
CirclizePlus: using
ggplot2 feature to write readable
R code for circular visualization

Zheyu Zhang, Tianze Cao*, Yuexia Huang* and Yu Xia

School of Mathematics, Hangzhou Normal University, Hangzhou, China

In the R programming language, the de facto standard framework for drawing
rectangular coordinates is ggplot2. The most important feature of ggplot2 is that
it is object-oriented and uses the plus sign to overlay various objects. In the field
of circular visualization, circlize is a popular software, but it is based on procedural
programming. Making it object-oriented can make the logic of the written code
clearer and improve the reusability of the code. In this work, we introduce
circlizePlus, which redesigns the concepts in circular visualization into several
R S4 classes. It also defines a set of additional rules, based on which users can
implement ggplot2-like drawing techniques. circlizePlus is a wrapper for circlize.
It transforms the procedural programming style of circular visualization drawing
into object-oriented programming. The additional rules it defines reduce the
amount of coding and make the code more readable. The source codes can be
found at https://github.com/tianzelab/circlizePlus, and the sample code can be
found at https://tianzelab.github.io/circlizePlusBook/.

KEYWORDS

circlize, ggplot2, object-oriented, generic functions, functional programming

1 Introduction

Circular layout plots typically consist of sectors and tracks. The intersection of sectors
and tracks is called a cell (Figure 1). This kind of layout can not only transparently represent
the relationship between different data categories, but also rep-resent different observations
from different dimensions within the same category. For instance, in genomics, different
sectors may represent different chromosomes. In contrast, every single track layer can
represent a different data category, such as gene density, or the variation standard, to name
but a few.

Although numerous packages have been developed to implement circle layout plotting
(Krzywinski et al., 2009; Darzentas, 2010; Zhang et al., 2013; Gu et al., 2014; An et al., 2015;
Cheong et al., 2015; Cui et al., 2016; Diaz-Garcia et al., 2017; Drori et al., 2017; Yu et al.,
2018; Marx and Coon, 2019; Cui et al., 2020; Rasche and Hiltemann, 2020; Cui et al., 2021;
Ennis et al., 2023), circlize (Gu et al., 2014) has become the most mainstream tool since its
release. It is an R package that offers various tools and functions to form these complex
circle layout plots. Based on the statistical and graphical syntax of R, the package is
especially easy for those who are good at R to use. By using circlize package, users can
generate various types of charts, including scatter plots, histograms, line plots,
heatmaps, etc.

By using circlize package, users can create many sorts of graphical elements easily, such
as adding points, lines, texts, and axes. For instance, circos.points () function may be used
for adding points, circos.line () for lines, and circos.text () for text labels. Moreover, the

OPEN ACCESS

EDITED BY

Lei Chen,
Shanghai Maritime University, China

REVIEWED BY

Fabio Iannelli,
European Institute of Oncology (IEO), Italy
Archana Prabahar,
Cleveland State University, United States

*CORRESPONDENCE

Tianze Cao,
tianze-cao@hznu.edu.cn

Yuexia Huang,
yxhuang@hznu.edu.cn

RECEIVED 27 November 2024
ACCEPTED 17 March 2025
PUBLISHED 27 March 2025

CITATION

Zhang Z, Cao T, Huang Y and Xia Y (2025)
CirclizePlus: using ggplot2 feature to write
readable R code for circular visualization.
Front. Genet. 16:1535368.
doi: 10.3389/fgene.2025.1535368

COPYRIGHT

© 2025 Zhang, Cao, Huang and Xia. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Technology and Code
PUBLISHED 27 March 2025
DOI 10.3389/fgene.2025.1535368

https://www.frontiersin.org/articles/10.3389/fgene.2025.1535368/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1535368/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1535368/full
https://github.com/tianzelab/circlizePlus
https://tianzelab.github.io/circlizePlusBook/
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2025.1535368&domain=pdf&date_stamp=2025-03-27
mailto:tianze-cao@hznu.edu.cn
mailto:tianze-cao@hznu.edu.cn
mailto:yxhuang@hznu.edu.cn
mailto:yxhuang@hznu.edu.cn
https://doi.org/10.3389/fgene.2025.1535368
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2025.1535368

package is also accessible for stacking tracks and dividing sections,
allowing every dataset to be displayed in the appropriate position.

In the domain of rectangular layout plotting, ggplot2 (Wickham,
2016) offers high-level flexibility and controllability by object-oriented
programming and the overloading of the addition operator, which
makes it much more popular than the basic R plotting API.

However, the classic way to use circlize is procedural
programming, so it is necessary to provide support for object-
oriented programming and addition operators like ggplot2. This
will allow users to overlay different graphic elements in a more
intuitive and modular way when creating complex circular layouts.
Here, we’d like to introduce circlizePlus, which implements object-
oriented programming and additive operations in circular layout
plotting by wrapping circlize.

2 Materials and methods

2.1 Classes and addition rules in circlizePlus

The classes and object constructors defined in circlizePlus are
prefixed with “cc,” to avoid naming conflicts with other packages
and represent the abbreviation of circlize. circlizePlus defines 12 R
S4 classes, 7 of which are primary classes, namely, ccPlot, ccPar,
ccTrack, ccTrackGeom, ccLink, ccCell, and ccCellGeom. Based on
these primary classes, circlizePlus constructs a set of addition
operation rules as follows.

ccPlot contain n ccPars() + ccPar

� ccPlot contain n + 1 ccPars(), n≥ 0

ccPlot contain n ccTracks() + ccTrack

� ccPlot contain n + 1 ccTracks(), n≥ 0

ccPlot contain n ccLinks() + ccLink

� ccPlot contain n + 1 ccLinks(), n≥ 0
ccTrak contain n ccTrakGeoms() + ccTrackGeom

� ccTrack contain n + 1 ccTrackGeoms(), n≥ 0

ccTrack contain n ccCells() + ccCell

� ccTrack contain n + 1 ccCells(), n≥ 0

ccCell contain n ccCellGeoms() + ccCellGeom

� ccCell contain n + 1 ccCellGeoms(), n≥ 0

2.2 Data mapping from track to geometry

In ggplot2, the parameter data of the function plotting the
geometry can be missing. In this case, the value of the parameter
with the same name in the function ggplot () will be taken as the
default value. Similar features are also implemented in
circlizePlus. The coordinate parameters (such as x, y) of the
function that draws geometric figures in the sector can be
missing. circlizePlus will extract the data of the corresponding

FIGURE 1
Schematic diagram of circle layout plotting.

Frontiers in Genetics frontiersin.org02

Zhang et al. 10.3389/fgene.2025.1535368

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1535368

sector of the track it is added to and set it as the default value. It is
worth noting that the coordinate parameter can be an
anonymous function of the form “function (x, y) . . .”. This
anonymous function will be called with the default parameter
values above, and its re-turn value will be used as the actual value
of the coordinate parameter.

2.3 Relationships between ccPar, ccTrack,
ccLink and ccPlot

ccPlot is the core class of circlizePlus, whose objects are
generated by the homonymous object constructor ccPlot (). The
object of ccPlot acts as a container, holding the objects of ccPar,
ccTrack, and ccLink. The objects of ccPar are generated by the
homonymous object constructor ccPar(), defining the global
parameter for plotting. Users may add one or more ccPar objects
to a ccPlot object. circlizePlus aggregates multiple ccPar objects, thus
determining the global plotting parameters. A single ccTrack object
defines how to plot a track. There is also a subclass of ccTrack named
ccGenomicTrack. Their object constructors and functionalities are
listed in Supplementary Table S1. A single ccLink object stores data
of the link connecting two sectors. There are also 2 subclasses of
ccLink: ccHeatmapLink and ccGenomicLink. Their object
constructors and functionalities are listed in
Supplementary Table S2.

When plotting, users are supposed to call the generic show ()
function, in which ccPlot objects serve as a parameter. Once the
show () function is called, circlizePlus will set global plotting
parameters based on ccPar objects stored in ccPlot. Meanwhile,
it plots tracks based on stored ccTrack objects or their

subclasses, and plots lines based on ccLink objects or their
subclasses.

2.4 Relationships between ccTrack,
ccTrackGeom, ccCell and ccCellGeom

ccTrackGeom and ccCellGeom stored in ccTrack determine the
geometrics plotted in the current track. Data stored in ccTrackGeom
works on the entire track, while data stored in ccCellGeom works
only on a single cell within the track. ccCellGeom objects cannot be
add directly into ccTrack. It must first be added to a ccCell object
before adding the ccCell object to ccTrack thereafter. ccCellGeom
has a subclass named ccGenomicCellGeom. The object constructors
and functionalities of ccTrackGeom and ccCellGeom are listed in
Supplementary Table S3.

3 Results

3.1 Workflow of circlizePlus

There are approximately 6 steps for users using circlizePlus to
plot (Figure 2), with no strict order restriction for steps 1 to 4.

Step 1: When initiating plot programming, users must first call
the ccPlot () function to generate a ccPlot object. Users
also need to set a mandatory parameter named
“initMode,” which can take one of the following
4 values: “initialize,” “heatmap.initialize,”
“initializeWithIdeogram” or “genomicInitialize.”

FIGURE 2
Workflow diagram of circlizePlus.

Frontiers in Genetics frontiersin.org03

Zhang et al. 10.3389/fgene.2025.1535368

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1535368

Different values of initMode correspond to different
plotting scenes. The backend of circlizePlus will call the
corresponding initialization functions from the circlize
package based on the value of initMode. Therefore, ccPlot
() function will have different applicable parameters.

Step 2: For general plotting, users are supposed to generate a
ccTrack object. As for visualizing genomic data, users are
supposed to create a ccGenomicTrack object.

Step 3: Users are supposed to select the appropriate object
constructor function to generate geometric objects,
according to the geometrics to be generated.

Step 4: Users are supposed to generate ccLink objects or one of its
subclasses, in case users need to connect sectors to
represent the relationships between each of them.

Step 5: Users assemble objects according to the addition rules of
circlizePlus, and finally call the generic show () function,
in which the ccPlot object is used as a parameter to
generate a graph. Users are supposed to repeat some

steps in steps 1 to 4 and reassemble if the figure
generated does not meet expectations.

Step 6: circlizePlus is compatible with the circlize API. If the
figure obtained by the above steps is not satisfactory,
the user can also call the circlize API for further
fine-tuning.

3.2 Example 1: plotted dot plot categorized
by chromosome, and zoomed for partial
chromosome categorization

This section demonstrates the workflow of circlizePlus based on a
small case (Gu et al., 2014). The code lines are segmented according to
the workflow defined in the article (codes are shown in Supplementary
File S1). It plots the chromosome bands in the outer circle and the
corresponding scatter points in the inner circle (Figure 3). Magnified
views of chromosomes 7 and 8 are shown on the left parts of the circles.

FIGURE 3
Chromosomes 7 and 8 are shown enlarged on the left half of the circle.

Frontiers in Genetics frontiersin.org04

Zhang et al. 10.3389/fgene.2025.1535368

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1535368

The entire code process is like solving an addition problem, and the data
flow of drawing can be clearly understood. Note that the data mapping
technique is used in step 3. The coordinate parameter of the function
ccGenomicPoints () is missing. It will take the coordinate parameter
value of the corresponding sector from the variable track1. This
technique ensures consistency of coordinate data while reducing
code duplication.

4 Discussion

4.1 Why use object-oriented programming

circlizePlus is implemented using object-oriented programming.
It is class- and object-centric, with an emphasis on data
encapsulation and behavioral reuse. The resulting figure is
ultimately determined by the property values of all objects used
for drawing, making it easy to maintain and expand.

circlize, on the other hand, is implemented using traditional
process-oriented programming, which has functions and processes
at its core, and figures are the result of sequential execution of
functions. It’s suitable for running step by step, with each step
calling a function and the corresponding changes will be made

immediately on the figure. However, when the parameters that need
to be adjusted are used by functions that have been called in some
previous steps, the user often has to rerun all the previous code. For
example, Figure 3 can be plotted using either circlize or circirclizePlus.
When it comes to adjusting the width of the outermost track,
circlizePlus needs to run less code, because circlize needs to rerun
the code from scratch. In summary, circlizePlus offers advantages in
terms of maintenance and scalability, while circlize is better suited for
scenarios that require real-time feedback and single-step
commissioning (codes are shown in Supplementary File S2).

4.2 Example 2: comparison of two pieces of
code that use circlizePlus and circlize to
implement the same requirements,
respectively

In this section, we try to draw pictures from real publications.
The literature (Alves et al., 2013) uses a plot similar to Figure 4 to
present the VCaP cancer cell line. The outermost ring corresponds
to human chromosome ideograms (Figure 4A). It serves as an X-axis
to indicate the position of the data of other rings on the
chromosome. The inner ring in Figure 4B represents the number

FIGURE 4
Figure generated in example 2. (A) Chromosome ideograms in humans. (B) The outer ring is the chromosome ideograms, and the inner ring is the
dot plot, which is used to represent the number of copies of the gene on the corresponding chromosome. (C) The inner ring is also a dot plot that is used
to represent the B-allele frequency of the corresponding chromosome. (D) The inner loop is a linked line diagram that is used to represent structural
variations. (E) For aesthetic reasons, the red link lines in Figure D have been scaled. (F) The resulting diagram obtained by combining all of the
above plots.

Frontiers in Genetics frontiersin.org05

Zhang et al. 10.3389/fgene.2025.1535368

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1535368

of gene copies, and the value of each dot is from the Affymetrix SNP
arrays. Its Y-axis range is −1 to 1, where dots from 0.15 to 1 are
marked in red, dots from −0.15 to 0.15 are marked in grey, and dots
from −1 to 0.15 are marked in green. The inner ring in Figure 4C
represents the B-allele frequency (ratio), which ranges from 0 to 1 on
the Y-axis. The links plot is used to reflect structural variations (SVs)
(Figure 4D). The intra- and inter-chromosomal SVs are on the inner
rings and depicted in black and red lines, respectively. The red link
lines are obscured by the black link lines because there are quite a few
intra-chromosomal SVs. The red link lines have been reduced in
scale (Figure 4E) for aesthetic reasons. Combining all of the above
plots together gives the picture in the literature (Figure 4F).

The process of drawing Figure 4 is to draw the graphs of the
various categories first, and then put them together. Quite a few
researchers use this process to create circos diagrams. Both circlize
and circlizePlus implement such a process (codes are shown in
Supplementary File S3). According to code statistics, circlizePlus
uses less code than circlize in such a process. Code statistics show
that circlizePlus uses less code than circlize in such a process
(Table 1).

Data availability statement

Publicly available datasets were analyzed in this study. This data
can be found here: https://github.com/tianzelab/circlizePlus and
https://tianzelab.github.io/circlizePlusBook/.

Author contributions

ZZ: Software, Funding acquisition, original draft.TC:
Conceptualization, Software, Writing–original draft. YH:
Supervision, Writing–review and editing. YX: Funding
acquisition, Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This work was supported

by the key project of Zhejiang Provincial Natural Science
Foundation under grant number LZ23A010002 and the National
Training Program of Innovation and Entrepreneurship for
Undergraduates of Hangzhou Normal University under grant
number 202410346057.

Acknowledgments

We are grateful to Dr. Zuguang Gu from DFKZ for his
invaluable guidance and support throughout the project.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation of
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2025.1535368/
full#supplementary-material

TABLE 1 Statistics on the amount of code in Example2.

Figure 4A Figure 4B Figure 4C Figure 4D Figure 4E Figure 4F Total

The number of lines of code implemented with circlize 3 10 6 6 6 16 48

The number of lines of code implemented with
circlizePlus

2 8 4 4 4 4 28

The number of characters in the code implemented with
circlize (excluding spaces)

118 407 303 277 291 765 2177

The number of characters in the code implemented with
circlizePlus (excluding spaces)

100 329 291 175 189 230 1359

Frontiers in Genetics frontiersin.org06

Zhang et al. 10.3389/fgene.2025.1535368

https://github.com/tianzelab/circlizePlus
https://tianzelab.github.io/circlizePlusBook/
https://www.frontiersin.org/articles/10.3389/fgene.2025.1535368/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2025.1535368/full#supplementary-material
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1535368

References

Alves, I. T., Hiltemann, S., Hartjes, T., van der Spek, P., Stubbs, A., Trapman, J.,
et al. (2013). Gene fusions by chromothripsis of chromosome 5q in the VCaP
prostate cancer cell line. Hum. Genet. 132 (6), 709–713. doi:10.1007/s00439-013-
1308-1

An, J., Lai, J., Sajjanhar, A., Batra, J., Wang, C., and Nelson, C. C. (2015). J-Circos: an
interactive Circos plotter. Bioinformatics 31 (9), 1463–1465. doi:10.1093/
bioinformatics/btu842

Cheong, W.-H., Tan, Y.-C., Yap, S.-J., and Ng, K.-P. (2015). ClicO FS: an interactive
web-based service of Circos. Bioinformatics 31 (22), 3685–3687. doi:10.1093/
bioinformatics/btv433

Cui, Y., Chen, X., Luo, H., Fan, Z., Luo, J., He, S., et al. (2016). BioCircos.js: an
interactive Circos JavaScript library for biological data visualization on web
applications. Bioinformatics 32 (11), 1740–1742. doi:10.1093/bioinformatics/btw041

Cui, Y., Cui, Z., Xu, J., Hao, D., Shi, J., Wang, D., et al. (2020). NG-Circos: next-
generation Circos for data visualization and interpretation.Nar Genomics Bioinforma. 2
(3), lqaa069. doi:10.1093/nargab/lqaa069

Cui, Z., Cui, Y., Zang, T., and Wang, Y. (2021). interacCircos: an R package based on
JavaScript libraries for the generation of interactive circos plots. Bioinformatics 37 (20),
3642–3644. doi:10.1093/bioinformatics/btab232

Darzentas, N. (2010). Circoletto: visualizing sequence similarity with Circos.
Bioinformatics 26 (20), 2620–2621. doi:10.1093/bioinformatics/btq484

Diaz-Garcia, L., Covarrubias-Pazaran, G., Schlautman, B., and Zalapa, J. (2017).
SOFIA: an R package for enhancing genetic visualization with circos. J. Hered. 108 (4),
443–448. doi:10.1093/jhered/esx023

Drori, E., Levy, D., Smirin-Yosef, P., Rahimi, O., and Salmon-Divon, M. (2017).
CircosVCF: circos visualization of whole-genome sequence variations stored in VCF
files. Bioinformatics 33 (9), 1392–1393. doi:10.1093/bioinformatics/btw834

Ennis, S., Broin, P. O., and Szegezdi, E. (2023). CCPlotR: an R package for the
visualization of cell-cell interactions. Bioinforma. Adv. 3 (1), vbad130. doi:10.1093/
bioadv/vbad130

Gu, Z., Gu, L., Eils, R., Schlesner, M., and Brors, B. (2014). Circlize implements and
enhances circular visualization in R. Bioinformatics 30 (19), 2811–2812. doi:10.1093/
bioinformatics/btu393

Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., et al.
(2009). Circos: an information aesthetic for comparative genomics. Genome Res. 19 (9),
1639–1645. doi:10.1101/gr.092759.109

Marx, H., and Coon, J. J. (2019). MS-Helios: a Circos wrapper to visualize multi-omic
datasets. Bmc Bioinforma. 20, 21. doi:10.1186/s12859-018-2564-9

Rasche, H., and Hiltemann, S. (2020). Galactic circos: user-friendly circos plots within
the galaxy platform. Gigascience 9 (6), giaa065. doi:10.1093/gigascience/giaa065

Wickham, H. (2016). ggplot2: elegant graphics for data analysis. New York: Springer-
Verlag.

Yu, Y., Ouyang, Y., and Yao, W. (2018). shinyCircos: an R/Shiny application for
interactive creation of Circos plot. Bioinformatics 34 (7), 1229–1231. doi:10.1093/
bioinformatics/btx763

Zhang, H., Meltzer, P., and Davis, S. (2013). RCircos: an R package for Circos 2D track
plots. Bmc Bioinforma. 14, 244. doi:10.1186/1471-2105-14-244

Frontiers in Genetics frontiersin.org07

Zhang et al. 10.3389/fgene.2025.1535368

https://doi.org/10.1007/s00439-013-1308-1
https://doi.org/10.1007/s00439-013-1308-1
https://doi.org/10.1093/bioinformatics/btu842
https://doi.org/10.1093/bioinformatics/btu842
https://doi.org/10.1093/bioinformatics/btv433
https://doi.org/10.1093/bioinformatics/btv433
https://doi.org/10.1093/bioinformatics/btw041
https://doi.org/10.1093/nargab/lqaa069
https://doi.org/10.1093/bioinformatics/btab232
https://doi.org/10.1093/bioinformatics/btq484
https://doi.org/10.1093/jhered/esx023
https://doi.org/10.1093/bioinformatics/btw834
https://doi.org/10.1093/bioadv/vbad130
https://doi.org/10.1093/bioadv/vbad130
https://doi.org/10.1093/bioinformatics/btu393
https://doi.org/10.1093/bioinformatics/btu393
https://doi.org/10.1101/gr.092759.109
https://doi.org/10.1186/s12859-018-2564-9
https://doi.org/10.1093/gigascience/giaa065
https://doi.org/10.1093/bioinformatics/btx763
https://doi.org/10.1093/bioinformatics/btx763
https://doi.org/10.1186/1471-2105-14-244
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1535368

	CirclizePlus: using ggplot2 feature to write readable R code for circular visualization
	1 Introduction
	2 Materials and methods
	2.1 Classes and addition rules in circlizePlus
	2.2 Data mapping from track to geometry
	2.3 Relationships between ccPar, ccTrack, ccLink and ccPlot
	2.4 Relationships between ccTrack, ccTrackGeom, ccCell and ccCellGeom

	3 Results
	3.1 Workflow of circlizePlus
	3.2 Example 1: plotted dot plot categorized by chromosome, and zoomed for partial chromosome categorization

	4 Discussion
	4.1 Why use object-oriented programming
	4.2 Example 2: comparison of two pieces of code that use circlizePlus and circlize to implement the same requirements, resp ...

	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References

