factor diagram of latent variables with each
variable’s highest loading score is shown in Figure 7. The EFA
approach for Model 2 identified three latent variables of interest,
which included body size (ML1 as BS; Figure 5), ovary size

(ML4 as OS; Figure 5), and yield grade (ML1 as YG;
Figure 7). These three latent variables were used in subsequent
steps for Model 2. Splitting the datasets resulted in four variables
that were not associated with any of the latent variables when the
EFA network was refined through CFA. Those variables included
DENS and IMF, similar to Model 1, as well as uterine horn
diameter (UHD) and ribeye area (REA). Both UHD and REA
were part of the BC latent variable of Model 1, indicating that

FIGURE 6
Heatmap of factor loading scores for Model 2 carcass only dataset identifying latent variables (ML 1–2) from exploratory factor analysis.
Abbreviations: IMF, intramuscular fat; YG, yield grade; RIB, rib fat; REA, ribeye area; and RMP, rump fat.

FIGURE 7
Factor diagram for Model 2 (carcass only dataset) when assigning traits to their highest loading latent variable (ML). Abbreviations: IMF, intramuscular
fat; YG, yield grade; RIB, rib fat; REA, ribeye area; and RMP, rump fat.
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splitting the dataset reduced the ability to show their relationship
to the YG latent variable in this model.

3.3 Confirmatory factor analysis (CFA)

Table 1 demonstrates the two identified latent variables inModel
1 after refining the network provided by EFA by removing cross-
loadings and explaining the effect of 14 phenotypic variables (t = 14)

with an extent of R2 ranging from 0.488 to 0.830 for BS and 0.036 to
0.343 for BC. Similarly, Table 2 demonstrates that the three latent
variables identified for Model 2 explained the effect for 12 observed
phenotypic parameters (variables, t = 12) after refining the EFA
network. The extent of R2 ranged from 0.122 to 0.981 for OS,
0.385 to 0.860 for BS, and 0.197 to 0.998 for YG UBT developed in
Model 2 of this study. The potential scale reduction factor (PSRF)
value of approximately 1 for all model variables proves convergence
was met. The extent of R2 indicates how strongly each parameter has

TABLE 1 Factor loading values for developed underlying biological traits of Model 1 through confirmatory factor analysis and validated by their coefficient
of determination (R2).

Latent traits Phenotypic parameters Loadings PSDa R2

Body Size Body length 0.699 0.041 0.488

Body weight 0.901 0.020 0.812

Flank girth 0.828 0.029 0.686

Heart girth 0.799 0.032 0.639

Hip height 0.704 0.044 0.495

Hip width 0.727 0.039 0.529

Mid girth 0.911 0.018 0.830

Body Composition Antral follicle count 0.524 0.087 0.275

Left ovary diameter 0.561 0.083 0.314

Ribeye area 0.560 0.083 0.313

Right ovary diameter 0.513 0.088 0.263

Rump fat 0.189 0.102 0.036

Uterine horn diameter 0.586 0.081 0.343

Yield grade 0.212 0.102 0.045

aPSD, represents the posterior standard deviations.

TABLE 2 Factor loading values for developed underlying biological traits of Model 2 through confirmatory factor analysis and validated by their coefficient
of determination (R2).

Latent traits Phenotypic paramters Loadings PSDa R2

Ovary Size Antral follicle count 0.990 0.016 0.981

Left Ovary Diameter 0.803 0.051 0.125

Right Ovary Diameter 0.879 0.052 0.122

Body Size Body Length 0.720 0.030 0.519

Body Weight 0.803 0.023 0.644

Heart Girth 0.879 0.016 0.772

Hip Height 0.621 0.038 0.385

Hip Width 0.744 0.028 0.553

Mid Girth 0.928 0.012 0.860

Yield Grade Rib Fat 0.999 0.001 0.998

Rump Fat 0.444 0.064 0.197

Yield grade 0.999 0.001 0.998

aPSD, represents the posterior standard deviations.
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contributed to the developed UBT. The R2 statistics of models also
aligned with our factor loading estimates further validating the latent
variable structure for underlying biological phenotypes.

3.4 Bayesian network learning analysis

The latent variables produced fromCFA in bothmodels were then
processed through Bayesian network learning algorithms to identify
latent variable interrelationships per model. The two algorithms used,
Tabu and Max-Min Hill Climbing, showed similar results (Figure 8).
The BS and BC traits from Model 1 did not contribute to each other.
Similarly, BS from Model 2 did not contribute to OS. Since carcass

traits were modeled separately of size and reproductive attributes and
only yielded one latent variable, there were no Bayesian networks
established for the carcass latent variable identified as YG in Model 2.
When the BNL structure was run using the gEBV, BS contributed to
BC with a directional signal of 0.5 (minimum threshold) in Model 1,
and BS contributed to OS with a directional signal of 0.5 (minimum
threshold) for Model 2 (Figure 9).

4 Discussion

Two approaches (Model 1 and Model 2) in this study
identified 2 and 3 latent variables, respectively, summarizing

FIGURE 8
Bayesian networks learned from (A) Tabu search algorithm and (B)Max-Min Hill-Climbing algorithm to explain interrelationships among composite
phenotypes from Models 1 and 2.

FIGURE 9
Genotypically adjusted Bayesian networks learned from (A) Tabu search algorithm and (B) Max-Min Hill-Climbing algorithm to explain corrected
interrelationships among composite phenotypes from Models 1 and 2.

Frontiers in Genetics frontiersin.org09

Anas et al. 10.3389/fgene.2025.1551967

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1551967


BS, BC, OS and YG as attributes of growth and size in admixed
beef heifers. Research and advances in technology have led to a
lot of potential characteristics that producers can capture in
animals (Koltes et al., 2019). In this study, body size, body
composition, and ovary size latent variables relate to one
overarching phenotype–size. Given these size attributes and
R2 from CFA, producers can capture most of the size
variation by taking body weight and girth measures into
account. Girth measures have not been a trait collected by
producers, but body weight measures have been encouraged
in cattle for many years (Cundiff et al., 2018). Among body size-
related traits, body density stood alone from latent traits in both
models, suggesting that it should be modeled through univariate
genome-wide analysis considering its significance as an
alternative to body condition score (Li et al., 2022). For
reproductive efficiency, AFC is found as a measure of
dependency related to size, specifically considering ovary
characteristics from Model 2 as also implied earlier
(Cushman et al., 2009). Considering the consumer aspects
and market demand for the beef production system, beef is
the end product and its post-pandemic demands are changing as
well (Cowley, 2021). Producers can rely on the overall yield
grade as an important contributing parameter to carcass
characteristics amidst the production pressures to meet
market needs. On the other hand, intramuscular fat (IMF)
stood alone irrespective of the model approach, indicating
this trait should be another parameter to consider along with
yield grade for carcass attributes. Although there are traits
producers could or have feasibly captured on their animals,
this study does show that additional phenotypes influence these
latent variables and have the potential to impact genome-wide
analysis outcomes. Therefore, exact phenotypes to recommend
to producers for phenotypic capture must come after genome-
wide analysis has been conducted, which will be reported in the
next paper.

Advancement in handling high-throughput phenotypic data in
beef production requires the adaptation of methodologies like factor
analysis to handle messy and highly correlated datasets (Koltes et al.,
2019; Yu et al., 2020a). The interplay of factor analysis and BNL in
this study demonstrated the structure of UBT and how these traits
needed to be structured in genome-wide analysis, including which
original variables should be focused on univariately without UBT.
The BNL structure based on phenotypic data alone was not as
accurate due to sample size and lack of genomic relationship
information. When using gEBV, the BNL structure changed for
both Model 1 and 2, providing enough information to identify the
two latent variables’ relationship for an enhanced multi-trait
genome-wide approach even with a smaller sample size.
Therefore, it is better to confirm the BNL structure after
including genotypic data before conducting association analyses
(Töpner et al., 2017).

Data pre-filtering for factor analysis sample adequacy is also
very important in this approach. Priority in this study was placed
on measures captured directly on the animal over calculated
measures to ensure feasibility for producer implementation.
Outcomes of this study could have been different if calculated
measures were used instead. Even so, practicality of phenotypic
generation should always drive research in production

agriculture, which is why this study did not prioritize
calculated measures over direct animal measures.
Furthermore, we applied a high correlation threshold (r2 ≥
0.85) as part of the filtering process to cope with confounding
traits while still allowing traits the producer could capture to be
included. This changed which variables were present between
Model 1 and Model 2, although many were the same (t = 15).
Furthermore, Model 1 approach was completely data-driven
with all possible variables present through the filtering
process, whereas Model 2 was semi-subjective given the
separation of carcass characteristics from other attributes to
account for the sample size difference. Through this, it
became evident that a possible relationship was lost in Model
2 compared to Model 1. Therefore, careful planning and pre-
processing of data in future applications of factor analysis
research should be present.
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