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Accurate prediction of microbe-drug associations is essential for drug
development and disease diagnosis. However, existing methods often struggle
to capture complex nonlinear relationships, effectively model long-range
dependencies, and distinguish subtle similarities between microbes and drugs.
To address these challenges, this paper introduces a new model for microbe-
drug association prediction, CLMT. The proposed model differs from previous
approaches in three key ways. Firstly, unlike conventional GCN-based models,
CLMT leverages a Graph Transformer network with an attention mechanism to
model high-order dependencies in the microbe-drug interaction graph,
enhancing its ability to capture long-range associations. Then, we introduce
graph contrastive learning, generating multiple augmented views through node
perturbation and edge dropout. By optimizing a contrastive loss, CLMT
distinguishes subtle structural variations, making the learned embeddings
more robust and generalizable. By integrating multi-view contrastive learning
and Transformer-based encoding, CLMT effectivelymitigates data sparsity issues,
significantly outperforming existing methods. Experimental results on three
publicly available datasets demonstrate that CLMT achieves state-of-the-art
performance, particularly in handling sparse data and nonlinear microbe-drug
interactions, confirming its effectiveness for real-world biomedical applications.
On the MDAD, aBiofilm, and Drug Virus datasets, CLMT outperforms the
previously best model in terms of Accuracy by 4.3%, 3.5%, and 2.8%, respectively.
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1 Introduction

The human body hosts trillions of microorganisms, including bacteria, archaea, fungi,
protozoa, and viruses, collectively forming the human microbiota, which interacts closely
with its host (Gevers et al., 2012; Sommer and Bäckhed, 2013). These microorganisms
inhabit various regions such as the skin, oral and nasal cavities, gastrointestinal tract, and
genitourinary system, exerting profound effects on health. For instance, they regulate
gastrointestinal function, support internal balance, and facilitate metabolic activities (Gill
et al., 2006; Ventura et al., 2009). Additionally, the microbiota collaborates with mucosal
barriers to prevent pathogen invasion (Macpherson and Harris, 2004). Microbes also
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contribute to processes like sugar metabolism and vitamin synthesis,
both critical for T-cell response (Kau et al., 2011). However, an
imbalance in microbial populations, or dysbiosis, can lead to
conditions such as diabetes (Wen et al., 2008), inflammatory
bowel disease (Durack and Lynch, 2019), and even cancer
(Schwabe and Jobin, 2013). Furthermore, pathogens like certain
bacteria and viruses are linked to numerous infectious diseases,
including pneumococcal pneumonia, with evidence suggesting
involvement in up to 27 conditions (Wang D. et al., 2020). The
overuse and misuse of medications in recent years have accelerated
microbial resistance, creating significant obstacles for clinical
treatments and drug development. Microbial metabolism also
influences drug efficacy, absorption, and toxicity, highlighting its
critical role in pharmacology (Zimmermann and Curtis, 2019;
McCoubrey et al., 2023). For example, interactions between
intestinal flora and anticancer drugs can alter therapeutic
outcomes and side effects. Strategies such as probiotics,
prebiotics, synbiotics, biologics, and antibiotics have been
proposed to manage microbial populations and enhance
treatment effectiveness (Panebianco et al., 2018). Consequently,
identifying microbe-drug relationships is a vital challenge in
precision medicine, underscoring the urgent need for advanced
computational models to explore these interactions.

In recent years, the rise of microbial resistance has paralleled the
increasing diversity of drug candidates explored by the medical
community (Jiang et al., 2024). Traditional pharmaceutical research
often relied on cultivating specific microbial populations under
controlled conditions before integrating them into drugs, a
process that is both time-intensive and laborious. This challenge
underscores the pressing need for advanced computational methods
to identify potential microbe-drug relationships, which could
revolutionize drug discovery and disease diagnosis (Jiang et al.,
2023; Jiang et al., 2025). The advent of bioinformatics has facilitated
the establishment of several databases documenting experimentally
validated microbe-drug associations, including MDAD (Sun et al.,
2018), aBiofilm (Rajput et al., 2018), and DrugVirus (Andersen
et al., 2020).

To complement these resources, numerous computational
approaches have emerged. For instance, HMDAKATZ, developed
by (Zhu et al., 2019), utilizes KATZ metrics within a heterogeneous
network to predict microbial-drug correlations. However, its
applicability is limited for novel drugs without known microbial
associations or isolated microbes lacking disease links. Similarly
(Long et al., 2020a), introduced EGATMDA, a graph attention
network-based framework with hierarchical attention
mechanisms for analyzing microbial-drug interactions. Despite its
innovation, this model’s accuracy is constrained by its reliance on
pre-existing association data for similarity computation.

Another approach, WHGMF, proposed by Ma and Liu (2022),
employs weighted hypergraph learning with generalized matrix
decomposition to estimate potential microbe-drug interactions.
Yet, it overlooks critical biological details, such as microbial
sequences and drug side effect-based similarities, which
diminishes prediction accuracy. GCNMDA, introduced by Long
et al. (2020a), combines graph convolutional networks and
conditional random fields with an attention mechanism to
predict microbial-drug associations. Nevertheless, its performance
is hindered by noise within extracted similarity features.

Deng et al. (2022) presented Graph2MDA, which uses
multimodal attribute graphs and a variogram self-encoder to
analyze node-level information and infer potential interactions.
In contrast (Tan et al., 2022), proposed GSAMDA, a model
integrating graph attention networks with sparse self-encoders to
compute microbe-drug correlations. However, GSAMDA struggles
with sparse data matrices, limiting its effectiveness. Although these
computational models exhibit strengths in certain areas, each faces
distinct challenges, emphasizing the need for continued innovation
in this field.

In binary relation prediction, selecting appropriate negative
samples is critical for effective model training. However,
identifying informative negative samples from a pool of
candidate negatives remains a significant challenge (Li et al.,
2022). This issue is particularly evident in link prediction tasks,
where generating meaningful negative samples has long been a
persistent problem. Conventional machine learning methods
typically classify known associations between entities (labeled
samples) as positive samples, while unrecognized or unlabeled
associations are treated as candidate negatives (Yang et al., 2012).
Yet, due to the scarcity of known microbe-drug associations in
publicly available datasets, the imbalance between positive and
negative samples becomes a critical issue. To mitigate this
imbalance and preserve model performance, advanced negative
sampling strategies are essential.

The most widely used approach, random sampling, involves
selecting a subset of negative samples equal in number to the positive
samples (Lou et al., 2022). While straightforward, this method often
fails to prioritize informative negatives andmay include irrelevant or
noisy examples (López et al., 2013). Efforts to enhance negative
sampling strategies (Zeng et al., 2020; Wei et al., 2021; Dai et al.,
2022) have achieved limited success, as they do not sufficiently focus
on identifying the most valuable negatives critical for effective
classifier training. This oversight can result in undertraining and
reduced predictive performance.

To address these limitations, we developed a novel microbe-drug
association prediction model, CLMT. This model leverages a Graph
Transformer network to identify potential associations between
graph nodes. It incorporates contrastive learning and employs a
four-phase approach with diverse augmented views as positive
samples, significantly enhancing prediction accuracy. The key
contributions of our work are as follows:

(1) We develop a novel heterogeneous graph-based model that
employs a Graph Transformer network to effectively capture
complex interactions between microbes and drugs. This
allows the model to leverage long-range dependencies
within the network structure, surpassing traditional GCN-
based methods.

(2) We introduce contrastive learning into microbe-drug
association prediction, a technique previously
underexplored in this domain. The model generates
multiple augmented graph views through node
perturbation, treating them as positive samples, while
negative samples are selected from different graphs. This
contrastive loss mechanism significantly enhances the
model’s ability to learn discriminative and generalizable
embeddings.
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(3) We conduct extensive experiments on three widely used
public datasets (MDAD, aBiofilm and Drug Virus),
demonstrating that CLMT significantly outperforms state-
of-the-art prediction methods. We further validate CLMT’s
ability to uncover novel microbe-drug associations through
case studies on two common drugs, reinforcing the model’s
practical value in biomedical research.

2 Materials and methods

2.1 Datasets

In this study, we used three publicly available datasets for model
training and validation: the Microbe-Drug Association Database
(MDAD), the aBiofilm database, and the Drug Virus database.

MDAD is a comprehensive resource specializing in known
associations between microbes and drugs, integrating data from
authoritative sources such as DrugBank, the Human Microbiome
Project (HMP), KEGG, and PubChem. Specifically, the MDAD
database includes 2,470 clinically or experimentally validated
associations between 1,373 drugs and 173 microorganisms. Each
association is backed by high-quality data and confirmed through
rigorous experimental validation or clinical trials.

The aBiofilm database contains 2,884 associations between
1,720 drugs and 140 microorganisms, focusing on biofilm-
associated microbial-drug interactions. It collects a substantial
amount of experimental data, particularly on drug-microbe
associations related to biofilm formation and inhibition.

The Drug Virus database provides an extensive collection of
drug-virus interactions, which are critical for understanding the
potential antiviral effects of drugs. This dataset integrates data from
multiple biomedical resources, including DrugBank, CTD, and
literature-reported associations, and contains over 3,000 drug-
virus interactions covering a wide range of viral pathogens. The
inclusion of this dataset allows us to assess the model’s ability to
handle a broader spectrum of drug-target interactions, particularly
in the context of antiviral drug discovery and drug repurposing.

To ensure the reliability of the analyzed results and the biological
significance of the associations, we further incorporated drug-
disease and microbe/virus-disease association data. The results of
the analyses of the MDAD, aBiofilm, and Drug Virus datasets are
presented in Table 1.

Consistent with the methodology described by Tan et al. (2022),
we implemented the following data screening strategy. First, we
selected diseases that were associated with at least one drug and one
microorganism in the MDAD dataset. This screening step yielded
109 diseases linked to both drugs and microorganisms. From these,

we further extracted 1,121 drug-disease associations and
402 microbe-disease associations.

Similarly, we screened the aBiofilm dataset for diseases
associated with at least one drug and one microorganism. This
process identified 72 diseases, from which we extracted 435 drug-
disease associations and 254 microbe-disease associations.

For the Drug Virus dataset, we applied the same screening
criteria, selecting diseases associated with at least one drug and one
virus. This step identified 85 diseases, from which we extracted
720 drug-disease associations and 580 virus-disease associations.
The inclusion of the Drug Virus dataset allows us to evaluate the
model’s performance on a larger and more diverse dataset,
particularly in the context of antiviral drug discovery and cross-
domain generalization.

By integrating the Drug Virus dataset into our study, we aim
to assess the model’s scalability and robustness when applied to
a broader range of biomedical problems. Additionally, given
the growing need for antiviral drug repurposing—particularly
in response to emerging viral diseases—this dataset provides
an important benchmark for evaluating the model’s ability
to predict drug-virus associations with potential
clinical relevance.

2.2 Overview

Figure 1 shows the detailed architecture of the Graph
Contrastive Learning Model with Transformer proposed in this
study for Microbe-Drug Associations Prediction (abbreviated as
CLMT). The model aims to capture underlying structural
relationships in microbe-drug graphs and enhance the robustness
and discriminative power of the representation through contrastive
learning. The CLMTmodel consists of four main modules: the Input
Microbe-Drug Graph, the Graph Transformer Module, the Graph
Contrastive Learning Module, and the Association
Prediction Network.

First, the model constructs a heterogeneous graph structure
composed of microbes and drugs as input. This graph is then
processed by the Graph Transformer Network to capture
potential association relationships between the nodes (Yun et al.,
2019). Next, the Graph Transformer encoder further refines these
association relationships within the microbe-drug graph structure.
The model also incorporates contrastive learning (You et al., 2020),
generating multiple augmented views of the graph as positive
samples, while negative samples are derived from different
graphs. By calculating the contrastive loss between the original
graph and its augmented views, the model learns a more robust
representation. Finally, the Association Prediction Network

TABLE 1 Results of MDAD and aBiofilm dataset analysis.

Data
set

Number of
drugs

Microbial
population

Number of
diseases

Number of
associations

Number of drug-
disease associations

Number of microbe-
disease associations

MDAD 1,373 173 109 2,470 1,121 402

aBiofilm 1,720 140 72 2,884 435 254

Drug Virus 1,950 200+ 85 3,050+ 720 580
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formalizes this task as a binary classification problem to compute the
potential association information between microbes and drugs.

2.3 Input microbe-drug graph

The Microbe-Drug Graph Representation Layer is the base
module of the CLMT model. The layer receives raw microbe and
drug data, transforms them into heterogeneous graph structures and
computes the similarity matrices of drugs and microbes, and finally
generates microbe-drug embedding representations. These
embeddings representations are used as input vectors for the
subsequent graph Transformer learning module.

The initial inputs to this layer are raw microbial data and drug
data. First, based on knownmicrobe-drug associations, we construct
a heterogeneous network structure by combining drug similarity
and microbe similarity networks. We define the microbe-drug
neighbor matrix ∈ Rnd×nm , where nm and nd denote the number
of microbes and drugs, respectively. If the first i the drug dj is
associated with the number of j microorganism mj there is an
association between them, then the element at the corresponding
position in the adjacency matrix Aij takes the value of 1, otherwise it
takes the value of Aij � 0.

To calculate the similarity of microbial nodes as well as drug
nodes, we introduce exponential similarity. Exponential similarity is
a method commonly used to calculate similarity between nodes
(Goodall, 1966). Setting A(di) and A(mj) denote the adjacency
matrix respectively A the rows of i rows and j columns, then the
drugs di and dj The exponential similarity between is calculated
as follows:

Sd
exp di, dj( ) � exp −β ‖ A di( ) − A dj( )‖2( )

β � β′
1
nd
∑nd
i�1

‖ A di( )‖2( )

Where β′ is the tuning parameter and takes the value of 1. ‖*‖
denotes the Frobenius norm. Similarly, the exponential similarity
matrix of microorganisms Sm exp is calculated similarly:

Sm
exp mi, mj( ) � exp −β ‖ A mi( ) − A mj( )‖2( )

β � β′
1
nm
∑nm
i�1

‖ A mi( )‖2( )
Next, we use Jaccard Similarity (Bag S et al., 2019) tomeasure the

similarity between nodes. Jaccard similarity measures similarity
based on the ratio of intersection to concatenation. The Jaccard
similarity between drug node pairs is defined as follows:

SJacd di, dj( ) � A| di( ) ∩ A dj( )∣∣∣∣∣
A| di( ) ∪ A dj( )∣∣∣∣∣

where |*| denotes the number of elements in the set. Similarly, we
have calculated the Jaccard similarity of microorganisms:

SJacm mi, mj( ) � A| mi( ) ∩ A mj( )∣∣∣∣∣
A| mi( ) ∪ A mj( )∣∣∣∣∣

Further, we combine the index similarity of drugs Sd exp and
Jaccard Similarity SJacd , to get the integrated drug similarity matrix
Sd :

Sd � Sd exp + SJacd

2

Similarly, the integrated microbial similarity matrix Sm is
calculated as follows:

Sm � Sm exp + SJacm

2

Ultimately, we construct graph networks based on these
integrated similarity and adjacency matrices:

FIGURE 1
Structural diagram of the model proposed in this study for the microbe-drug association prediction task.
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N � Sd A
AT Sm

[ ]
The graph network constructed in this way N that not only

retains the similarity information of drugs and microorganisms, but
also incorporates the interactions between them, providing a rich
feature representation for subsequent graph neural network models.

2.4 Graph transformer module

In this study, the Graph Transformer module is the core
component, which is designed to capture potential microbe-drug
association features by learning the deep representation of nodes in
the microbe-drug graph structure.

The graph attention mechanism is the key mechanism of the
Graph Transformer module, which allows nodes to dynamically
adjust their own representations in microbial-drug networks by
taking into account the information of neighboring nodes (Wang X
et al., 2019). Specifically, in the first l layer, the feature representation
of each node is H(l) ∈ R(nd+nm)×d(l) , where n � nd + nm is the total
number of nodes, i.e., the sum of the number of microbes and drugs,
and d(l) is the number of nodes in the first l number of hidden units
in the layer. And the node features can be obtained by linear
transformation:

Z l( ) � H l( )W l( )

where W(l) ∈ Rd(l)×d(l) is the learnable weight matrix. Multihead
attention allows the model to learn multiple sets of
different attention weights in parallel to capture the
relationships of different feature subspaces in a
heterogeneous network. For the first l layer of multi-head
attention, node i and its neighbor nodes j The attention
weights between the node and its neighbor nodes α(l,k)ij can be
computed in the following way:

α l,k( )
ij � exp LeakyReLU a l,k( )T Z l( )

i ‖ Z l( )
j[ ]( )( )

∑
j′∈N i

exp LeakyReLU a l,k( )T Z l( )
i ‖ Z l( )

j′[ ]( )( )

where a(l,k) ∈ R2d(l) is the learned attention parameter, and
LeakyReLU(*) is the activation function, and N i denotes the
node i the set of neighbors of the node, and ‖ denotes the vector
splicing operation. Further, the Graph Transformer module
introduces a multi-head attention mechanism, where the outputs
of multiple attention heads undergo a splicing operation to obtain
the final node representation:

H l+1( )
i � Concat H l+1,1( )

i , . . . , H l+1,K( )
i[ ]( )

where K is the number of attention heads. In addition, in order to
promote the stability of information transfer and model training, the
output of each layer of Graph Transformer is subjected to residual
concatenation and layer normalization, a process that can be
formally described as:

H l+1( )
i � LayerNorm H l( )

i +H l+1( )
i( )

where LayerNorm(*) denotes the layer normalization operation.

After iterative updating by the multi-layer graph attention
mechanism, the feature representation of each node in the final
layer of the microbe-drug network H(L) contains rich feature
information of drugs and microbes, which can effectively capture
the potential interaction patterns and association laws
between them.

2.5 Graph contrastive learning module

The Graph Contrastive Learning module is designed to enhance
the model’s ability to extract informative and discriminative
representations of nodes in the heterogeneous microbe-drug
interaction network. By leveraging contrastive learning, our
model learns to maximize the agreement between positive
samples (different augmented views of the same node) while
minimizing the similarity with negative samples (nodes from
different distributions).

In order to enhance the model’s understanding of the structure
of the microbe-drug graph and to improve the generalization ability
of the overall model, we employed graph data augmentation
techniques to generate multiple augmented views of the original
graph, thereby enriching the data sample space for model training.
Specifically, we used the node perturbation method to generate
augmented graphs (Hiratani N et al., 2022). For each node in the
microbe-drug graph structure, we randomly perturbed its feature
vector to simulate the variation and uncertainty of node features. Let
the node in the original graph i of the original graph be represented
by the features of hi , the feature representation of the node after
node perturbation is ~hi , the node perturbation process can be
formalized as:

~hi � hi + ϵi, ϵ ~ N 0, σ2( )
where ϵi is a random perturbation added to the node features,
usually obeying some predefined distribution such as Gaussian or
uniform. In this way, with the node perturbations, we can generate
multiple augmented views with a slightly different structure from the
original graph.

The purpose of the node perturbation operation is to introduce
enough randomness to increase the diversity of the data and thus
help the model learn a representation that is robust to noise and
variation in the input data. In the graph contrast learning
framework, these augmented views are used as the basis for the
generation of positive sample pairs for optimizing the contrast
learning process of the model. For the multiple augmented views
generated, further inputs are provided to learn the deep feature
representation of the nodes in Graph Transformer. For the output of
Graph Transformer, the high-dimensional node representations are
mapped to a low-dimensional space suitable for comparative
learning through Feature Transformation. The goal of Feature
Transformation is to reduce the dimensionality of the
representations and to enhance their expressive power, typically
using a fully connected layer, a process that can be formalized as:

zi � FeatureTransformation H L( )
i( )

where H(L)
i is the first L node representation of the layer, and zi is

the node representation after projection.
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After generating augmented views, we apply a contrastive loss
function to maximize agreement between the original and
augmented representations while ensuring separation from
negative samples. Specifically, for each node in the microbe-drug
graph structure zi , we define its contrast loss as:

Lcon � −log exp sin zi, zj( )/τ( )
∑2N
k�1

1 k≠i[ ] exp sin zi, zk( )/τ( )
sin zi, zj( ) � zi · zj

‖ zi‖‖zj ‖

where sin (zi, zj) are the nodes zi and zj the similarity between the
nodes, and τ is the temperature parameter, which controls the
sharpness of the similarity distribution. 1[k≠i] denotes the
indicator function that ensures the sum normalization of pairs of
samples other than positive samples. One critical aspect of
contrastive learning is the selection of negative samples, as poorly
chosen negatives can lead to suboptimal representations. We employ
semi-hard negative mining, where negative samples are selected
based on their similarity scores. Nodes with extremely low similarity
are ignored, as they contribute little useful information. Nodes with
moderate similarity are prioritized, as they force the model to learn
more discriminative features.

The loss function optimizes the embeddings such that positive
pairs (nodes representing the same entity in different
augmentations) are pulled closer together, while negative pairs
(nodes from different distributions) are pushed apart.

The graph contrast learning module combines graph data
enhancement and unsupervised contrast learning ideas to
effectively optimize the representation learning process of
microbial-drug graphs, and experimental results show that the
module can improve the model’s prediction accuracy and
generalization ability of microbial-drug associations.

2.6 Association prediction network

In the association prediction layer, we will utilize the microbial
and drug graph structure representations obtained from the prelude
steps for association prediction. Since the output of the model is still
the node representations learned by Graph Transformer and Graph
Comparison Learning Module, we first map these high-dimensional
node representations to the final association prediction results.
Specifically, we reduce the set of nodes by a linear
transformation Z for dimensionality reduction, and the linear
transformation can be expressed as:

H � ZW + b

where H is the node representation matrix after linear
transformation. Then, the sigmoid activation function is utilized
to map the linearly transformed node representations into the [0, 1]
the probability space for predicting the association probability
between microorganisms and drugs:

Ŷ � σ H( )
Where. Ŷ∈ R1 denotes the probability of potential association

between microorganism and drug.

2.7 Loss function

At this point, we complete the inference process of the CLMT
model, and the pseudo-code corresponding to this process is shown in
Figure 2. In order tomeasure the difference between the predicted and
true values of the model, we use the cross-entropy loss function to
evaluate the effect of microbe-drug association prediction (Mao A
et al., 2023). The cross-entropy loss function is a commonly used loss
function in classification problems, and in microbe-drug association
prediction, we modeled the problem as a binary classification task,
i.e., predicting whether a certain pair of microbes and drugs are
associated. The cross-entropy loss function is defined as follows:

LCE � − 1
N

∑N
i�1

yi log ŷi( ) + 1 − yi( )log 1 − ŷi( )[ ]
where N denotes the sample size; yi is the first i true label of the first
sample, which indicates the presence of association, and 0 indicates
the absence of association. ŷi is the model’s predicted probability for
the i sample, indicating the probability of an association between the
microbe and the disease. The cross-entropy loss function improves
the accuracy of the prediction by penalizing the wrong prediction of
the model so that the model continuously adjusts the parameters
during the training process.

To preventmodel overfitting, we add a regularization term to the loss
function. The regularization term improves the generalization ability of
the model by adding a penalty to the model complexity in the loss
function, encouraging the model to choose simpler parameter
configurations (Kukačka J et al., 2017). In the CLMT model, we use
L2 regularization, i.e., weight decay. It is defined as follows:

Lreg � λ∑
k

‖ Wk ‖22

Where λ is the number, which controls the weight of the
regularization term; Wk denotes the model’s first k weight
matrix; ‖ Wk ‖22 is the number of Wk the L2 paradigm of the
sum of squares of the weight matrices. The regularization term
prevents the model from overfitting the training data by penalizing
excessively large values of the weights, thus improving the model’s
performance on the test data.

Ultimately, the combined loss function of the CLMT model
consists of an unsupervised graph-contrast learning loss, a cross-
entropy loss, and a regularization term of the following form:

L � Lcon + LCE + Lreg

This comprehensive loss function optimizes the node
representation in the microbe-drug graph structure on the one
hand, and takes into account the accuracy of the model
prediction and the complexity of the model to ensure that the
model not only can accurately fit the training data during the
training process, but also has good generalization ability.

3 Experiments and results

This section provides a comprehensive description of the
experimental setup, evaluation metrics, and baseline methods
used to assess the performance of the CLMT model. We also
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present the results of the experiments along with a detailed
analysis. The effectiveness and superiority of the CLMT model
in predicting microbe-disease associations are demonstrated

through comparisons with several baseline methods.
Additionally, Figure 2 presents the corresponding pseudo-code
of the CLMT model.

FIGURE 2
Pseudocode of the CLMT model proposed in this study.
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3.1 Experimental setup

In this study, we extracted drug features, microbial
characteristics, and microbe-drug association matrices from the
MDAD and aBiofilm databases. These feature matrices were
subsequently used to construct heterogeneous networks that
represent the interactions between drugs and microbes.

For the CLMT model, we set the number of epochs to 1,000 and
the learning rate for the optimization algorithm to 0.001. The Graph
Transformer model was configured with 3 layers, while the
Multihead Self-Attention module contained 6 heads. Specifically,
we tested different configurations of the Graph Transformer layer
(ranging from 1 to 5 layers) and found that using 3 layers achieved
the best balance between model complexity and performance. A
smaller number of layers (e.g., 1 or 2) led to insufficient
representation learning, while a larger snumber of layers (e.g.,
4 or 5) caused overfitting and increased computational costs
without significant performance improvements. For the multi-
head attention mechanism, we experimented with different head
numbers (ranging from 2 to 8). We found that 6 heads provided the
most effective feature aggregation, allowing the model to capture
diverse interaction patterns between microbes and drugs. Using
fewer heads (e.g., 2 or 4) limited the model’s ability to focus on
multiple aspects of the relationships, while using more heads (e.g., 8)
led to increased computational overhead without notable gains in
predictive accuracy. In the contrastive learning module, we set the
temperature parameter τ in the contrastive loss function to 0.5,
following extensive empirical analysis. The temperature parameter
controls the sharpness of the similarity distribution, affecting how
the model distinguishes positive and negative pairs. To determine
the optimal value of, we tested values in the range [0.1,1.0] with a
step size of 0.1. We observed that smaller values (τ <0.3) led to over-
concentration of representations, where the model assigned overly
confident similarity scores, reducing the discriminative ability of
learned embeddings. Larger values (τ >0.7) resulted in overly
smooth embeddings, making it harder for the model to
effectively separate positive and negative pairs. Setting τ =
0.5 achieved the best balance between representation
compactness and separability, ensuring that positive pairs
remained close while maintaining sufficient distinction from
negative pairs.

To improve model generalization, we incorporated a stochastic
deactivation strategy in the association prediction module of the
linear layer, with a dropout rate of 50%.

The model was trained using the Adam optimizer with a weight
decay prevent overfitting. We applied an early stopping criterion
with a patience of 20 epochs, monitoring the validation loss to avoid
unnecessary training cycles. During both training and evaluation, we
performed multiple rounds of cross-validation. Specifically, 5-fold
cross-validation was applied, where the dataset was randomly split
into five subsets. In each fold, one subset was used as the test set, and
the remaining four were used for training. To ensure the reliability
and robustness of the results, the entire experiment was repeated five
times, and the average performance metrics were reported. All
experiments were conducted on a NVIDIA 2080Ti GPU (11GB
VRAM). The GPU acceleration significantly improved the efficiency
of graph-based operations, particularly in the Graph Transformer
module and contrastive learning calculations.

3.2 Evaluation indicators

In order to evaluate the methodology proposed in this paper, we
employ a series of evaluation metrics to comprehensively measure
the performance of the model, including AUC, AUPR and Accuracy.
The following are the formal definitions and calculations of each
evaluation metric:

AUC (Area Under the ROC Curve) represents the area under
the receiver operating characteristic curve (ROC Curve), which is
used to measure the classification performance of the model. The
ROC Curve plots the True Positive Rate (TPR) and False Positive
Rate (FPR) through different thresholds. TPR and FPR are defined
as follows:

TPR Recall( ) � TP

TP + FN

FPR � FP

FP + TN

where TP denotes true positives (True Positives) and FP denotes
False Positives, and FN denotes False Negatives, and TN denotes
True Negatives. AUC is a threshold-independent metric, meaning it
evaluates model performance across all possible decision thresholds
rather than a single threshold. It measures the model’s
discrimination ability—the probability that a randomly chosen
positive sample is ranked higher than a randomly chosen
negative sample. In tasks like microbe-drug association
prediction, where both false positives (misidentifying non-
associations as associations) and false negatives (failing to
identify true associations) are critical, AUC provides a balanced
view of the model’s classification performance.

AUPR (Area Under the Precision-Recall Curve) denotes the area
under the Precision-Recall Curve, which is used to measure the
classification performance of the model on unbalanced datasets. The
Precision-Recall Curve plots Precision and Recall through different
thresholds. Precision and Recall are defined as follows:

Precision � TP

TP + FP

Recall � TP

TP + FN

where TP denotes true positives (True Positives) and FP denotes
False Positives, and FN denotes False Negatives. Precision reflects
the proportion of samples predicted to be positive by the model that
are actually positive, while recall reflects the proportion of samples
that are actually positive that are correctly predicted to be positive.
AUPR has a value between 0 and 1, with larger values indicating
better model performance. Since microbe-drug association datasets
often contain significantly more negative samples than positive ones,
AUC may overestimate model performance by giving equal weight
to both classes. AUPR, on the other hand, focuses on the positive
class and better reflects the model’s ability to identify meaningful
associations.

In addition to AUC and AUPR, we also report Accuracy as a
standard evaluation metric to measure the overall correctness of the
model’s predictions. Accuracy is defined as:

Accuracy � TP + TN

TP + TN + FP + FN
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Accuracy provides a simple and intuitive measure of the model’s
classification ability. It is useful when the dataset is relatively
balanced, as it evaluates both positive and negative class
predictions equally.

3.3 Methods of comparison

To evaluate the performance of our proposed method, we
compared it with five existing microbe-drug association
prediction approaches. A brief overview of each method and
their limitations is provided below:

HMDAKATZ (Zhu et al., 2019): This method predicts microbe-
drug associations using the KATZ metric. However, it primarily
relies on traditional graph metrics, which are unable to capture
complex long-range dependencies. It also fails to account for
important biological features of microbes and drugs, such as drug
side effects, which limits its applicability to novel drugs or microbes
with unknown associations.

GCNMDA (Long et al., 2020b): This method is based on Graph
Convolutional Networks (GCNs) and conditional random fields to
predict associations between microbes and drugs. While GCNs can
capture local interactions, they struggle to model complex
heterogeneous network structures and long-range dependencies,
which affects their performance in handling noisy data and
unknown associations.

GSAMDA (Tan et al., 2022): GSAMDA uses graph attention
networks and sparse autoencoders to model both topological and
attribute features within a microbe-drug heterogeneous network.
However, its performance is limited by data sparsity, especially when
there is insufficient labeled data, and it does not adequately model
the intricate biological interactions between microbes and drugs.

LAGCN (Yu et al., 2021): LAGCN applies graph convolution to
learn drug and disease embeddings, using an attentional mechanism
to integrate embeddings from multiple layers for drug-disease
association prediction. However, it is optimized for drug-disease
predictions and does not specifically target microbe-drug
associations, limiting its effectiveness for the task at hand.

NTSHMDA (Luo and Long, 2018): This method uses an
improved randomized roaming algorithm to infer microbe-
disease associations by integrating topological similarities within
a microbe-drug network. However, it overlooks important biological
features such as microbial genome information and drug side effects,
which reduces its predictive power, especially for microbe-drug
interactions.

These methods were evaluated on the MDAD, aBiofilm and
Drug Virus datasets, using their default configurations and tuning
their hyperparameters. All methods underwent 5-fold cross-
validation, with known microbe-drug associations serving as
positive samples and randomly generated negative samples for
the training and test sets. To minimize sampling bias, each
comparison was repeated five times, and the final AUC score was
reported as the average of these iterations.

In contrast to these methods, our CLMT model introduces
several innovations:

1. Graph Transformer Network: CLMT uses a Graph
Transformer network to capture complex, long-range

dependencies within the microbe-drug interaction network,
surpassing the limitations of GCN-based approaches.

2. Contrastive Learning: By leveraging contrastive learning and
generating multiple augmented views of the graph, CLMT
significantly improves the model’s ability to learn
discriminative and generalizable embeddings, even with
sparse data.

3. Prediction of Novel Interactions: CLMT excels at predicting
not only known associations but also novel microbe-drug
interactions, making it more versatile and applicable in real-
world scenarios where data may be limited or incomplete.

Our extensive experiments on the MDAD, aBiofilm and Drug
Virus datasets demonstrate that CLMT outperforms these existing
methods, offering superior predictive accuracy and uncovering
novel microbe-drug associations with greater reliability.

3.4 Experimental results and analysis

Tables 2, 3 present the AUC, AUPR, and Accuracy scores of the
CLMT model proposed in this paper, along with those of the
compared methods on the MDAD and aBiofilm datasets. As
shown in the tables, the CLMT method achieved the highest
AUC (0.9735 and 0.9742), AUPR (0.9720 and 0.9714), and
Accuracy (0.9045 and 0.9121) scores on both datasets,
significantly outperforming the other five methods.

First, several comparative methods have demonstrated
effectiveness in microbe-disease association tasks. For instance,
the GSAMDA model, which utilizes graph attention networks
and sparse autoencoders, achieved AUC scores of 0.9460 and
0.8955, and AUPR scores of 0.9223 and 0.9073 on the MDAD
and aBiofilm datasets, respectively. These results indicate that
GSAMDA effectively captures the topological and attribute
features of nodes in the newly constructed microbial-drug
heterogeneous network. Specifically, when dealing with graph
data involving complex relationships, the graph attention
network (GAT) can effectively focus on important node features
through the attention mechanism, while the sparse autoencoder
(SAE) can capture the data’s sparse structure. These characteristics
enable GSAMDA to perform well in this task, demonstrating the
feasibility of using graph neural networks and autoencoders for
microbe-drug association prediction.

However, despite the satisfactory performance of many methods
on this task, their AUC, AUPR, and Accuracy metrics still have
room for improvement. Taking the GSAMDAmodel as an example,
its AUC on the aBiofilm dataset is 0.8955, and its AUPR is 0.9073,
which represents a gap of 5.05% and 1.5%, respectively, compared to
its performance on the MDAD dataset. This gap suggests that
GSAMDA has limitations, particularly when handling different
datasets, indicating its potential shortcomings in capturing
features and modeling relationships. Therefore, the microbe-drug
association prediction task requires further exploration, and more
powerful and robust methods are necessary to enhance prediction
performance.

In comparison, the CLMT method proposed in this paper
significantly outperforms all other methods on both datasets. The
three evaluation metrics on the MDAD dataset are 0.9735, 0.9720,
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and 0.9045, respectively, while on the aBiofilm dataset, the
corresponding metrics are 0.9742, 0.9714, and 0.9121. We
attribute this superior performance to the unique model structure
and design principles of CLMT.

To further verify whether the experimental results of CLMT are
statistically significant, we conducted a statistical analysis on the
AUC scores from 5-fold cross-validation and compared them with a
baseline method. Since some existing methods do not have publicly
available implementations, we reproduced GSAMDA, one of the
best-performing models on the MDAD dataset, as a comparison
model and computed the p-value to assess whether CLMT provides
a statistically significant improvement. On the MDAD test set, the
AUC scores from 5-fold cross-validation for GSAMDA were
[0.9497, 0.9277, 0.9389, 0.9539, 0.9581], while our proposed
CLMT achieved [0.9735, 0.9730, 0.9737, 0.9748, 0.9729] under
the same conditions. To quantify whether the performance gain
of CLMT over GSAMDA is statistically significant, we applied a
paired t-test, obtaining a p-value of 0.0010 (p < 0.05). This result
confirms that the improvement of CLMT over GSAMDA is not due
to random variations but represents a statistically significant
performance enhancement driven by the methodological
improvements introduced in CLMT.

CLMT employs data enhancement techniques such as node
perturbation, which enriches the training data by generating a multi-
view graph structure. This technique helps the model better learn the
diversity of nodes and edges within the graph, thereby improving its
generalization ability. More importantly, in the graph contrastive
learning module, CLMT utilizes a projection head to map the node
representations output by the graph encoder to a space suitable for
contrastive learning. By calculating the contrastive loss, this
mechanism maximizes the consistency between different views of
the same graph structure and minimizes the similarity between

different graph structures. This contrastive learning mechanism
effectively enhances the model’s ability to capture graph structure
features, enabling it to make more accurate association predictions
when faced with different graph structures.

Additionally, CLMT incorporates a Transformer model based
on a multi-head self-attention mechanism within the graph encoder.

TABLE 2 5-fold cv results on MDAD dataset.

Model AUC AUPR Accuracy

HMDAKATZ 0.8712 ± 0.0010 0.8798 ± 0.0068 0.7691 ± 0.0167

GCNMDA 0.9365 ± 0.0001 0.9300 ± 0.0002 0.8617 ± 0.0011

GSAMDA 0.9460 ± 0.0197 0.9223 ± 0.0164 0.7979 ± 0.0279

LAGCN 0.8974 ± 0.0056 0.9062 ± 0.0050 0.8572 ± 0.0067

NTSHMDA 0.8512 ± 0.0043 0.8094 ± 0.0055 0.7820 ± 0.0137

CLMT 0.9735 ± 0.0014 0.9720 ± 0.0025 0.9045 ± 0.0031

TABLE 3 5-fold cv results on aBiofilm dataset.

Model AUC AUPR Accuracy

HMDAKATZ 0.8982 ± 0.0042 0.9018 ± 0.0037 0.7811 ± 0.0083

GCNMDA 0.9465 ± 0.0073 0.9376 ± 0.0026 0.8772 ± 0.0012

GSAMDA 0.8955 ± 0.0020 0.9073 ± 0.0033 0.8345 ± 0.0001

LAGCN 0.8991 ± 0.0047 0.9084 ± 0.0028 0.8710 ± 0.0011

NTSHMDA 0.8633 ± 0.0065 0.8204 ± 0.0045 0.8073 ± 0.0038

CLMT 0.9742 ± 0.0024 0.9714 ± 0.0011 0.9121 ± 0.0005

FIGURE 3
Performance comparison of CLMT, CLMT-CL, CLMT-Transformer, CLMT-node perturbation on MDAD, aBiofilm, and DrugVirus datasets.
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This approach enhances the model’s representational capacity by
capturing various relationships and feature interactions between
nodes through multiple attention heads. The multi-head self-
attention mechanism not only focuses on globally important
features but also mitigates the overfitting problem that can arise
from relying on a single attention head.

Table 4 presents the AUC, AUPR, and Accuracy scores of the
CLMT model proposed in this paper, along with those of the
compared methods on the Drug Virus dataset. As shown in the
table, the CLMT method achieved the highest AUC (0.9727), AUPR
(0.9699), and Accuracy (0.9235), significantly outperforming the
other five methods.

Despite the reasonable performance of many existing
methods, their AUC, AUPR, and Accuracy metrics still have
room for improvement. For example, the GSAMDA model,
which utilizes graph attention networks and sparse
autoencoders, achieved an AUC of 0.8754 and an AUPR of
0.8868 on the Drug Virus dataset. While GSAMDA
successfully captures node attributes and sparse structures, its
performance lags behind that of CLMT, highlighting potential
limitations in generalizing to diverse datasets. Similarly, the
HMDAKATZ model, based on heterogeneous graph diffusion,
showed the lowest performance, with an AUC of 0.8523 and an
Accuracy of 0.7245, indicating its struggles in capturing complex
relationships in Virus-drug interactions.

In comparison, the CLMT method proposed in this paper
significantly outperforms all other methods across all evaluation
metrics. The three evaluation metrics on the Drug Virus dataset are
0.9727, 0.9699, and 0.9235, respectively. We attribute this superior
performance to the unique model structure and design
principles of CLMT.

Overall, the results on the Drug Virus dataset further validate the
effectiveness of CLMT in microbial-drug association prediction. By
leveraging contrastive learning, self-attention mechanisms, and data
augmentation techniques, CLMT demonstrates superior

adaptability and generalization capabilities, setting a new
benchmark for future research in this domain.

3.5 Ablation experiment

To further validate the effectiveness of the individual modules in
our proposed CLMT method, we conducted ablation experiments
on the MDAD, aBiofilm, and DrugVirus datasets. The results are
shown in Table 5 and Figure 3.

When the Graph Contrastive Learning Module was removed,
the model exhibited consistent performance degradation across all
datasets. Specifically, the AUC decreased from 0.9735 to 0.9629 on
MDAD, 0.9742 to 0.9576 on aBiofilm, and 0.9727 to 0.9514 on
DrugVirus. These results highlight the critical role of contrastive
learning in enhancing the model’s discriminative ability by
maximizing consistency between augmented graph views. The
significant performance drop (average 1.9% across datasets)
underscores its contribution to generalization. Additionally, to
qualitatively analyze the effectiveness of the contrastive learning
module, we present the embedding distribution of the MDAD
dataset’s test data. Specifically, we obtained the high-dimensional

TABLE 4 5-fold cv results on Drug Virus dataset.

Model AUC AUPR Accuracy

HMDAKATZ 0.8523 ± 0.0074 0.8617 ± 0.0045 0.7245 ± 0.0074

GCNMDA 0.9214 ± 0.0052 0.8965 ± 0.0037 0.8674 ± 0.0069

GSAMDA 0.8754 ± 0.0024 0.8868 ± 0.0064 0.8745 ± 0.0068

LAGCN 0.9214 ± 0.0036 0.9247 ± 0.0029 0.8958 ± 0.0036

NTSHMDA 0.8354 ± 0.0085 0.8004 ± 0.0074 0.7954 ± 0.0023

CLMT 0.9727 ± 0.0012 0.9699 ± 0.0014 0.9235 ± 0.0007

FIGURE 4
Effect of contrastive learning on embedding distributions.
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embeddings of the test data both “before” and “after” contrastive
learning, performed clustering, and visualized the results using
t-SNE, as shown in Figure 4. The left image shows the
embeddings before contrastive learning, where clusters are
present but may overlap due to large variance. The right image
shows the embeddings after contrastive learning, where the clusters
are more compact and distinctly separated, indicating improved
feature discrimination.

Removing the Graph Transformer Module led to the most
pronounced performance decline, with AUC values dropping to
0.9481 (MDAD), 0.9482 (aBiofilm), and 0.9493 (DrugVirus). This
demonstrates the Transformer’s irreplaceable capability in modeling
complex global dependencies and feature interactions within the
graph structure. The multi-head self-attention mechanism
effectively captures long-range relationships, which is particularly
crucial for sparse biological networks like DrugVirus.

Replacing node perturbation with random edge deletion caused
minor but consistent performance degradation across all datasets:
AUC decreased to 0.9727 (MDAD), 0.9719 (aBiofilm), and 0.9701
(DrugVirus). While edge deletion remains a viable augmentation
strategy, node perturbation’s superior performance (average 0.3%
improvement) suggests its advantage in preserving critical structural
information during view generation. This effect is especially notable
on DrugVirus, where biological interaction sparsity demands more
nuanced augmentation.

The ablation experiments confirm that each module uniquely
enhances CLMT’s performance:Contrastive learning mitigates
overfitting through view invariance. Graph Transformer enables
global relational reasoning. Node perturbation optimizes
augmentation for biological graph characteristics. Their combined
effect achieves state-of-the-art AUC values (>0.97 on all datasets),
validating CLMT’s robustness in diverse microbe-drug-virus
association prediction scenarios.

3.6 Case study

In this case study, we aimed to validate the practical effectiveness
of the CLMTmodel in identifying newmicrobe-drug associations by
selecting three commonly used drugs-Cloxacillin, Carvacrol, and
Ciprofloxacin-and the microorganism Mycobacterium tuberculosis
from the MDAD dataset. For each drug, we cross-checked the top
20 predicted microorganisms by searching for their synonyms in the
MeSH and DrugBank databases. Additionally, we verified whether
the predicted microbe-drug associations had been reported in the
scientific literature through PubMed searches.

Cloxacillin, a semi-synthetic penicillin antibiotic, is widely used
to treat infections caused by beta-hemolytic streptococci,
pneumococci, and staphylococci (Grillo et al., 2023). It is
particularly effective against penicillinase-producing strains of
Staphylococcus aureus and Staphylococcus epidermidis, which are
resistant to other antibiotics (Aldman et al., 2022). Research has
demonstrated that cloxacillin inhibits up to 50% of the activity of S.
aureus, S. haematobium, and Salmonella typhi (Orogade and Akuse,
2004). In our study, 15 of the top 20 microorganisms predicted to be
associated with cloxacillin (75%) were confirmed in the literature, as
shown in Table 6.

Carvacrol, a naturally occurring phenolic monoterpene found in
aromatic plants, has demonstrated a wide range of bioactivities in
both in vivo and in vitro studies. These include antioxidant
(Churklam et al., 2020), diabetes prevention (Arkali et al., 2021),
hepatoprotective (Elbe et al., 2020), reproductive (Saghrouchni et al.,
2023), antimicrobial, and immunomodulatory properties (Chraibi
et al., 2020). Additionally, carvacrol is used as a food preservative
due to its flavoring properties (Patel, 2015). Previous research has
highlighted its association with various microorganisms. For
instance (Abdelhamid and Yousef, 2021), described how
carvacrol counteracts desiccation-resistant Salmonella nacionalis,
suggesting its potential as an additive against desiccation-adapted
Enterococcus faecalis in low-moisture foods (Javed et al., 2021).
demonstrated that carvacrol and its metabolites have beneficial

TABLE 5 Results of ablation experiments on MDAD, aBiofilm, and DrugVirus
datasets.

Model AUC

MDAD aBiofilm Drug virus

CLMT 0.9735 ± 0.0014 0.9742 ± 0.0024 0.9727 ± 0.0012

-CL 0.9629 ± 0.0018 0.9576 ± 0.0015 0.9514 ± 0.0025

-Transformer 0.9481 ± 0.0017 0.9482 ± 0.0016 0.9493 ± 0.0014

-node perturbation 0.9727 ± 0.0011 0.9719 ± 0.0014 0.9701 ± 0.0003

TABLE 6 The top 20 Cloxacillin-related microbes predicted by CLMT and
the related publications.

Rank Microbe Evidence

1 Enterobacter aerogenes PMID22001269

2 Clostridium pasteurianum Unconfirmeda

3 Streptomyces sp. nov. PMID6970744

4 Staphylococcus aureus PMID15490798

5 Burkholderia cepacia Unconfirmeda

6 Klebsiella pneumoniae PMID20597925

7 Thermus thermophilus Unconfirmeda

8 Bacillus subtilis PMID25945113

9 Salmonella typhi PMID15490798

10 Helicobacter pylori PMID10748053

11 Schistosoma PMID15490798

12 Candida albicans PMID2713774

13 Micrococcus luteus PMID7771695

14 Bacillus cereusereus PMID24876650

15 Francisella novicida Unconfirmeda

16 Pantoea agglomerans PMID33666040

17 Candida dubliniensis PMID316353125

18 Candida spp. PMID21496537

19 Baker’s yeast PMID25945113

20 Klebsiella planticola Unconfirmeda
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effects on immune dysfunction and infection related to COVID-19.
Moreover (Wang Y. et al., 2020), found that carvacrol reduced
biofilm formation and extracellular polysaccharide secretion by
Pseudomonas fluorescens and S. aureus, without affecting cell
viability. Of the top 20 microorganisms predicted to be
associated with carvacrol, 17 were confirmed by the literature, as
shown in Table 7.

Ciprofloxacin, a fluoroquinolone antibiotic, is widely used for
treating a variety of infections, including pneumonia, typhoid fever,
and skin and soft tissue infections (McCurdy et al., 2017). Numerous
studies have confirmed its effectiveness against various human
microorganisms. For example (Rehaman et al., 2019),
demonstrated ciprofloxacin’s efficacy against Pseudomonas
aeruginosa, an opportunistic pathogen (Liu et al., 2021). reported
reduced lung inflammation in pneumonia patients treated with
ciprofloxacin, while (Trinh et al., 2017) found that combining
ciprofloxacin with ceftriaxone provided the most effective
treatment for foodborne Vibrio traumaticus. In our study, all
20 of the top microorganisms predicted to be associated with
ciprofloxacin were validated by the literature, as shown in Table 8.

In addition,M. tuberculosis was selected for our case study. This
Gram-positive, aerobic bacterium is the causative agent of
tuberculosis, one of the deadliest diseases worldwide. According
to the 2019 Global Tuberculosis Report (WHO Global, 2019),
tuberculosis resulted in 1.5 million deaths in 2018. As shown in

Table 9, 17 of the top 20 predicted drugs for M. tuberculosis have
been supported by prior studies. This underscores the CLMT
model’s strong predictive ability in case studies involving drugs
and microorganisms.

4 Discussion and conclusion

The microbe-drug association prediction task seeks to identify
potential associations between microbes and drugs, which can
support drug development and disease treatment. In this study,
we propose the CLMT model for this task. The CLMT model
improves learning capabilities by integrating a Graph
Transformer network with contrastive learning techniques.
Specifically, we utilize a multilayer Graph Convolutional Network
(GCN) to capture the complex relationships between microbes and
drugs. The contrastive learning module further enhances the
model’s discriminative ability, thereby improving
prediction accuracy.

By effectively modeling complex interactions and overcoming
data sparsity, CLMT can serve as a valuable tool in early-stage drug
screening, ultimately reducing experimental costs and speeding up
the development pipeline. Its robust performance on public datasets
suggests that CLMT has the potential to be integrated into clinical
decision-making frameworks, offering insights that could lead to

TABLE 7 The top 20 Carvacrol-related microbes predicted by CLMT and the
related publications.

Rank Microbe Evidence

1 Streptococcus mutans PMID: 28233286

2 Enteric bacteria and other eubacteria PMID: 16355827

3 Streptomyces sp. nov. Unconfirmeda

4 Vibrio campbellii Unconfirmeda

5 Micrococcus luteus PMID: 33240953

6 Salmonella enterica PMID: 20132667

7 Staphylococcus aureus PMID: 34730626

8 Stenotrophomonas maltophilia PMID: 14659660

9 Enterococcus faecalis PMID: 29877104

10 Bacillus anthracis Unconfirmeda

11 Kocuria rhizophila PMID: 37481932

12 Mycobacterium tuberculosis PMID: 31552700

13 Klebsiella pneumoniae PMID: 34729712

14 Edwardsiella tarda PMID: 37476823

15 Pseudomonas aeruginosa PMID: 35776742

16 Klebsiella planticola PMID: 23030501

17 Staphylococcus epidermidis PMID: 37508194

18 Burkholderia cenocepacia PMID: 26946055

19 Salmonella Typhi PMID: 16355827

20 Acinetobacter baumannii PMID: 25177730

TABLE 8 The top 20 Ciprofloxacin-relatedmicrobes predicted by CLMT and
the related publications.

Rank Microbe Evidence

1 Bacillus subtilis PMID: 33218776

2 Mycobacterium tuberculosis PMID: 22421328

3 Listeria monocytogenes PMID: 34068252

4 Enterobacter cloacae PMID: 11909836

5 Proteus vulgaris PMID: 34638966

6 Enteric bacteria and other eubacteri PMID: 27436461

7 Salmonella Typhi PMID: 31877141

8 Actinobacillus actinomycetemcomitans PMID: 12019120

9 Pseudomonas aeruginosa PMID: 30605076

10 Micrococcus luteus PMID: 3010848

11 Haemophilus influenzae PMID: 8453168

12 Streptococcus epidermidis PMID: 27579011

13 Staphylococcus aureus PMID: 35301951

14 Klebsiella planticola PMID: 25465871

15 Providencia stuartii PMID: 15528892

16 Stenotrophomonas maltophilia PMID: 14982788

17 Bacillus anthracis PMID: 22064542

18 Escherichia coli PMID: 35091053

19 Porphyromonas gingivalis PMID: 15231772

20 Helicobacter pylori PMID: 25721770
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more personalized and effective treatment strategies. The findings of
this study have notable biological implications. By elucidating
previously unknown associations between microbes and drugs,
CLMT can contribute to a deeper understanding of the molecular
mechanisms underlying drug efficacy and resistance. These insights
are particularly relevant in the context of rising antimicrobial
resistance and the need for precision medicine. Furthermore, the
ability of CLMT to highlight subtle, yet biologically meaningful
patterns in microbe-drug interactions may inform future research
on microbial metabolism, host-microbe interactions, and the role of
the microbiome in disease progression. In this way, the model not
only advances computational methodology but also holds promise for
driving novel biological discoveries.

While our experimental results on two publicly available
datasets demonstrate the effectiveness of CLMT, it is important
to acknowledge several limitations and failure cases. In certain
instances, the model’s performance was less robust. For example,
in cases where the microbe-drug association data is extremely
sparse, CLMT sometimes struggled to capture weaker or less
obvious associations. This may be due to insufficient signal in the
available data or limitations in the current data augmentation
strategy. When the relationships between certain microbes and
drugs are subtle or not well-characterized by the provided
features, the model occasionally misclassified these associations.
This suggests that additional biological information (e.g., gene

expression profiles or metabolic pathways) might be needed to
fully capture the underlying mechanisms. Although CLMT
performs well on the MDAD and aBiofilm datasets, its scalability
and effectiveness on larger or more heterogeneous datasets remain
to be thoroughly evaluated. Future work is needed to optimize the
model structure for such scenarios.
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Rank Drug Evidence
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3 Ciprofloxacin PMID: 16154314

4 beta-Pinene PMID: 19753839

5 Pyrazinamide PMID: 26521205

6 Vitamin C PMID: 23695675

7 Gentamicin PMID: 22143521

8 Rilpivirine Unconfirmeda

9 Ceforanide PMID: 7624446

10 Zidovudine PMID: 16154314

11 Polysorbate 80 Unconfirmeda

12 Amikacin PMID: 29311078

13 Zinc oxide PMID: 33845951

14 Vanillylacetone Unconfirmeda

15 Vitamin E PMID: 26491981

16 Darunavir PMID: 28193650

17 Saquinavir PMID: 33841429

18 Lopinavir PMID: 21442799

19 Tobramycin PMID: 19723387

20 Minocycline PMID: 30597040
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