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Introduction: The relationship between diabetic retinopathy (DR) and coronary
artery disease (CHD) has been established as a reliable predictor. However, the
underlying mechanisms linking these two conditions remain poorly understood.
Identifying common key genes could provide new therapeutic targets for
both diseases.

Methods: Public databases were used to compile training and validation datasets
for DR and CHD. Machine learning algorithms and expression validation were
employed to identify these key genes. To investigate immune cell differences,
single-sample gene set enrichment analysis (ssGSEA) and the Wilcoxon test were
applied. Spearman correlation analysis further explored the relationship between
key genes and immune cell variations. Additionally, potential therapeutic drugs
targeting these key genes were identified and a key gene–drug network was
constructed. The role of the key genes in the pathogenesis of DR and CHD was
further examined through reverse transcription-quantitative polymerase chain
reaction (RT-qPCR).

Results: Consistent expression trends observed across datasets (GSE221521,
GSE113079, GSE189005, GSE42148) led to the identification of HIRIP3 and
ZNF416 as key genes. In GSE221521, HIRIP3 was positively correlated with
CD56 bright natural killer cells (cor = 0.329, P < 0.001) and type 1T helper cells
(cor=0.327, P<0.001),whileZNF416 showed significant correlationswithCD4Tcell
activation (cor = 0.340, P < 0.001) and type 1T helper cells (cor = 0.273, P < 0.05).
Moreover, 82 transcription factors (TFs) were predicted, including SP3. Binding free
energy calculations for key genes and potential drugs suggested stable binding
conformations. RT-qPCR results revealed elevated expression of both HIRIP3 and
ZNF416 in the control group compared to the DR with CHD (DRwCHD) group, with
only ZNF416 showing significant differences between the groups (p < 0.05).

Discussion: These findings highlight HIRIP3 and ZNF416 as crucial genes in DR
and CHD detection, providing a foundation for identifying novel therapeutic
targets for both diseases.
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1 Introduction

Diabetic retinopathy (DR) represents a major complication of
diabetes mellitus, posing substantial risks to both ocular health and
overall wellbeing (Liu and Wu, 2021). As a leading global health
concern, DR affects millions of individuals across the world (Tan
and Wong, 2022). The pathogenesis of DR is predominantly driven
by chronic hyperglycemia, which compromises the blood-retinal
barrier’s integrity (Lin et al., 2021). This disruption results in leakage
from the central retinal artery, ciliary vessels, and deeper retinal
structures, leading to ischemic changes in the peripheral retina (Lin
et al., 2021). In its advanced stages, DR can result in significant
vision impairment, positioning it as one of the principal causes of
blindness, especially among the aging population (Lin et al., 2021).
Despite progress in clinical treatments, therapeutic options for DR
remain limited by challenges such as low drug solubility, poor retinal
permeability, potential toxicity to surrounding tissues, and rapid
enzymatic degradation, leading to shortened therapeutic efficacy
(Liu and Wu, 2021). As such, identifying reliable diagnostic genes
linked to DR is critical for early intervention and prevention,
offering potential to improve treatment strategies and reduce the
societal burden of this debilitating disease.

Coronary heart disease (CHD) is a leading global health threat,
contributing to high rates of morbidity and mortality (Shaya et al.,
2022). A chronic immunoinflammatory and fibrotic condition,
CHD is primarily driven by lipid accumulation and shaped by
complex interactions of genetic, environmental, and lifestyle
factors (Shaya et al., 2022). Despite significant advancements in
surgical and pharmacological treatments, survival rates have
improved but the post-myocardial infarction landscape is still
fraught with complications and a marked decline in quality of
life (Schwartz et al., 2018). Current interventions mainly involve
pharmacotherapy and surgical revascularization. Although timely
reperfusion and thrombolysis can alleviate adverse ventricular
remodeling, these treatments do not fully restore myocardial
structure, focusing more on symptom management rather than
complete recovery (Chepeleva, 2023). Emerging evidence
indicates that the presence of DR increases the risk of CHD, with
patients with DR showing greater susceptibility to myocardial
perfusion defects, diminished coronary flow reserve, and lower
coronary collateral scores (Cheung et al., 2007).

Evidence indicates that DR not only affects visual function but
may also negatively impact cardiovascular health. Multiple studies
have demonstrated a significant association between DR and CHD.
Specifically, diabetic patients with DR exhibit higher susceptibility to
CHD development, potentially mediated through systemic

inflammatory responses and endothelial dysfunction caused by
microvascular damage (Zhang et al., 2024; Khazai et al., 2021). For
instance, research revealed that type 2 diabetes patients with DR had
significantly elevated CHD risk, even after adjusting for other known
risk factors (Goldney et al., 2024). Mechanistic analyses suggest DR
influences CHD progression through multiple pathways. First, DR
serves as a biomarker for predicting macrovascular complications like
CHD in diabetic patients. Second, both conditions share common risk
factors such as hypertension and hypercholesterolemia, which
exacerbate microvascular and macrovascular damage (Tanaka
et al., 2021; Lin et al., 2024). In clinical practice, comprehensive
evaluation of diabetic patients with DR is crucial for early
identification of potential CHD risks and timely intervention.
Further prospective studies are warranted to elucidate the intricate
relationship between DR and CHD, aiming to develop more effective
management strategies for this patient population.

This study utilized public databases and applied machine learning
algorithms coupled with expression validation to identify shared key
genes associated with bothDR andCHD.Gene set enrichment analysis
(GSEA) and gene set variation analysis (GSVA) were employed to
explore the functional roles of these key genes, while immune
infiltration analysis assessed their impact on immune responses
within the context of both diseases. Additionally, regulatory
networks were constructed to elucidate the molecular mechanisms
underlying these key genes, and drug prediction models were
developed to offer new clinical insights for the diagnosis and
treatment of DR and CHD. The findings of this research
underscore the interconnected pathways between these two diseases,
providing a foundation for more targeted therapeutic strategies and,
ultimately, improving patient outcomes in clinical practice.

2 Materials and methods

2.1 Acquisition of datasets

RNA sequencing data for this study were sourced from the Gene
Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.
gov/geo/), encompassing training set 1 (GSE221521, sequencing
platform: GPL24676), training set 2 (GSE113079, sequencing
platform: GPL20115), validation set 1 (GSE189005, sequencing
platform: GPL23126), and validation set 2 (GSE42148,
sequencing platform: GPL13607). The GSE221521 dataset
included 50 control blood samples and 69 blood samples from
patients with DR, while GSE189005 contained 9 control blood
samples and 10 blood samples from patients with DR. The
GSE113079 dataset comprised 48 control peripheral blood
mononuclear cell (PBMC) samples and 93 PBMC samples from
patients with CHD. The GSE42148 dataset included 11 control
blood samples and 13 blood samples from patients with CHD.

2.2 Identification of potential
candidate genes

To identify differentially expressed genes 1 (DEGs1), DESeq2 (v
1.38.0) (Badia-Bringué et al., 2024) was used to analyze GSE221521,
resulting in the identification of DEGs1. The limma (v 3.54.0)

Abbreviations: DR, Diabetic retinopathy; DEGs, Differentially expressed
genes; SVM-RFE, Support vector machine recursive feature elimination; FC,
Fold change; LASSO, Least absolute shrinkage and selection operator;
Laryngeal cancer; RT-qPCR, Reverse transcription-quantitative polymerase
chain reaction; Principal component analysis; GEO, Gene expression
omnibus; GO, Gene ontology; KEGG, Kyoto encyclopedia of genes and
genomes; AUC, Area under curve; BP, Biological process; MF, Molecular
function; CC, Cellular component; ROC, Receiver operating characteristic;
ssGSEA, Single-sample gene set enrichment analysis; TFs, Transcription
factors; GSVA, Gene set variation analysis; CHD, Coronary heart disease;
PCGs, Potential candidate genes; mRNA, Messenger RNA; PPI, Protein-
protein interaction.
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package (Ritchie et al., 2015) was then applied to GSE113079 to
detect DEGs2 (|log2fold change (log2FC)| > 0.5, adj.P.Val < 0.05)
(Wang et al., 2022). A volcano plot for the top 15 DEGs with the
greatest variation was generated using the ggplot2 (v 3.4.4) package
(Aran et al., 2017), while a heatmap of the top 15 DEGs was
visualized with ComplexHeatmap (v 2.14.0) (Gu and
Hübschmann, 2022).

Subsequently, upregulated genes from DEGs1 and DEGs2 were
intersected to form “intersecting gene 1,” and downregulated genes
were intersected to form “intersecting gene 2.” These two sets were
then combined to identify a set of potential candidate genes (PCGs)
for further analysis. A Venn diagram, visualized using the
VennDiagram (v 1.7.3) package (Zhou T. et al., 2023), was
created to display the PCGs.

2.3 Enrichment and protein-protein
interaction (PPI) network analysis of PCGs

To explore the cellular functions and pathways of the PCGs,
Gene Ontology (GO) analysis was performed using ClusterProfiler
(v 4.7.1.003) (Huang et al., 2024) and the human gene annotation
package (org.Hs.eg.db) (v 3.16.0). A PPI network for the PCGs was
constructed using Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING) (https://string-db.org) with a confidence score
of 0.15, and network visualization was carried out using Cytoscape
(v 3.8.2).

2.4 Access to key genes

To identify candidate genes, the area under the curve (AUC)
values of PCGs were calculated using the pROC (v 1.18.0) package
(Tsukita et al., 2023) in the GSE221521 and GSE113079 datasets.
Genes with AUC values greater than 0.7 in both datasets were
intersected, and the resulting genes were considered candidate genes
for further analysis.

Subsequently, random forest classification models were
developed using the randomForest (v 4.7-1.1) package (Cao et al.,
2024) in both datasets to compute the Gini coefficient for each
candidate gene. The Gini coefficient of these genes was compared,
and the top 20 most important genes from GSE221521 and
GSE113079 were selected. An intersection of the top 20 genes
from both datasets revealed the hub genes. These hub genes were
further analyzed using the support vector machines-recursive
feature elimination (SVM-RFE) algorithm via the caret (v 6.0-93)
package (Lv et al., 2024) in both datasets. Genes associated with the
lowest error rates in the two datasets were identified as intersections
and designated as signature genes for this study.

Subsequently, the Wilcoxon rank sum test was applied using the
ggplot2 (v 3.4.4) package (Omar et al., 2024) to analyze the
expression levels of signature genes across the GSE221521,
GSE113079, GSE189005, and GSE42148 datasets (P < 0.05). The
results were visualized using box-and-line plots. Genes that
exhibited significant differences and consistent expression trends
across these datasets were identified as key genes. The diagnostic
value of these key genes for CHD and DR was further assessed using
receiver operating characteristic (ROC) curves in the four datasets.

2.5 GSEA and GSVA of key genes

To explore the functional relevance of the key genes, the
Molecular Signature Database (MSigDB) (https://www.gsea-
msigdb.org/gsea/msigdb) was consulted, selecting “c5.go.bp.v7.4.
symbols” as the reference gene set for functional analysis in
GSE221521 and GSE113079. Spearman correlation analysis of the
key genes with all other genes in these datasets was performed using
the psych (v 3.4.4) package (Huang et al., 2020), and results were
ranked based on the correlation coefficient. GSEA pathway
enrichment was conducted using the ClusterProfiler (v 4.7.1.003)
package (Wang et al., 2024), and the top 10 enriched pathways were
selected for presentation (P.adjust < 0.05, |Normalized Enrichment
Score (NES)| > 1).

Finally, disease samples were classified into high- and low-
expression groups based on the median expression levels of the
key genes. GSVA was performed using the GSVA (v 1.46.0)
package, and significant pathway enrichment differences
between the two groups were analyzed using the limma (v
3.54.0) package (Ritchie et al., 2015) with criteria of |t| >
2 and P < 0.05.

2.6 Immune microenvironment analysis

To explore immune microenvironment changes in DR and
CHD, the single-sample GESA (ssGSEA) algorithm (Zhou
J. et al., 2023) was employed to estimate the scores of
28 immune cell types (Zhang et al., 2023) across disease and
control groups in GSE221521 and GSE113079. These immune
cells were from the Tumor Immune System Interaction Database
(TISIDB) (http://cis.hku.hk/TISIDB/). Differences in immune
cell infiltration between the disease and control groups were
assessed using the Wilcoxon test, with results visualized in box-
and-whisker plots. This analysis allowed the identification of
immune cell types exhibiting significant differences between
disease and control groups, which were termed differential
immune cells.

The role of key genes in the immune microenvironment was
analyzed in the GSE221521 and GSE113079 datasets. To explore the
potential relationships between key genes and differential immune
cells, a Spearman correlation analysis was performed using the psych
package (v 3.4.4) (Huang et al., 2020). The results were visualized in
a lollipop diagram (P.adjust < 0.05).

2.7 Construction of key gene
regulatory networks

Additionally, transcription factors (TFs) and microRNAs
(miRNAs) are crucial in maintaining physiological stability by
regulating target gene expression. To predict upstream TFs for
the key genes, NetworkAnalyst (https://www.networkanalyst.ca/)
was utilized to construct a TF-messenger RNA (TF-mRNA)
regulatory network. miRNAs associated with key genes were
predicted using the miRWalk database (http://mirwalk.umm.uni-
heidelberg.de), and miRNA-mRNA regulatory networks were
constructed.
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2.8 Prediction of drug

To further investigate potential therapeutic agents targeting key
genes, the Comparative Toxicogenomics Database (CTD) (https://
ctdbase.org/) was consulted. A key genes-drug network was created
and visualized using Cytoscape (v 3.8.2).

For drug-gene binding assessment, molecular docking of the key
genes with core active drug ingredients was performed. The 3D
structures of the drugs and protein molecular crystal structures of
key genes were obtained from the National Center of Biotechnology
Information (NCBI) PubChem Compound database (https://www.
ncbi.nlm.nih.gov/pccompound/) and the Uniprot database (https://
www.uniprot.org/), respectively. Among them, the protein
structures of key genes were predicted by AlphaFold (https://
alphafold.ebi.ac.uk/). The CB-Dock tool (https://cadd.labshare.cn/
cb-dock/php/manual.php) was used to identify the optimal binding
conformation of the protein and drug, with results visualized in
PyMOL. The first step of CB-Dock was to predict the possible
binding sites of the protein (Cavity detection). Since ligand - binding
sites were usually some large cavities, several cavities with the
highest scores were selected for further analysis according to the
cavity size ranking (Cavity sorting). Subsequently, the center of the
cavity needed to be set and the cavity size adjusted. These parameters
were necessary for the molecular docking with AutoDock Vina
(Center and Size). After docking, a series of binding poses were re -
ranked according to the docking scores (Dock and Rerank). The first
conformation was regarded as the best - binding conformation, and
the corresponding site was the best - binding site of the query ligand.
If the molecular binding free energy between the key gene and the
drug was < −5.0 kcal/mol, it indicated a good docking affinity (Wu
et al., 2022).

2.9 Reverse transcription-quantitative
polymerase chain reaction (RT-qPCR)

This study included 10 fresh blood samples, comprising
5 samples from patients with comorbid diabetic retinopathy (DR)
and coronary heart disease (CHD), along with 5 samples from
healthy controls. All specimens were obtained from the Affiliated
Hospital of Yunnan University. The research was approved by the
institutional review board of the Affiliated Hospital of Yunnan
University Ethics Committee (Approval No. 2024301), and all
patients provided written informed consent. RNA extraction was
performed using the TRIzol kit, with samples 1–5 designated as
control and samples 6–10 as DRwCHD. All procedures for RNA
extraction were conducted according to the manufacturer’s
guidelines. The RNA concentration was assessed using 1 μL of
extracted RNA and a NanoPhotometer N50, with the purity and
concentration recorded to calculate the RNA required for
subsequent reverse transcription. RNA was then reverse
transcribed into cDNA using the SweScript First Strand cDNA
Synthesis Kit, following the manufacturer’s instructions. The
resulting DNA was diluted 5–20 times with RNase- and ARase-
free ddH2O. A reaction mixture was prepared by adding 3 μL of
cDNA, 5 μL of 2x Universal Blue SYBR Green qPCR Master Mix,
1 μL of forward primer (10 µM), and 1 μL of reverse primer (10 µM).
The qPCR was performed for 40 cycles using the CFX96 real-time

PCR system, with the detailed protocol provided in Supplementary
Table S1. Primer sequences for HIRIP3 and ZNF416 are listed in
Supplementary Table S2, with GAPDH serving as the reference
gene. Relative gene expression levels were calculated using the
2−ΔΔCT method.

2.10 Statistical analysis of data

All statistical analyses were conducted using R 4.2.3 software
and the Cytoscape (v 3.8.2) platform. The Wilcoxon test was used to
assess significant differences between groups, with a P-value <
0.05 considered statistically significant.

3 Results

3.1 Enrichment and PPI analysis in
96 potential candidate genes

A total of 3,143 DEGs1 were identified in GSE221521 (|log2FC| >
0.5, adj.P.Val < 0.05), including 2,566 upregulated and
577 downregulated genes in the DR group (Figures 1A, B).
Similarly, 4,884 DEGs2 were identified in GSE113079 (|log2FC| >
0.5, adj.P.Val < 0.05), with 2,773 upregulated and 2,111 downregulated
genes in the CHD group (Figures 1C, D). The results were visualized as
a volcano map and heatmap. Using Venn analysis, 96 PCGs were
identified for further functional enrichment analysis and PPI network
construction (Figure 1E).

GO analysis revealed 207 biological processes (BPs), 32 cellular
components (CCs), and 23 molecular functions (MFs) enriched by
the 96 PCGs. Notably, in the BP category, the PCGs were primarily
involved in epidermis development, calcium ion transport, and
gland development. In terms of CC, PCGs were most enriched in
the collagen-containing extracellular matrix. In the MF category, the
PCGs were predominantly associated with signaling receptor
activator activity (Figure 1F). Subsequently, a PPI network
comprising 82 nodes and 217 edges was constructed (Figure 1G).

3.2 HIRIP3 and ZNF416 were identified as
key genes

To identify key genes, ROC analysis revealed 36 candidate genes
with an AUC > 0.7 in GSE221521 and GSE113079 (Figure 2A;
Supplementary Table S3). Random forest analysis and Venn
diagram analysis further identified 12 hub genes (ntree = 1,000),
including TOE1, OSMR, C9orf78, IL17RC, ZNF622, PRKACA,
ZFHX3, CSPG4, ARHGEF10L, HIRIP3, PLEC, and ZNF416
(Supplementary Figure S1 and Figure 2B). Following this,
10 signature genes were identified through SVM-RFE analysis in
GSE221521 and GSE113079 (Supplementary Figure S2 and
Figure 2C). The Wilcoxon rank sum test revealed that HIRIP3 and
ZNF416 were significantly differentially expressed with consistent
expression patterns across GSE221521, GSE113079, GSE189005, and
GSE42148 (P < 0.05). Notably, both genes showed higher expression in
the control group across all datasets (Supplementary Figure S3),
supporting their validation as reliable biomarkers. Additionally, ROC
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FIGURE 1
Screening of differentially expressed genes, functional enrichment analysis, and construction of protein-protein interaction networks. (A) Volcano
plot showing differentially expressed genes in GSE221521. Grey dots represent genes with no significant expression change, blue dots indicate
significantly downregulated genes, and red dots represent significantly upregulated genes. (B)Heatmap displaying the expression levels of the top 15 up-
and downregulated differentially expressed genes in GSE221521. Yellow indicates high expression, and green represents low expression. (C) Volcano
plot of differentially expressed genes in GSE113079. Grey dots represent genes with no significant expression change, blue dots indicate significantly
downregulated genes, and red dots represent significantly upregulated genes. (D) Heatmap displaying the expression levels of the top 15 up- and
downregulated differentially expressed genes in GSE113079. Yellow indicates high expression, and green represents low expression. (E) Venn diagram

(Continued )
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analysis demonstrated that both HIRIP3 and ZNF416 had strong
diagnostic potential, with AUC values exceeding 0.7 (Supplementary
Figure S4). Based on these findings,HIRIP3 andZNF416were identified
as key genes for further exploration in this study.

3.3 GSEA and GSVA enrichment analyses in
HIRIP3 and ZNF416

To investigate the functional phenotypes of key genes in
GSE221521, GSEA enrichment analysis revealed that both HIRIP3
and ZNF416 were predominantly associated with the ribosomal
subunit, ribosome, and rRNA metabolic processes (|NES| > 1,
P.adjust < 0.05) (Figure 3A). In the GSE113079 dataset, HIRIP3
was enriched in processes such as tRNA processing, ncRNA
processing, and organellar ribosomes, while ZNF416 was notably
enriched in rRNA binding, translational initiation, and ribosomal
functions (|NES| > 1, P.adjust < 0.05) (Figure 3B).

GSVA enrichment analysis of the two expression groups in
GSE221521 indicated that HIRIP3-related upregulated pathways
were primarily enriched in the inositol phosphate catabolic
process, whereas downregulated HIRIP3-related pathways were
linked to the positive regulation of telomerase RNA localization
to the Cajal body. Conversely, ZNF416-related upregulated
pathways were enriched in collecting duct development, and
downregulated pathways were related to the spliceosomal
complex (Figure 3C). In the GSE113079 dataset, HIRIP3-related
upregulated pathways were primarily involved in calcium ion
regulation of neurotransmitter release, while its downregulated
pathways were associated with the negative regulation of histone
methylation. ZNF416-related upregulated pathways were linked to
synapse maturation, and downregulated pathways were enriched in
DNA replication origin binding (Figure 3D).

3.4 Analysis of key genes with differential
immunity cells

The objective of this study is to explore potential alterations in
the immunemicroenvironment of individuals with DR and CHD. In
the GSE221521 dataset, six differential immune cell types were
identified, including CD4 T cell activation, CD56 bright natural
killer cells, central memory CD4 T cells, natural killer cells,
regulatory T cells, and type 1T helper cells (Figures 4A, B).
Spearman correlation analysis revealed a positive correlation
between HIRIP3 and CD56 bright natural killer cells (cor =
0.329, adj.P < 0.001) as well as type 1T helper cells (cor = 0.327,
adj.P < 0.001). ZNF416 also showed a positive correlation with
CD4 T cell activation (cor = 0.340, adj.P < 0.001) and type 1 T helper
cells (cor = 0.273, adj.P < 0.05) (Figure 4C). In contrast, the
GSE113079 dataset identified 19 differential immune cell types
(Figures 4D, E). HIRIP3 and ZNF416 exhibited negative
correlations with neutrophils (HIRIP3, cor = −0.279, adj.P <
0.001; ZNF416, cor = −0.270, adj.P < 0.05) and monocytes
(HIRIP3, cor = −0.400; ZNF416, cor = −0.287) (adj.P <
0.001) (Figure 4F).

3.5 Constructing TF-mRNA and miRNA-
mRNA networks to explore molecular
regulatory mechanisms

To investigate themolecular regulatorymechanisms ofHIRIP3 and
ZNF416, a total of 82 TFs, including SP3, were predicted for the two key
genes (Figure 5A). Additionally, the miRNA-mRNA network analysis
revealed thatHIRIP3was associated with 18 predictedmiRNAs, such as
hsa-miR-645, while ZNF416 was linked to only 3 miRNAs: hsa-miR-
1827, hsa-miR-3116, and hsa-miR-4696 (Figure 5B).

FIGURE 2
Screening of key genes by ROC analysis and machine learning. (A) Genes with AUC values greater than 0.7 in both training sets. (B) Venn diagram
showing the intersection of the top 20most important genes identified from the two training sets. (C) SVM-RFEmodels constructed for both training sets
to identify genes corresponding to combinations with the lowest error rates. SVM-RFE: Support vector machine recursive feature elimination. AUC: Area
under the curve; ROC: Receiver operating characteristic.

FIGURE 1 (Continued)

showing the intersection of upregulated genes between GSE221521 and GSE113079. (F) Venn diagram showing the intersection of downregulated
genes between GSE221521 and GSE113079. (G) Gene ontology enrichment analysis of the co-aggregated genes. Protein-protein interaction
network diagram.
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3.6 Key genes and molecular docking

Furthermore, 79 compounds were predicted for HIRIP3, and
20 for ZNF416 (Figure 6A). Binding energy calculations showed that
HIRIP3 bound to Tetrachlorodibenzodioxin with a free energy
of −5.3 kcal/mol, while ZNF416 exhibited a binding energy
of −5 kcal/mol with Atrazine (Figure 6B). These results suggest
that the binding conformations of HIRIP3 and ZNF416 to
Tetrachlorodibenzodioxin and Atrazine are stable, with the
corresponding amino acid residues shown in Figures 6C, D.

3.7 Expression validation analysis

Expression validation analyses revealed significant differences in
the expression levels ofHIRIP3 and ZNF416 between the control and
DRwCHD groups. Specifically, the expression of both genes was
elevated in the control group compared to the DRwCHD group
(Figures 7A, B). Notably, ZNF416 showed a significant difference
between the two groups (p < 0.05) (Figure 7B). These results
underscore the pivotal roles of HIRIP3 and ZNF416 in
understanding the pathogenesis of DR and CHD.

FIGURE 3
Results of GSEA and GSVA. (A)GSEA enrichment results forHIRIP3 and ZNF416 in the training set GSE221521. (B)GSEA enrichment results forHIRIP3
and ZNF416 in the training set GSE113079. (C)GSVA enrichment results forHIRIP3 and ZNF416 in the training set GSE221521. (D)GSVA enrichment results
for HIRIP3 and ZNF416 in the training set GSE113079. GSEA: Gene set enrichment analysis; GSVA: Gene set variation analysis.
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4 Discussion

DR and CHD present significant threats to human health, often
leading to severe complications and elevated mortality. These
conditions are interconnected, sharing common risk factors such
as diabetes and cardiovascular disease, underscoring the necessity of
understanding their shared molecular pathways. This study aimed to
explore the biological functions, predictive potential, immune
microenvironment, and possible drug candidates for key diagnostic
genes common to both DR and CHD through bioinformatics
approaches. Two pivotal genes, HIRIP3 and ZNF416, were
identified, which are implicated in the pathophysiology of both

conditions, providing new insights into their molecular
mechanisms.Notably, during preliminary validation of critical
genes using RT-qPCR, HIRIP3 and ZNF416 exhibited significantly
higher expression levels in the control group than in the DRwCHD
group. However, only ZNF416 exhibited a statistically significant
difference (p < 0.05). The lack of a significant difference in
HIRIP3 expression could be attributed to the limited sample size,
which restricted the study’s power to detect true differences. To
address this, future research will involve larger sample sizes or
alternative validation strategies using diverse sample types,
allowing for a more robust assessment of HIRIP3’s role in disease
progression. Increasing the sample size will provide a more accurate

FIGURE 4
Immune infiltration analysis. (A) Stacked plot showing immune cell infiltration in the training set GSE221521. (B) Analysis of differential expression of
immune cells in the disease and control groups in the training set GSE221521. (C) Correlation analysis results of HIRIP3 and ZNF416 with differential
immune cells in the training set GSE221521. (D) Stacked plot showing immune cell infiltration in the training set GSE113079. (E) Analysis of differential
expression of immune cells in the disease and control groups in the training set GSE113079. (F) Correlation analysis results of HIRIP3 and
ZNF416 with differential immune cells in the training set GSE113079.

Frontiers in Genetics frontiersin.org08

Jiang et al. 10.3389/fgene.2025.1548147

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1548147


reflection of population heterogeneity and offer a deeper
understanding of HIRIP3’s involvement in DR and CHD. These
findings not only advance our understanding of the molecular
interplay between DR and CHD but also highlight the potential of
these genes as clinical biomarkers and therapeutic targets, ultimately
aiming to improve patient outcomes in both conditions.

ZNF416, a zinc finger nuclease, is implicated in fibroblast
activation, playing a pivotal role in fibroblast proliferation,
extracellular matrix (ECM) synthesis, and contractility (Huang
et al., 2020). Fibroblasts are central to tissue homeostasis and
repair, primarily through the synthesis of ECM components
(Cheng et al., 2022). ECM remodeling is essential for the
progression of proliferative diabetic retinopathy (PDR) (Korhonen
et al., 2021) and is also a key factor in coronary artery disease, where
the degradation of ECM components such as collagen, elastin, and

proteoglycans is associated with inflammatory responses. Several
ECM degradation markers have been linked to the presence,
severity, and prognosis of coronary artery disease (Theofilis et al.,
2022)In DR, fibrosis primarily manifests as abnormal thickening of
retinal vascular structures and neovascularization. These pathological
changes increase vascular permeability, triggering retinal edema and
hemorrhage, which may ultimately lead to vision loss (Klaassen et al.,
2015). Meanwhile, in CHD, progressive fibrosis drives gradual
accumulation of extracellular matrix (ECM) between
cardiomyocytes, resulting in impaired cardiac diastolic and systolic
functions (Perreault et al., 2024;Meng et al., 2024). Emerging evidence
from in-depth studies on ZNF416 function reveals its critical role not
only in pulmonary fibrosis but also potentially in other fibrotic
diseases. However, the precise mechanisms of ZNF416 action
remain unclear, particularly regarding its functional variations

FIGURE 5
TF-mRNA andmiRNA-mRNA regulatory networks. (A) Regulatory network of mRNA-miRNA. Red represents key genes (HIRIP3, ZNF416), and green
represents TFs. (B) Regulatory network of miRNA-HIRIP3, ZNF416. Red represents key genes (HIRIP3, ZNF416), and green represents miRNAs. TF:
Transcription factors.
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across different fibrotic conditions. ZNF416 plays a pivotal role in
modulating gene expression, cell proliferation, and apoptosis, and
likely impacts the progression of diabetes-related complications
through its regulation of cellular metabolic processes and

inflammatory responses (Chu et al., 2022). Our experimental
validation results demonstrate that the low expression of
ZNF416 in the disease group suggested its potential role as a
protective factor in diabetic retinopathy complicated with coronary

FIGURE 6
Drug prediction and molecular docking results. (A) Regulatory network of key gene-drug interactions. Red represents key genes (HIRIP3, ZNF416),
green represents drugs. (B) Heatmap showing the binding results of molecular docking. (C) Molecular docking plot of HIRIP3 with
Tetrachlorodibenzodioxin (−5.3 kcal/mol). (D) Molecular docking plot of ZNF416 with Atrazine (−5.0 kcal/mol).

FIGURE 7
Expression validation analysis of key genes. (A) The expression level of HIRIP3. (B) [The expression level of ZNF416].
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heart disease. Further investigation into ZNF416s role in the
molecular mechanisms of DR and CHD is essential, as it may lead
to the development of novel therapeutic strategies for managing these
prevalent comorbid conditions.

Previous research has identified HIRIP3 as a candidate gene
associated with aortic valve stenosis (Ghebranious et al., 2007).
The HIRIP3 gene product is thought to interact with histone cell
cycle regulator and core histones H2B/H3, suggesting its involvement
in chromatin dynamics and histone metabolism, which are critical for
cardiac development (Jones et al., 2021). Research involving fetuses
with recurrent microdeletions at the 16p11.2 locus has shown that the
second HIRIP3 allele lacks additional mutations, implying that
haploinsufficiency of HIRIP3 may contribute to cardiovascular
malformations (Ignatyeva et al., 2024). These findings highlight
HIRIP3’s significant role in various cardiac conditions. However,
its association with DR remains underexplored. Given the
intertwined nature of cardiovascular health and diabetes-related
complications, further investigation into HIRIP3’s role in DR and
CHD is essential. This study is the first to report the association of
HIRIP3 with both CHD and DR. HIRIP3 emerges as a novel
therapeutic target, and understanding its contribution to these
diseases could unveil shared molecular pathways, thereby
facilitating the development of targeted therapies to mitigate the
risks associated with diabetes and its complications.

GSEA results in this study revealed that key genes are co-enriched
in the ribosome pathway in both diseases. Ribosomes are large RNA-
protein complexes responsible for translating nucleic acid sequences
into proteins, which are primary biochemical components of cells
(Nofal and Rabinowitz, 2018). These structures are essential for cell
growth, and any disruption in protein synthesis, particularly in the
heart, can impair cardiomyocyte function, potentially contributing to
the development of CHD (Nofal and Rabinowitz, 2018). Additionally,
the dysregulation of ribonucleoproteins, which govern ribosomal
activity, due to exposure to saturated fatty acids, plays a significant
role in diabetic cardiac vulnerability to ischemia/reperfusion injury
(Zhao et al., 2017). Furthermore, mitochondrial ribosomal protein L7/
L12 (MRPL12) has been suggested to compensate for diabetic ischemic
heart disease, indicating its potential involvement in diabeticmyocardial
infarction (Rai et al., 2024). Notably, mitochondrial ribosomal
deficiencies in β cells are linked to type 2 diabetes-associated islet
failure (Hong et al., 2022). In summary, ribosomes are critical in both
cardiac and diabetic processes. While no direct studies have connected
ribosomes toDR andCHD,DR is amajor complication of diabetes, and
CHD is a leading cause of heart disease. Therefore, it is hypothesized
that the key genes identified in this study may influence the onset and
progression of both CHD and DR by regulating the ribosome pathway.

The key genes jointly predicted three compounds: Atrazine,
valproic acid, and sunitinib. Atrazine has been implicated in
exacerbating myocardial fibrosis by inducing cardiomyocyte
pyroptosis, highlighting its potential role in the progression of
cardiac fibrosis (Zhao et al., 2024). Additionally, studies have
reported retinal degeneration, including the degeneration of cone
and rod photoreceptors, as a consequence of atrazine exposure
(Ghisolfi et al., 1983). Given these effects, atrazine is considered
detrimental to both DR and CHD, and its exposure should be
minimized or avoided where possible.

Molecular docking was a method to predict the binding modes
and affinities of two or more molecules by simulating intermolecular

interactions. Binding energy was an important indicator for
measuring the binding strength between molecules, which
reflected the stability of the binding between the ligand and the
receptor. If the binding energy was high, it indicated that the ligand
and the receptor bound tightly and might have good biological
activity. Conversely, if the binding energy was low, the binding
between the ligand and the receptor might be unstable and the
biological activity might be weak (Wu et al., 2022; Naqvi et al., 2018).
Valproic acid has demonstrated significant therapeutic potential,
reducing plasma glucose levels, HbA1c, insulin resistance, and fat
accumulation in brown and white adipose tissue, as well as in the
liver, with effects comparable to metformin treatment (Khan et al.,
2016). Magnesium valproate has been shown to halt disease
progression in the early stages of diabetic cardiomyopathy,
potentially through the upregulation of estrogen receptors in left
ventricle (LV) tissue (Rabadiya et al., 2018). Consequently, valproic
acid holds promise as a therapeutic agent for both DR and coronary
heart disease. Sunitinib, however, has cardiac toxicities, including
hypertension, left ventricular ejection fraction (LVEF) dysfunction,
congestive heart failure (CHF), and arterial thromboembolism
(Pantaleo et al., 2012). In contrast, sunitinib has demonstrated
inhibitory effects on choroidal neovascularization (CNV), a
vision-threatening condition common in the elderly, in a laser-
induced CNV mouse model, showing its potential as a therapeutic
agent (Tavakoli et al., 2022). Thus, sunitinib may have divergent
effects in the treatment of DR and CHD.

In this study, both key genes exhibited a significant positive
correlation with activated CD4 T cells across the two training
cohorts. Previous studies have suggested that T follicular helper
(Tfh) cells, a recently identified subset of CD4+ T cells, play a role in
retinal vasculitis associated with DR. Tfh cells, directed by Bcl-6, can
promote vascular inflammation and angiogenesis, providing new
avenues for DR treatment (Liu et al., 2020). Interestingly, the
proportion of CD4 (+)CD25 (+) regulatory T cells (Tregs) in
patients with CHD is significantly lower compared to controls,
indicating a strong link between CD4 T cells and CHD.
Alterations in these cell populations may lead to reduced
peripheral autoimmune tolerance, contributing to the onset and
progression of CHD (Zhao et al., 2007). Thus, it is hypothesized that
the key genes HIRIP3 and ZNF416 may influence the development
of both DR and CHD by modulating CD4 T cell infiltration.

This study utilized bioinformatics approaches to identify shared
key genes and molecular processes between DR and CHD,
facilitating drug prediction based on these genes. By elucidating
the mechanisms underlying the pathogenesis of these prevalent
conditions, our research provides a foundation for improving
clinical diagnosis and treatment strategies for patients with both
DR and CHD. However, we fully acknowledge that the relatively
small sample size due to constrained experimental funding and tight
research timelines may limit statistical power, potentially preventing
the detection of certain effects. Therefore, future studies will involve
larger-scale cohorts to enhance statistical robustness and validate
our findings. While current expression differences and correlational
analyses partially support the potential roles of HIRIP3 and ZNF416
genes in DR and CHD, these findings primarily rely on data
correlations and lack direct functional validation. Subsequent
investigations will incorporate functional experiments such as
gene knockout/overexpression studies and animal models
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mimicking human disease states to verify the biological significance
of our observations. Further research is essential to validate the
relevance of these key genes in clinical practice, thereby advancing
the understanding of the interplay between DR and CHD and
contributing to improved patient outcomes through ongoing
research in this vital area. Addressing these challenges will refine
the insights gained from this study and translate them into tangible
clinical benefits.
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