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The Functional Annotation of Animal Genomes (FAANG) consortium aims to
annotate animal genomes across species, and work in the horse has substantially
contributed to that goal. As part of this initiative, chromatin immunoprecipitation
with sequencing (ChIP-seq) was performed to identify histone modifications
corresponding to enhancers (H3K4me1), promoters (H3K4me3), activators
(H3K27ac), and repressors (H3K27me3) in eight tissues from two
Thoroughbred stallions: adipose, parietal cortex, heart, lamina, liver, lung,
skeletal muscle, and testis. The average genome coverage of peaks identified
by MACS2 for H3K4me1, H3K4me3, and H3K27ac was 6.2%, 2.2%, and 4.1%,
respectively. Peaks were called for H3K27me3, a broad mark, using both
MACS2 and SICERpy, with MACS2 identifying a greater average number of
peaks (158K; 10.4% genome coverage) than SICERpy (32K; 24.3% genome
coverage). Tissue-unique peaks were identified with BEDTools, and 1%–47%
of peaks were unique to a tissue for a given histone modification. However,
correlations among usable reads, total peak number, and unique peak number
ranged from 0.01 to 0.92, indicating additional data collection is necessary to
parse technical from true biological differences. These publicly available data
expand a growing resource available for identifying regulatory regions within the
equine genome, and they serve as a reference for genome regulation across
healthy tissues of the adult Thoroughbred stallion.
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1 Introduction

One of the fundamental goals of genetic research in agricultural species is to associate
genomic variation with phenotypic traits of interest. The generation of reference genomes
for many species was critical in facilitating genome-wide association studies; however,
genomic annotation primarily based on transcriptomic data limits the success of these
studies. With protein coding sequences comprising less than 3% of the genome, it is
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unsurprising that nearly 90% of human trait-associated variants fall
outside protein coding sequence (Hindorff et al., 2009; The
ENCODE Project Consortium, 2012; Maurano et al., 2012). To
address these shortcomings in the annotation of the human
reference genome, the Encyclopedia of DNA Elements
(ENCODE) project was established with the goal of identifying
all functional elements in the human genome.

In the past two decades, the ENCODE project has attributed
function to over 80% of the human genome, indicating a large
presence of functional elements outside of coding DNA. Cis-
regulatory elements aid in maintaining transcriptional
programming and include promoters, enhancers, and silencers.
In contrast to the roughly 20,000 annotated protein coding genes,
the ENCODE project identified nearly 400,000 enhancer and
70,000 promoter regions in the human genome (The ENCODE
Project Consortium, 2012). The functional annotation resulting
from the ENCODE project and other epigenomic studies has
empowered subsequent research that has elucidated the impact of
non-coding variants on diseases. Single nucleotide variants (SNVs)
and differential methylation within enhancers and promoters have
been associated with disorders, such as Alzheimer’s disease, multiple
sclerosis, diabetes, congenital heart disease, and other complex
diseases (reviewed by van der Lee et al., 2020; Claringbould and
Zaugg, 2021). Furthermore, structural variants in cis-regulatory
regions can result in enhancer hijacking and disruption of
topologically associated domains (TADs) which are frequently
implicated in cancer development (Adkemir et al., 2020; Zhang
et al., 2022). These studies demonstrate the importance of examining
non-coding regions of the genome and annotation of cis-
regulatory regions.

With inspiration from the landmark discoveries of the
ENCODE project, the Functional Annotation of Animal
Genomes (FAANG) initiative was established to functionally
annotate the genomes of domesticated animal species and
improve the understanding of the genotype-to-phenotype link
(The FAANG Consortium, 2015; Tuggle et al., 2016). Part of this
effort includes annotating cis-regulatory associated elements using
chromatin immunoprecipitation and sequencing (ChIP-seq). ChIP-
seq captures the location of histone protein modifications involved
in gene regulation, such as methylation (me) and acetylation (ac) of
lysine residues on the H3 protein (H3K). The FAANG initiative
prioritized ChIP-seq of four histone modifications associated with
enhancers (H3K4me1), promotors (H3K4me3), active genomic
regions (H3K27ac), and repressed genomic regions (H3K27me3)
as core assays (Giuffra et al., 2019). The equine FAANG project
previously characterized these four histone modifications in
11 tissues from two Thoroughbred mares (Kingsley et al., 2020;
Kingsley et al., 2021). Hundreds of thousands of cis-regulatory
associated elements were identified, with 4%–32% of peaks in a
given tissue being unique to that tissue (Kingsley et al., 2020). With
many genes being differentially expressed between sexes (Lopes-
Ramos et al., 2020), the activity of regulatory elements is likely to
also differ between sexes. Indeed, differences in histone
modifications have been observed between sexes in other species
demonstrating the need for annotation of regulatory elements in
both sexes (Shen et al., 2015; Keiser and Wood, 2019; Kfoury et al.,
2021). Given the detailed analysis performed in mares and no such
efforts to focus solely on stallions, this project aimed to characterize

histone modifications in the tissues of two adult Thoroughbred
stallions to complement the extensive analysis and annotation of cis-
regulatory elements in Thoroughbredmares previously published by
Kingsley et al. (2020), Kingsley et al. (2021). The incorporation of
these data into analyses within and between sexes was included in
Peng et al. (2023); the methods of analysis of the cis-regulatory
elements in the stallions, and the characterization of ubiquitous and
tissue-specific peaks, however, was not previously described. These
data continue to contribute to studies of sex-specific and cross-
species evaluation of genome function.

2 Materials and methods

2.1 Chromatin extraction and
immunoprecipitation

Tissues from two Thoroughbred stallions (ECA_UCD_
AH3 [AH3] and ECA_UCD_AH4 [AH4]), were obtained from
the equine FAANG Biobank. Complete veterinary reports are
available for both stallions in Donnelly et al. (2021). Stallions
AH3 and AH4 were aged three and four, respectively, at the time
of donation. Stallion AH3 suffered a career-ending musculoskeletal
injury in race training prior to donation. Stallion AH4 was not race
trained and was the son of the reference genome donor, Twilight.
Tissue samples that were prioritized for chromatin
immunoprecipitation and sequencing (ChIP-seq) included
abdominal adipose, parietal cortex (brain), left ventricle (heart),
lamina, liver, lung, longissimus dorsi (muscle), and testis. Collected
tissues were flash frozen in liquid nitrogen and stored at −80°C
(Donnelly et al., 2021). ChIP preparation and sequencing was
performed by Diagenode using their ChIP-seq Profiling Service
(Diagenode, Cat# G02010000, Liège, Belgium). Chromatin was
extracted and prepared using the iDeal ChIP-seq kit for Histones
(Diagenode Cat# C01010059). Tissue samples were first
homogenized using a Tissue Lyser II (Qiagen, Germany) and
fixed in 1% formaldehyde to crosslink histone proteins with
DNA. Chromatin was sheared using a Bioruptor Pico
(Diagenode, Cat# B01060001, Liège, Belgium) in 30 s burst to
achieve a targeted fragment size of 200 bp. A temperature of 4°C
(10°C for adipose) was maintained during shearing (Bioruptor water
cooler). The optimization of these parameters had been previously
completed at Diagenode for equine adipose, parietal cortex, left
ventricle (heart), lamina, liver, lung, and skeletal muscle as part of
the equine FAANG project published by Kingsley et al. (2020).
Optimization of chromatin extraction, ChIP, and library
preparation for testis was performed for this study. Information
regarding the homogenization, fixation, and shearing of each sample
is reported in Supplementary Table 1. After crosslink reversal and
DNA purification, shearing was assessed using the High Sensitivity
NGS Fragment Analysis Kit (DNF-474) on an Agilent Fragment
Analyzer (Santa Clara, CA, United States).

Immunoprecipitation (IP) of H3K27ac, H3K27me3, H3K4me1,
and H3K4me3 histone marks was performed using the IP-Star
Compact Automated System (Diagenode, Cat# B03000002, Liège,
Belgium) in all samples except muscle, which was done manually
due to low chromatin retrieval. IP of IgG served as a negative control
across samples, and 1% of chromatin from each sample was set aside
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prior to IP for an input sample that serves to correct for background
noise in downstream analysis. The amount of antibody used to
precipitate each histone mark and IgG differed across tissues and
was previously optimized (Kingsley et al., 2020)
(Supplementary Table 2).

2.2 Library preparation and sequencing

Libraries for the input and ChIP samples for each of the four
histonemarks were prepared using theMicroPlex Library Preparation
Kit v3 (Diagenode Cat# C05010001). Seven to thirteen PCR cycles
were used to amplify libraries and achieve appropriate concentrations
for sequencing. Libraries were double size-selected for fragments with
insert sizes of ~200 bp using Agencourt® AMPure® XP (Beckman
Coulter, Brea, CA, United States) and quantified with the Qubit
dsDNA HS Assay Kit (Thermo Fisher Scientific, Q32854,
Waltham, MA, United States). Libraries were sequenced as 50bp,
paired-end reads on an Illumina HiSeq 4,000 platform (San Diego,
CA, United States) to a target depth of 100 million raw reads for
H3K27me3 (broad mark) and 50 million raw reads for H3K327ac,
H3K4me1, and H3K4me3 (narrow marks) and input samples as
determined by the data presented by Kingsley et al. (2020), Kingsley
et al. (2021).

2.3 Library mapping and read filtering

Adapters were removed and reads trimmed using Trim-Galore/
0.6.5 (Krueger, 2019). Reads were mapped to EquCab3.0 with BWA-
mem/0.7.17 (Li, 2013). Samtools/1.9 (Li et al., 2009) was employed to
mark PCR duplicates and remove read pairs that were unmapped, non-
primary alignments, optical duplicates, or had a mapping alignment
quality score (MAPQ) of less than 30 prior to peak calling. The targeted
usable fragment counts were 45 million for H3K27me3 and 20 million
for the remainingmarks and input samples as outlined in the ENCODE
project (https://www.encodeproject.org/chip-seq/histone/). The
H3K27ac adipose sample from ECA_UCD_AH3 had less than half
of the targeted usable fragments, so an additional library was prepared
and sequenced. The filtered reads from both rounds of sequencing were
merged for downstream analysis.

2.4 Peak calling and signal tracks

Peaks, representing regions of read pileup, were identified using the
pipeline established by Kingsley et al. (https://faang.org/ebi/ftp.ebi.ac.uk/
faang/ftp/protocols/analyses/UCD_SOP_processing_and_analyzing_
equine_PE_ChIP_data_20201230.pdf).MACS2/2.1.1 (Zhang et al., 2008)
was used to call peaks across all four histone marks with a false discovery
rate (FDR) cutoff of 0.01 for H3K4me3 andH3K27ac and an FDR cutoff
of 0.05 for H3K4me1 and H3K27me3. The “--broad” flag and a broad
cutoff of 0.1 were employed for calling H3K27me3 peaks in MACS2.
Fold-enrichment (FE) over the input control was determined for each
sample in MACS2 with a p-value threshold of 1 × 10−6. Additionally,
SICERpy/0.1.1 (https://github.com/dariober/SICERpy, a wrapper for
SICER from Zang et al., 2009) was used to call peaks for
H3K27me3 using a gap size of 4 and a window size of 200bp.

Paired-end (PE) reads were used for MACS2 peak calling, while only
the first reads (R1) of the libraries were used for peak calling in SICERpy
(Zang et al., 2009) as this software has yet to be optimized for PE libraries.
The effective genome size for MACS2, or genome fraction for SICERpy,
was determined bymerging all input samples to identify the percentage of
the genome covered by the merged bam file. The bioinformatic
parameters used in peak calling for each mark are defined in
Supplementary Table 3. DeepTools/3.5 (Ramírez et al., 2014) was
employed to create combined signal tracks for each sample. Bam files
were first scaled using signal extraction scaling (SES; Diaz et al., 2012) and
input control signal was subtracted from each treatment sample. The
signals from each biological replicate were then averaged for a given
sample resulting in the final combined signal tracks.

2.5 Generating replicate-validated peak sets

Peak sets from each sample with an FE over input of greater than
2.0 for narrowmarks, H3K27ac, H3K4me1, and H3K4me3, and 1.5 for
broad marks, H3K27me3, were generated in Python/3.8. These FE-
filtered peaks from one replicate were intersected with all called peaks
from the other replicate using BEDTools/2.27.1 (Quinlan and Hall,
2010). The replicate-validated peaks from both replicates were merged
to generate a combined peak set where all peaks achieved an FDR of less
than 0.01 or 0.05, respective of histone mark, in both replicates and an
FE of over 2.0 (or 1.5 for broad marks) in at least one replicate. These
combined peak sets were used for tissue comparison in downstream
analyses. The quality of the combined peak dataset was assessed by
determining the Fraction of Reads in Peaks (FRiP) for each replicate in
the corresponding peak file. FRiP scores were calculated using
BEDTools/2.27.1 intersect by comparing the number of reads
overlapping peaks to the total number of reads used for peak
calling. BEDTools/2.27.1 was also employed to identify peaks unique
to each tissue for a given histone mark. Microsoft Excel (Microsoft
Corporation, 2018) was used to calculate Pearson’s correlations (r)
between usable reads and total peak number, where usable reads is
defined as the minimum number of filtered reads available for peak
calling across biological replicates. Pearson’s correlations between total
peak number and tissue-unique peak number were also assessed.

2.6 Feature annotation of combined peaks

Histone modification peaks were assigned to genomic features
using the R package ChIPseeker/3.2 (Yu et al., 2015; Wang et al.,
2022). A txdb annotation file was created from Ensembl’s
EquCab3.0.113 using the R package txdbmaker/1.2.1 (Pagès et al.,
2024). The annotatePeak function was employed with promoter
region defined as ± 1000bp from the transcription start site (TSS).

3 Results

3.1 Sequencing depth and read filtration of
paired-end libraries

On average, each stallion sample had 52 million (M) raw read
pairs for H3K27ac and H3K4me1, 55 M for H3K4me3, and 134 M
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raw read pairs for H3K27me3. Filtering removed PCR duplicates,
unmapped, and low-quality reads to create a set of read pairs used
for peak calling, termed usable reads. The average number of usable
reads was 28 M for H3K27ac, 32 M for H3K4me1, 30 M for
H3K4me3, and 68 M for H3K27me3. Each tissue sample had an
input sample with an average of 34 M reads used to remove
background noise during peak calling for all marks. Despite
generating over 215 M raw read pairs between the two
H3K27ac_Adipose_AH3 libraries, less than 12 M usable reads
were available for peak calling. Additionally, seven other sample/
tissue combinations fell short of the targeted usable read counts;
however, all were retained for analysis in the study regardless of read
counts (Supplementary Table 4).

3.2 Quantifying peaks across tissues

On average, each tissue had 76,778 H3K27ac peaks,
120,309 H3K4me1 peaks, and 33,969 H3K4me3 peaks (Figure 1A).
Similar peak widths were observed across the narrow marks, with

average peak widths of 1,360 bp, 1,219 bp, and 1,535 bp for H3K27ac,
H3K4me1, and H3K4me3, respectively, yet peak width ranged
considerably (Supplementary Figure 1). The number of peaks
called for H3K27me3 varied based on the software used for peak
calling. MACS2 identified an average of 158,480 H3K27me3 peaks
while SICERpy called an average of 32,315 H3K27me3 peaks across
tissues (Figure 1B). The average peak width of
MACS2 H3K27me3 peaks was 1,650 bp while the average peak
width of SICERpy H3K27me3 peaks was 18,466 bp
(Supplementary Figure 1). The replicate-combined peaks captured
read enrichment well with median FRiP scores of 0.46, 0.32, and
0.65 for H3K27ac, H3K4me1, and H3K4me3 peaks, respectively. The
median FRiP scores for H3K27me3 peaks varied by peak caller with
median FRiPs scores of 0.30 for MACS2 peaks and 0.47 for SICERpy
peaks (Figure 1C). Although large difference in FRiP scores are
observed between H3K27me3 peaks called by MACS2 and
SICERpy, the difference in FriP scores and the difference in
genome coverage are highly correlated (r = 0.94, data not shown).

H3K4me3 had the lowest genome coverage across tissues,
averaging 2.2%. H3K27ac peaks covered an average of 4.1% of

FIGURE 1
Peaks corresponding to histone modifications across the genome. (A) The bar plot depicts the number of peaks in thousands called by
MACS2 corresponding to the signal from the denoted histone modifications: H3K4me3, H3K4me1, H3K27ac, and H3K27me3. The peaks identified to be
unique to a given tissue for a given mark are discerned from shared peaks in light blue. (B) The peak calling software, MACS2 or SICERpy, results in a
drastically different number of peaks being identified despite using the same input reads. Peaks called by SICERpy are in dark blue and labelled with
an “-S,” while peaks called by MACS2 are light blue and labelled with “-M.” (C) The Fraction of Reads in Peaks (FRiP) score represents the number of read
pairs from each replicate that fall within the combined peaks reported for a given tissue and mark. FRiP scores are separated by histone mark and peak
calling software, if applicable. “-M” corresponds toMACS2 peaks and “-S” corresponds to SICERpy peaks. Each data point is colored to represent the tissue
of origin for the given sample.
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the genome across tissues, and H3K4me1 covered approximately
6.2% of the genome in each tissue. H3K27me3 peaks called by
MACS2 covered an average of 10.4% of the genome, while
H3K27me3 peaks called by SICERpy covered 24.3% of the
genome in each tissue (Table 1). Despite the nearly two-fold
greater genome coverage identified for H3K27me3 by SICERpy
compared to MACS2, the peaks called by both software
frequently overlapped. As a result of the smoothing effect of
SICERpy, one large peak called by SICERpy often contained
many smaller, consecutive peaks called by MACS2. In fact, 74%–
94% of the peaks called by MACS2 overlapped those called by
SICERpy (Supplementary Table 5).

3.3 Genomic annotation of combined peaks

The combined MACS2 peaks for each tissue and histone mark
combination were assigned to genomic features annotated in Ensembl’s
113 release of EquCab3.0. Due to the drastically increased peak widths
of H3K27me3 peaks identified with SICERpy, averaging over 18kb,
SICERpy H3K27me3 peaks were not annotated for genomic feature.
H3K4me3 had the greatest number of peaks assigned to promoters
ranging from approximately 35% in testis to 60% inmuscle (Figure 2A).
H3K27me3 had the fewest peaks assigned to promoters with over 40%
of peaks identified as distal intergenic in all eight tissues. The distance
between genomic features for a given transcript can vary dramatically

TABLE 1 Percentage of the equine genome covered by histone marks in thoroughbred stallions.

Genome coverage (%) of histone marks

Tissue H3K27ac H3K4me1 H3K4me3 H3K27me3-Ma H3K27me3-Sa

Adipose 3.5 8.4 2.8 13.9 27.0

Brain 4.2 5.3 1.9 4.5 20.4

Heart 4.9 7.6 2.0 12.0 26.2

Lamina 4.1 5.7 1.6 11.3 24.0

Liver 4.9 8.8 2.1 17.4 31.9

Lung 4.4 7.9 2.0 11.2 24.4

Muscle 3.5 3.8 1.7 5.2 21.9

Testis 3.4 2.3 3.3 7.9 18.8

Average 4.1 6.2 2.2 10.4 24.3

aH3K27me3-M refers to peaks called by MACS2 and H3K27me3-S corresponds to peaks called by SICERpy.

FIGURE 2
Distribution of histone modifications across the equine genome (A) The percentage of combined peaks assigned to gene features across samples.
The promoter region is defined as ± 1000bp from the transcription start site (TSS), while downstream represents peaks within 300bp of the 3′ UTR of a
given transcript. (B) The percentage of peaks falling within given distances of the TSS are presented. Known activating marks (H3K27ac and H3K4me3) fall
closer to the TSS than the repressive mark, H3K27me3.
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based on heterogeneity in total transcript, exon, and intron lengths;
therefore, distribution of peaks around the TSS is also reported
(Figure 1B). Histone modifications commonly associated with gene
activation (H3K4me3 and H3K27ac) are distributed more tightly
around the TSS than the repressive mark, H3K27me3 (Figure 2B).

3.4 Tissue-unique peaks and correlations of
usable reads and peak number

On average, 84% of peaks called for a histonemark were identified
in more than one tissue, yet some tissues had a large percentage of
unique peaks. The brain had the largest proportion of unique peaks
for H3K4me1 and H3K27ac, with 27,532 peaks or 27% of
H3K4me1 and 19,494 peaks or 33% of H3K27ac peaks identified
as tissue-unique (Figure 1A; Table 2). Nearly 50% of H3K4me3 peaks
in the testis were unique. The liver displayed the greatest proportion of
unique peaks for H3K27me3 regardless of peak caller. Muscle
consistently demonstrated low uniqueness across all four marks
(Table 2). However, positive correlations existed between the
number of reads used for peak calling and the number of peaks
called. Correlation coefficients (r) between the minimum usable reads
and total peaks called ranged from 0 to 0.86 across marks, with the
smallest correlation observed in the H3K4me1 and the greatest
correlation observed in H3K27me3 (Table 3). The number of
unique peaks in a tissue was also highly correlated (0.52–0.92)
with the total peaks called for that tissue (Table 2).

3.5 Validation of tissue-specific epigenetic
regulation

To assess how well tissue-unique peaks correspond to known tissue
function, genes with unique active promoters, defined as having both
H3K4me3 and H3K27ac peaks in their promoters, were identified.
Examples for tissue-specific active promoters are provided in lamina at
the Collagen 17A1 (COL17A1) gene (Figure 3A) and in heart at the
Myozenin 2 (MYOZ2) gene (Figure 3B). The signal tracks present in

Figure 3 demonstrate how the stallion ChIP-seq data can be integrated
with mare ChIP-seq data (Kingsley et al., 2020) and the equine FAANG
RNA-seq data to better assess tissue-specific epigenetic regulation.

4 Discussion

On average, each tissue in the stallions had over 250,000 peaks
called across the four histone marks. The most common cis-regulatory
associated histone modifications were H3K27me3, which play a role in
repressing gene expression. This broad peak covered the greatest
percentage of the genome, with some tissues having evidence of this
repressive mark covering as much as 32% of the genome. This result
differs fromwhat was reported formares with the greatest proportion of
the genome covered (4.9%) in adipose as determined using SICERpy
(Kingsley et al., 2020). On average, four times asmany usable reads were
available for H3K27me3 peak calling in stallion tissues compared to the
mare tissues examined by Kingsley et al. (2020). A high correlation (r =
0.86) between usable reads and H3K27me3 peak number exists in the
stallion tissues, suggesting the difference in genome coverage observed
between sexes may be an artifact of sequencing depth. The
H3K27me3 genome coverage of assessed stallion tissues is similar to
other published data demonstrating that H3K27me3, and
corresponding facultative heterochromatin, can stretch across 20%–
30% of the genome under various circumstances (Hosogane et al., 2016;
reviewed by Peng and Karpen, 2008). The enzymes that are involved in
trimethylation of H3K27 often follow a positive feedback loop in which
the presence of H3K27me3 increases trimethylation of nearby histones,
whichmay explain the expansive genome coverage ofH3K27me3 peaks
in this study and others (Schmitges et al., 2011; Oksuz et al., 2018).
Despite known biological variability of H3K27me3 across tissues, both
the number and width of the H3K27me3 peaks identified in this study
varied considerably based on the peak calling software.
MACS2 identified nearly five times as many H3K27me3 peaks as
SICERpy, yet the average width of the peaks called by SICERpywas over
ten times larger than those called by MACS2. FRiP scores for
H3K27me3 were high for both MACS2 and SICERpy peaks ranging
from 0.10 to 0.58. These FRiP scores fall well above the ENCODE FRiP

TABLE 2 Tissue-unique peaks and Pearson’s correlations of total and tissue-unique peak numbers.

Percentage (%) of peaks unique to tissue

Tissue H3K27ac H3K4me1 H3K4me3 H3K27me3

Adipose 9.3 12.2 21.9 11.1

Brain 33.3 26.7 13.6 12.5

Heart 18.5 11.9 6.3 8.6

Lamina 24.3 18.7 4.3 18.7

Liver 24.5 22.2 17.7 37.3

Lung 15.9 14.0 6.7 10.5

Muscle 12.3 8.4 5.4 1.9

Testis 28.4 12.1 47.0 12.1

Pearson’s Correlation (r)
Total:Unique Peaks

0.778 0.519 0.923 0.874
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score threshold of 1% (Landt et al., 2012). Although SICERpy
consistently produce greater FRiP scores than MACS2, the
difference can almost exclusively be attributed to the difference in
genome coverage between the peak calling software.

Steinhauser et al. (2016) also assessed peak calling software for
broad peaks, including H3K27me3, in which SICER called
considerably wider peaks than peak calling software based on
MACS2. A gold standard method for peak calling has yet to be

established, thus simulated ChIP-seq datasets are required to
examine the sensitivity and specificity of peak calling software.
On simulated datasets, SICER outperformed 10 different peak-
calling tools for both identifying true peaks and limiting false
positives when examining a broad-peaked histone modification
(Steinhauser et al., 2016). SICER was designed to better capture
broad and diffuse peaks, such as those of H3K27me3; therefore,
peaks called by SICERpy may better represent the proportion of the

TABLE 3 Pearson’s correlations of minimum usable reads and replicate-validated combined peak number.

Mark Sample Replicatea Minimum usable reads Combined peaks Pearson’s correlation

H3K27ac Adipose AH3 11,841,844 57,307

0.733

Brain AH3 28,767,074 58,463

Heart AH4 28,986,609 89,654

Lamina AH3 23,823,796 81,895

Liver AH4 25,056,779 81,759

Lung AH4 26,005,392 90,094

Muscle AH3 16,216,664 47,415

Testis AH4 31,632,424 107,633

H3K4me1 Adipose AH4 22,976,612 124,995

0.004

Brain AH4 33,748,599 103,254

Heart AH3 31,026,046 133,481

Lamina AH3 23,743,730 136,805

Liver AH4 28,448,813 124,198

Lung AH4 32,876,189 162,224

Muscle AH3 29,981,650 87,973

Testis AH4 27,586,751 89,543

H3K4me3 Adipose AH3 28,668,914 41,685

0.398

Brain AH3 30,245,100 28,804

Heart AH4 32,088,317 33,200

Lamina AH4 17,500,964 26,039

Liver AH4 30,318,223 32,603

Lung AH3 32,396,228 33,194

Muscle AH3 19,685,919 25,333

Testis AH3 27,740,548 50,893

H3K27me3 Adipose AH3 61,352,911 137,696

0.862

Brain AH3 51,495,389 87,453

Heart AH3 46,128,360 104,207

Lamina AH3 58,482,470 190,940

Liver AH3 68,471,421 265,202

Lung AH3 66,585,343 249,506

Muscle AH3 43,455,906 103,055

Testis AH3 44,709,318 129,784

aReplicate denotes which biological replicate had the fewest usable reads for the given sample.
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genome repressed due to H3K27me3 (Xu et al., 2014). MACS2 is
most often used to identify narrow peaks suggesting that
H3K27me3 peaks called by MACS2 may represent regions of the
genome with the strongest H3K27me3 signals.

The number of peaks called for each mark varied by tissue, yet
muscle samples consistently had fewer peaks than other tissues across
all histone marks possibly due to the lesser amount of chromatin
retrieved for library preparation. However, the same amount of
chromatin was used in the ChIP-seq analysis of mare tissue
(Kingsley et al., 2020) with no reduction in peak number observed
across skeletal muscle samples in that report. The muscle sample from
one of the stallions (AH3) failed to produce the targeted number of
usable reads for H3K27ac, H3K27me3, H3K4me3, and the input
sample, yet in all cases, the number of usable reads was within 20% of
the target. Even so, moderate positive correlations between the
number of reads used for peak calling and the number of peaks
called suggest that additional ChIP and/or sequencing may improve
the identification of regulatory elements in muscle.

The strong positive correlation between the number of usable reads
and peaks called for H3K27ac and H3K27me3 suggests that the ideal
sequencing depth had not been reached in many of the samples.
Although data from most tissues produced enough usable reads to
achieve the thresholds established by ENCODE (https://www.
encodeproject.org/chip-seq/histone/); 20 M for narrow marks and

45 M for broad marks), our data suggest that these thresholds may
not be sufficient in all tissue types. This is well demonstrated by the
broad mark, H3K27me3, when considering the shared tissues between
mares and stallions. When increasing the average number of usable
reads from 27 M in mares to 72 M in stallions, the average genome
coverage of H3K27me3 peaks called by SICERpy increased from 3.8%
to 25.1% (Kingsley et al., 2020). The need for additional sequencing
beyond the guidelines set by ENCODE has also been echoed in other
studies (Chen et al., 2012). Further work is necessary to determine at
which point additional reads no longer enhance the ability to call peaks,
which may differ across tissue types or due to tissue quality. It is
important, however, that even if all regulatory elements in the assayed
tissues were not captured, those that were served to annotate hundreds
of thousands of cis-regulatory associated histone modifications, lending
valuable information into the genome function of those tissues.

In addition to a moderate correlation between usable reads and
peaks called, a strong positive correlation was identified between the
number of peaks called in a tissue and those identified as unique to
that tissue. This correlation makes it difficult to determine if these
uniquely identified peaks represent biological differences in the
regulatory elements of tissues or if they are an artifact of the total
number of histone modifications captured across tissues. Yet, in the
case of the H3K27ac and H3K4me1, the highest percentage of
uniqueness is observed in the brain despite having fewer peaks

FIGURE 3
Tissue-specific active promoters are present across tissues and supported by gene expression data. (A) H3K4me3 and H3K27ac peaks within the
promoter of the Collagen 17A1 (COL17A1) gene were uniquely identified in lamina from stallions. Enrichment of H3K4me3 under these peaks is only
observed in lamina from the stallion tissues. Similar enrichment of H3K27ac and H3K4me3 are observed in lamina frommares (Kingsley et al., 2020), and
the expression of COL17A1 can be confirmed by the RNA-seq data corresponding to lamina from the stallions in this study, as well as the lamina from
themares in Kingsley et al. (2020). (B) Enrichment of H3K4me3 and H3K27ac at the promoter of Myozenin 2 (MYOZ2) was uniquely observed in the heart
tissue of stallions. Enrichment of these histone modifications is supported by the mare data from Kingsley et al. (2020), and gene expression of MYOZ2 is
observed in the corresponding RNA-seq data from these tissues. All signal tracks depicted are available at https://equinegenomics.uky.edu. *Note: Pink
regions of signal denote loci where the input signal is greater than the sample signal.
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than five of the other tissues. Similarly, the highest percentage of
unique peaks occurred for H3K27ac in brain of mares as previously
reported by Kingsley et al. (2020). Inevitably, the tissue-unique peaks
identified will vary as additional tissues are examined; however, many
identified tissue-unique histone modifications marked genes with
known, tissue-specific functions. Examples in which unique
activating marks are found include collagen 17A1 (COL17A1) in
the lamina and Myozenin 2 (MYOZ2) in the heart. COL17A1 is
enriched in skin in humans and functions in maintaining the
epidermal-dermal junction (NIH GeneID: 1,308). MYOZ2 was
shown to have tissue-specificity in human cardiac myocytes (NIH
GeneID: 51,778). The H3K27ac and H3K4me3 signals in these genes
in lamina and heart, respectively, are well supported by the ChIP-seq
data in mares (Kingsley et al., 2020), and further supported by high
expression of COL17A1in lamina and MYOZ2 in the left ventricle of
the heart in corresponding RNA-seq data. Although further work to
validate tissue-unique peaks will need to involve additional tissue
analysis and corresponding transcriptomics data, preliminary analysis
confirms that many tissue-specific histone modifications identified in
this manuscript are supported by previously published data.

The annotation of regulatory elements has proven beneficial in
characterizing the function of the genome and associating genomic
variation with disease in humans (The ENCODE Project Consortium,
2012; Adkemir et al., 2020; van der Lee et al., 2020; Claringbould and
Zaugg, 2021; Zhang et al., 2022). In this study, hundreds of thousands of
cis-regulatory associated histone modifications were identified across
tissues in the Thoroughbred stallion, providing foundational
information into the function of the equine genome. The data from
the previously published ChIP-seq analyses in the mares has already
aided in the identification of variants associated with distichiasis and the
characterization of centromere sliding in horses (Kingsley et al., 2020;
Hisey et al., 2020; Cappelletti et al., 2023). The ChIP-seq analyses in the
stallion provide additional support for the annotation of regulatory
elements present in the tissues of adult horses and may be valuable in
determining differences in epigenomic regulation across sex in horses.
Although peaks unique to tissues in this study cannot entirely be
attributed to true biological differences, they provide a basis for
hypothesis generation and testing. These analyses demonstrate some
of the shortcomings in the current methodology and standards used for
identifying cis-regulatory elements. As previously suggested, chromatin
extraction, library preparation, sequencing methods, and peak calling
software have large impacts on the interpretation of ChIP-seq
experimental data (Steinhauser et al., 2016; Zhang et al., 2016;
Nakato and Shirahige, 2017; Xiang et al., 2020). These artifacts of
data processing can impair the ability to accurately identify biological
differences across datasets. While much progress has been made in our
understanding of genome function with the annotation of cis-regulatory
associated histone modifications, technological advancements will be
necessary for enhanced comparative studies of genome regulation across
sexes and species.
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