
Genome-wide identification of
oat TCP gene family and
expression patterns under abiotic
stress

Jiaming Nie1,2, Hongbin Zhao1,2,3*, Xiaodong Guo1,2,
Tao Zhang1,2, Bing Han1,2,3 and Huiyan Liu1,2

1Inner Mongolia Agricultural University, Hohhot, China, 2Key Laboratory of Wheat Germplasm Innovation
and Utilization Autonomous Region Higher School, Hohhot, China, 3Key Laboratory of Grassland
Resources of the Ministry of Education, Hohhot, China

TCP transcription factors are a unique class of transcription factors that play
important roles in alleviating abiotic stresses such as drought and salt. In this
study, the whole-genome data of three cultivated varieties, namely, “SFS”, “Sang”
and “OT3098v2”, were utilized to identify and analyze the members of the TCP
gene family in oats, and their responses to two abiotic stresses, drought and salt,
were also investigated. Results showed that there are 83, 65, and 30 non-
redundant TCP genes in the three oats, with the highest number of TCP
genes specific to the “SFS”, reaching 22 genes. The oat TCP genes can be
classified into three subfamilies: PCF, CIN, and CYC/TB1. Most AsTCP genes
have important motifs, Motif 1 and Motif 2, which are part of the bHLH domain.
Additionally, various cis-acting elements related to hormone response, abiotic
stress, light response, and growth and development were found in the promoters
of AsTCP genes. Themain amplification mechanism of the oat TCP gene family is
fragment duplication. Two tandem duplications, AsTCP058/AsTCP059 and
AsTCP023/AsTCP025, are stably present in the three oats. The highest
number of AsTCP collinear relationships exist in the “SFS” with 89 pairs. After
drought and salt stress treatments, significant differences in gene expression
were observed among different oat cultivars and treatment periods. Genes that
showed significant expression changes under both treatments (AsTCP021,
AsTCP033, AsTCP044, AsTCP053, and AsTCP058) may play important roles in
oat’s response to abiotic stresses. Notably, AsTCP053 gene was significantly
upregulated at 24 h of stress treatment and showed a more sensitive response to
salt stress. This study provides insights into the functional characterization of the
oat TCP gene family and its molecular mechanisms underlying stress tolerance.
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1 Introduction

TCP (Teosinte branched1/Cycloidea/proliferating cell factor) transcription factors are a
class of plant-specific proteins believed to have originated originated from algae and
bryophytes. These factors were first identified in maize (TB1), cynoglossum (CYC), and rice
(PCF1, PCF2) and named after their initials (Braun et al., 2012). Notably, TB1 inhibits the
growth and development of lateral branches in maize, while loss of its function promotes
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lateral branch differentiation (Doebley et al., 1997). In contrast, CYC
is involved in the abortion of dorsal stamens and regulates floral
symmetry formation in cynoglossum (Luo et al., 1996). PCF is
responsible for maintaining chromosome structure and regulating
cell cycle progression (Palatnik et al., 2003). These genes share TCP
structural domains in their gene structures (Cubas et al., 1999;
Kosugi and Ohashi, 1997). The TCP domain is a 59-amino-acid
helix-loop-helix (bHLH) structure capable of binding to DNA or
facilitating protein-protein interactions (Dhaka et al., 2017;
Manassero et al., 2013). Although all TCP genes possess the TCP
structural domain, its structure varies among different family
members. Based on these differences and their evolutionary
relationships, TCP gene familiars can be categorized into two
subfamilies: Class I and Class II (Martín-Trillo and Cubas, 2010).

With the identification and characterization of more TCP genes
in plants, their functions have been gradually elucidated. These
genes play critical roles in regulating plant growth and development.
For instance, inA. thaliana,AtTCP14 andAtTCP15 regulate embryo
growth during seed germination through the gibberellin signaling
pathway (Resentini et al., 2014),while also influencing leaf cell
development and internode elongation (Kieffer et al., 2011). In
rice, the overexpression of OsPCF7 promotes stem height, root
length, and tiller number in transgenic seedlings, while increasing
the number of panicles and the proportion of filled grains per plant
(Li et al., 2020). Additionally, the cucumber TCP gene CsBRC1
effectively controls lateral shoot growth by repressing the expression
of CsPIN3(Junjun et al., 2019). Beyond their role in plant
development, TCP genes also play a pivotal role in the
adaptation of plants to environmental stresses. Studies have
shown that TCP genes enhance stress tolerance through various
mechanisms, including the regulation of cellular osmotic pressure
(Almeida et al., 2017), signal transduction (Guan et al., 2017; Liu
et al., 2020), hormone sensitivity (Ding et al., 2019), and the
reduction of reactive oxygen species (ROS) accumulation
(Mukhopadhyay and Tyagi, 2015). For instance, the
overexpression of PeTCP10 in A. thaliana significantly enhances
catalase (CAT) activity, which boosts the plant’s antioxidant
capacity and improves its salt tolerance during the nutrient
growth period (Xu et al., 2021). However, not all TCP genes
contribute positively to stress tolerance. For example, ZmTCP14
in maize promotes the accumulation of ROS, which reduces drought
tolerance under drought stress conditions (Jiao et al., 2023). In birch,
BpTCP20 enhances salt and drought tolerance by regulating the
expression of BpMYB8 and BpIAA5, which reduces the content of
ROS and malondialdehyde (MDA) (Li et al., 2024). In wheat,
TaTCP21-A negatively regulates cold tolerance by repressing the
expression of the cold-responsive gene TaDREB1C (Kankan et al.,
2024). Moreover, in upland cotton, GbTCP5 directly activates the
expression of GbERD7, GbUBC19, and GbGOLS2, thereby
significantly enhancing the plant’s ability to adapt to drought and
salt stress (Wang et al., 2023).

Oat, a grain-feeding cash crop (Ju et al., 2022), possesses highly
productive and high-quality seeds (Gutierrez-Gonzalez et al., 2013).
It is characterized by soft and juicy stems and leaves, and is rich in
nutrients (Rasane et al., 2015). Oats have shown remarkable
adaptability to various geoclimatic regions and adverse
environmental conditions, exhibiting higher resilience compared
to other feed crops such as rice and wheat. Additionally, oats can

serve as pioneer crops for soil improvement (Han et al., 2014).
Among the Oats cultivated today, the most prevalent type is the
heterozygous hexaploid species (2n = 6x = 42, AADDCC) known as
common Oat (Avena sativa). The common Oat genome is large and
complex, and remains one of the least explored genomes and
transcriptomes among cereal crops (Rasane et al., 2015). The
publication of the oat genome sequences has opened up new
possibilities for analyzing gene families on a genome-wide scale.
However, there are still numerous gaps in our understanding of the
TCP gene family in oats based on the entire gene sequence.
Therefore, this study aims to perform a comprehensive analysis
of TCP genes identified from different oat genomes and elucidate
their response mechanisms to salt stress. The findings of this study
will provide novel data and insights for a comprehensive
understanding of the molecular mechanism of the oat TCP gene
family’s response to adversity stress.

2 Materials and methods

2.1 Experimental materials and stress
treatments

Naked oat Nei Avena 6 (NY6) and hulled oat Qing Yin 1 (QY1),
provided by the Han Bing Oat Breeding Team at Inner Mongolia
Agricultural University, were chosen as the primary experimental
materials for this study. Uniformly shaped and sized oat seeds were
surface-sterilized by immersing them in 2%NaClO for 5 min, rinsed
with sterile water, and placed on filter paper soaked in sterile water.
The seeds were then dark-incubated at 16°C in a temperature-
controlled incubator until 5 cm shoots and primary roots
developed. The seedlings were subsequently transferred to a 96-
well hydroponic incubator containing Hoagland’s culture medium
and grown for 20 days under day/night temperatures of 22/16°C and
a photoperiod of 16/8 h. On the 21st day, seedlings were treated with
20% polyethylene glycol (PEG) 6,000 and 100 mM NaCl, while
Hoagland’s solution served as the control. Samples from the
treatment groups and control group were collected at 0, 2, 4, 8,
12, and 24 h. After sampling, the tissues were rapidly frozen in liquid
nitrogen and stored at −80°C. Each sample included three
independent biological replicates and technical replicates for
qRT-PCR analysis.

2.2 Screening and characterization of AsTCP
gene family

Genomic data of three oat varieties “SFS”, “Sang” and
“OT3098v2” used to identify the oat TCP gene family were
obtained from the OatBioDB Biology database (http://waoOat.cn/).
Among them, “Sang” and “OT3098v2” are skin oats and “SFS” is a
naked oat. Genome files and genome annotation files for rice, maize,
wheat, A. thaliana, Brachypodium distachyon, A. tauschii, were
obtained from the Ensembl Plants database (http://plants.ensembl.
org/index.html). The HMM file for the TCP structural domain
(PF03634) was derived from the Pfam database (https://pfam.
xfam.org), and generated by training and constructing a large
number of sequences known to be in this gene family. Using the
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built-in algorithm of HMMER 3.0 software, the input gene sequences
were compared with the HMMmodel to generate the Score value for
match strength and the E-value for statistical significance. According
to the screening criteria, genes with E-value below 0.01 were initially
labelled as candidate genes (Finn et al., 2011). To improve the
identification accuracy, all genes identified by HMMER 3.0
(including a few genes with E-value greater than 0.01) were
submitted to the NCBI CDD database (https://www.ncbi.nlm.nih.
gov/cdd/) for structural domain validation (Lu et al., 2020).
Eventually, genes with TCP structural domains were confirmed as
members of the TCP gene family. TCP genes from the “SFS” were
designated AsTCP001 to AsTCP083, while genes from the “Sang” and
“OT3098v2” retained their respective genomic gene IDs.

2.3 Phylogenetic analysis of AsTCP
gene family

DNAman was used to compare selected TCP amino acid
sequences and construct a phylogenetic tree for oat TCPs, along
with wheat, rice, and A. thaliana using MEGA11, with
1,000 bootstrap replicates. The phylogenetic tree was further
refined using the Evolview online tool (https://www.evolgenius.
info/evolview/#/treeview) to enhance visualization and clarity (He
et al., 2016).

2.4 Analysis of the structure,
physicochemical properties and promoter
sequence of AsTCP gene

Conserved motifs in the oat TCP gene family were predicted
using the MEME suite (https://meme-suite.org/meme/), with the
number of predicted motifs set to 10 (Bailey et al., 2009). TCP
protein structural domains were identified via the NCBI Conserved
Domain Database (CDD) (https://www.ncbi.nlm.nih.gov/cdd/).
Gene structure analysis was conducted using the online tool
GSDS 2.0 (http://gsds.cbi.pku.edu.cn/). Visualization of motifs,
domains, and gene structures was carried out using TBtools (v2.
042) software (Chen et al., 2020). Subcellular localization was
predicted using WoLF PSORT (https://wolfpsort.hgc.jp/) and the
Molecular Bioinformatics Center (MBC) website (http://cello.life.
nctu.edu.tw/) (Horton et al., 2007). Oat TCP family amino acid
sequences were analyzed for molecular weight and isoelectric point
(pI) using the Expasy website (https://web.expasy.org/compute_pi/)
(Artimo et al., 2012). Cis-acting elements within 2 kb upstream of
the start codon of oat TCP genes were analyzed using the
PlantCARE online tool (https://bioinformatics.psb.ugent.be/
webtools/plantcare/html/) (Lescot et al., 2002).

2.5 Chromosomal localization, covariance
and interaction network analysis of
AsTCP gene

Chromosomal localization of oat TCP genes was performed
using TBtools software (Chen et al., 2020). Nonsynonymous (Ka)
and synonymous (Ks) substitution rates were calculated for oat TCP

genes using TBtools, and the Ka/Ks ratio was computed to assess
evolutionary pressures influencing gene trends (>1 indicates positive
selection, = 1 neutral selection, <1 purifying selection) (Chen et al.,
2020). Duplication events of AsTCP genes were analyzed using the
Multicollinearity Scanning Toolkit (MCScanX) with default
parameters (Wang et al., 2012). The Dual Synteny Plotter tool
within TBtools was employed to visualize synteny relationships
of oat TCP genes with those from rice, maize, wheat, two-spike
phragmites, and knapweed genomes (Chen et al., 2020). STRING
(https://cn.string-db.org/) was employed to predict interacting
proteins using Arabidopsis as the reference species. Additionally,
psRNATarget (https://www.zhaolab.org/psRNATarget/analysis)
was used to predict the miRNAs targeting AsTCP proteins (Dai
et al., 2018). All results were visualized using Cytoscape 3.
10.0 software.

2.6 Transcriptome data analysis

Transcriptome data related to silicon-mediated drought stress
alleviation and salt stress in oats were sourced from the public NCBI
(https://www.ncbi.nlm.nih.gov/sra/?term=Oat) (data number
SRP237902, SRP093940) (Bray et al., 2016). FPKM values
(log2 transformed) were used to analyze the expression of TCP
family genes under the 2 treatments, and heatmaps were drawn
using the Heatmap program of TBtools (Chen et al., 2020).

2.7 Real-time fluorescent quantitative
PCR assay

Total RNA extraction from plants was performed using the
Transzol Up Plus kit from Beijing All Style Gold. The first strand of
cDNA was synthesized via reverse transcription, following the
instructions provided with the PrimeScript RT kit from Takara.
Quantitative PCR primers for AsTCP021, AsTCP025, AsTCP033,
AsTCP044, AsTCP053, and AsTCP058 were designed using Primer
5.0 software (Supplementary Table S1) and synthesized by Beijing
Liuhe Huada Gene Science and Technology Co. Oat β-Actin was
used as the internal reference gene (Zhang, 2023). The expression
level of each AsTCP gene was quantified using the 2-(ΔΔCt) method.
The PCR reaction conditions were as follows: initial denaturation at
95°C for 5 min, followed by 40 cycles of denaturation at 95°C for 15 s,
annealing at 58°C for 20 s, and extension at 72°C for 20 s.

3 Results

3.1 Identification of members of AsTCP
gene family

Using the genomic data of oat cultivars “SFS”, “Sang”, and
“OT3098v2”, we identified 83, 65, and 30 members of the AsTCP
gene family, respectively (Supplementary Tables S2, S3). In “SFS” and
“Sang”, the amino acid sequences of 34 AsTCPs showed 100% identity,
and those of 13 AsTCPs had over 90% identity. In “SFS” and
“OT3098v2”, the amino acid sequences of 16 AsTCPs exhibited 100%
identity, and those of 5 AsTCPs had over 90% identity. In “Sang” and
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“OT3098v2”, the amino acid sequences of 16 AsTCPs presented 100%
identity, and those of 6 AsTCPs had over 90% identity. The “OT3098v2”
contained three unique AsTCP genes (AVESA.00001b.r1.3Cg0000521.1,
AVESA.00001b.r1.5Ag0002232.1, AVESA.00001b.r1.2Dg0002764.1). The
“Sang” had four unique AsTCP genes (AVESA.00010b.r2.2DG0346510.1,
AVESA.00010b.r2.2DG0402990.1, AVESA.00010b.r2.6DG1166000.1, and
AVESA.00010b.r2.7AG1210110.1). The “SFS” had 22 unique AsTCP
genes (AsTCP020 to AsTCP022, AsTCP033, AsTCP035, AsTCP040,
AsTCP045, AsTCP056, AsTCP064, AsTCP065, AsTCP068, AsTCP070,
AsTCP072, AsTCP075 to AsTCP083). Analysis of the amino acid
sequence lengths of AsTCP genes in the “SFS” showed substantial
variation, ranging from 71 to 609 amino acids (aa). The shortest
protein, AsTCP081, comprised 71 aa, whereas the longest protein,
AsTCP037, comprised 609 aa. The molecular weights of the
83 AsTCP proteins varied from 7954.97 to 64420.89 Da, and their
isoelectric points (pI) ranged from 4.3 to 10.78 (Supplementary Table
S4). Subcellular localization analysis indicated that 72 (86.75%) of the
AsTCP proteins were localized in the nucleus. The remaining proteins
were distributed as follows: five in the extracellular region, two at the
plasmamembrane, two in the cytoplasm, one in the chloroplast, and one
in the mitochondrion (Supplementary Table S4).

3.2 Phylogeny and classification of the oat
AsTCP gene family

Phylogenetic analysis of TCP proteins from oat,A. thaliana, rice,
and wheat revealed that the 83 AsTCP proteins encoded by the
“SFS” could be classified into three subfamilies: class I PCF, class II
CYC/TB1, and CIN. Specifically, 40 proteins were categorized under
the PCF subfamily, 13 under CYC/TB1, and 30 under CIN
(Supplementary Figure S1A). In the “Sang”, 37 AsTCP proteins
were classified as PCF, 10 as CYC/TB1, and 18 as CIN
(Supplementary Figure S1B). Similarly, the “OT3098v2” showed
16 proteins in the PCF subfamily, 3 in CYC/TB1, and 11 in CIN
(Supplementary Figure S1C). In the evolutionary relationship of
TCP genes among oat, wheat, rice and Arabidopsis, the TCP genes in
oat have a closer phylogenetic relationship with the TCP genes in
wheat. A total of 14AsTCP genes were found in the hulled and naked
oat varieties “SFS”, “Sang” and “OT3098v2”, and the amino acid
sequences encoded by them showed complete consistency
(Supplementary Tables S2, S3). Within the oat genome, there are
also different evolutionary relationships among members of the TCP
gene family. Most oat TCP genes, such as AsTCP024/AsTCP023/
AsTCP025, which are homologous genes distributed in subgroups
A/C/D, are the closest in evolution, and these three genes are all
distributed in the three oat genomes. A small number of oat TCP
genes, such as AsTCP015/AsTCP017/AsTCP018 show a closer
relationship to AsTCP021/AsTCP020/AsTCP022, AsTCP001/
AsTCP003/AsTCP002 with AsTCP009/AsTCP008/AsTCP010,
AsTCP043/AsTCP035 with AsTCP049/AsTCP048/AsTCP050, and
AsTCP013/AsTCP012 with AsTCP014/AsTCP005. These types of
partially homologous gene families have similar evolutionary
relationships (Supplementary Figure S1; Supplementary Table S2).

Analysis of amino acid sequences revealed that 65, 59, and
27 AsTCP proteins in the “SFS”, “Sang”, and “OT3098v2”,
respectively, possessed a complete helix-loop-helix (bHLH)
structure, indicating a high conservation of the TCP structural

domain in oats. Notably, the basic region within the bHLH of
CYC/TB1 and CIN subfamilies contained a bidirectional nuclear
localization signal (NLS), crucial for protein translocation to the
nucleus. In contrast, the PCF subfamily exhibited a partial NLS in its
basic region (Supplementary Figure S2A). These sequence
differences likely contribute to the observed conservation pattern
within the PCF subfamily, and suggest functional divergence
between the subfamilies. Furthermore, variations were observed
in the basic region of the bHLH domain. The CYC/TB1 and CIN
subfamilies have four additional amino acids compared to the PCF
subfamily. Specific AsTCP proteins, such as AsTCP69 and
AsTCP71 in both “SFS” and “Sang”, exhibited amino acid
deletions in the basic region (Supplementary Figures S2A, B).
Additionally, 16, 3, and 3 AsTCP proteins in “SFS”, “Sang”, and
“OT3098v2”, respectively, showed deletions spanning the entire
bHLH domain (Supplementary Figure S3).

3.3 AsTCP conserved motifs, structural
domains and gene structure

The phylogenetic tree results show that the 83 AsTCP genes are
divided into three subfamilies: PCF, CIN, and CYC/TB1 (Figure 1A).
Conservative base sequencing analysis identified 10 motifs present in
the 83 AsTCP proteins (Supplementary Table S5). Several TCP
genes exhibited deletions within the bHLH structural domain:
AsTCP051, AsTCP067, AsTCP072, AsTCP077, AsTCP080, AsTCP078,
and AsTCP081 lacked Motif 1 and Motif 2. While
AsTCP070, AsTCP073, and AsTCP074 were missing Motif 1
(Figure 1B). Similarly, the AsTCP gene of “Sang”
(AVESA.00010b.r2.5CG0872470.1, AVESA.00010b.r2.6CG1108510.1)
and the AsTCP gene of “OT3098v2” (AVESA.001b.r1.2Dg0002764.1,
AVESA.001b.r1.5Ag0002232.1,AVESA.00001b.r1.3Cg0000521.1) is also
in a similar situation (Supplementary Figures S4, S5). Genes within the
same subfamily exhibited similar motif compositions, indicating
conserved motif types and distributions among closely related genes.
Motif 4 is specific to the Class II (CYC/TB1 andCIN subfamilies),Motif
8 is specific to the CIN subfamily, and Motif 9 is specific to the PCF
subfamily. In addition to the TCP structural domain, AsTCP061,
AsTCP073, and AsTCP074 also contained two additional structural
domains, flgK and HAD (Figure 1C). Gene structure analysis revealed
that among the 18 AsTCP genes analyzed, intron numbers ranged from
1 to 4, with 78% of genes being intronless. Notably, the CIN subfamily
exhibited the highest intron count among AsTCP genes (Figure 1D).
Intronless AsTCP genes accounted for 65% and 40% of the total in the
“Sang” and “OT3098v2”, respectively, significantly influencing the
untranslated region (UTR) annotations of AsTCP genes
(Supplementary Figures S4, S5). Additionally, differences in intron
lengths within genes of the same subfamily contributed to
significant variations in gene lengths.

3.4 Prediction of cis-acting elements in the
promoter of AsTCP gene family

A total of 4 types of elements, including 51 different cis-acting
elements, were discovered in the promoter region of the AsTCP gene
in “SFS” (Supplementary Table S6). 19 hormone response elements
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were widely distributed in the promoter regions of the AsTCPs
(Figure 2), with the highest number of ABREs attributed to abscisic
acid response elements, accounting for about 21% of the total
number of hormone elements. In addition, the promoter regions
harbored 14 types of stress-responsive elements, including those
responsive to drought, endosperm-specific expression, low-
temperature, cell cycle regulation, meristem expression, maize
protein metabolism regulation, and defense stress responses
(Figure 2). MYC and MYB elements, crucial for environmental
adaptation, were particularly abundant, accounting for
approximately 23.7% and 23.2% of total stress-responsive
elements, respectively. 13 types of light-responsive elements were
also identified, with G-box elements (Figure 2), which can bind
MYC proteins, being the most prevalent at about 34.2% of all light-
responsive elements. Furthermore, 5 types of physiological response
elements were found, widely distributed across AsTCP gene
promoters (Figure 2). The CCGTCC motif was the most

abundant, comprising approximately 30.6% of all physiological
response elements. The types of elements in the promoter
regions of the AsTCP gene in “SFS”, “Sang” and “OT3098v2” are
similar (Supplementary Figures S6– S8).

3.5 Comparative analysis of chromosome
localization and covariance

In the “SFS”, 21 AsTCP genes were localized on chromosome A,
29 on chromosome C, 31 on chromosome D, and 2 onUn (Figure 3).
In the “Sang”, 22 AsTCP genes were localized on chromosome A,
16 on chromosome C, 23 on chromosome D, and 4 on Un
(Supplementary Figure S9A). For the “OT3098v2”, 12 AsTCP
genes were localized on chromosome A, 5 on chromosome C,
11 on chromosome D, and 2 on Un (Supplementary Figure S9B).
Generally, the distribution of AsTCP genes across the A, C, and D

FIGURE 1
Phylogenetic analysis, motif patterns, conserved domains, and gene structure of TCP genes in the “SFS”. (A) Neighbor-Joining tree of oat TCP
proteins; (B) Motif patterns, with motifs numbered 1-10 and represented by different colored boxes; (C) Conserved domains identified in the oat TCP
proteins; (D) Gene structure representation, where CDS and introns are represented with pink boxes and black lines respectively.
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FIGURE 2
Cis-acting elements on promoters of oat TCP genes. ARE, cis-acting regulatory element essential for the anaerobic induction; MBS, MYB binding
site involved in drought-inducibility; TC-rich repeats, cis-acting element involved in defense and stress responsiveness; CCAAT-box, MYBHv1 binding
site; GC-motif, enhancer-like element involved in anoxic specific inducibility; LTR, cis-acting element involved in low-temperature responsiveness;
ABRE, cis-acting element involved in the abscisic acid responsiveness; TCA-element, cis-acting element involved in salicylic acid responsiveness;
P-box andGARE-motif, gibberellin-responsive element; AuxRR-core, cis-acting regulatory element involved in auxin responsiveness; TGACG-motif, cis-
acting regulatory element involved in the MeJA-responsiveness; TGA-element, auxin-responsive element; TATC-box, cis-acting element involved in
gibberellin-responsiveness; WUN-motif, wound-responsive element; AE-box, part of a module for light response; Box 4, part of a conserved DNA
module involved in light responsiveness; G-box, cis-acting regulatory element involved in light responsiveness; GATA-motif, I-box, TCCC-motif, TCT-

(Continued )
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subgenomes was relatively even, with the highest number of AsTCP
genes found on subgenomes 4D and 5D, each containing 9 genes.
Notably, only one gene was found on subgenome 6D, and none were
present on 1C.

Gene duplication event analysis revealed 89, 73, and
20 homologous pairs of AsTCP gene family members in the
“SFS”, “Sang”, and “OT3098v2”, respectively. Among these, two
pairs (AsTCP058/AsTCP059 and AsTCP023/AsTCP025) were
identified as tandem duplications across all three genomes, while
the remaining 87, 71, and 18 pairs were segmental duplications
(Figure 4; Supplementary Figure S10). Notably, 89 homologous gene
pairs in the “SFS” exhibited Ka/Ks < 1, indicating that these genes
were primarily subject to purifying selection, with no pairs evolving
under strong positive selection (Ka/Ks > 1) post-duplication
(Supplementary Table S7). These findings suggest that oat TCP
genes underwent both segmental and tandem duplications, with
segmental duplication being the predominant mode, and two pairs
of tandem duplications remaining stable across the three
oat genomes.

Comparative collinearity analysis between oat (“SFS”) and other
species, including A. thaliana, rice, Brachypodium, Setaria, maize,
and wheat, revealed the highest TCP gene homology with wheat,
comprising 175 collinear pairs between 54 AsTCPs and 54 TaTCPs.
Conversely, the lowest homology was observed with A. thaliana,
where 14 AsTCPs exhibited collinearity with 4 AtTCPs, resulting in
15 collinear pairs (Figure 5; Supplementary Table S8). 42 AsTCP
genes in the oat genome showed collinearity with TCP genes in all
other species, excluding Arabidopsis. 9 out of the 12 AsTCP genes
collinear with Arabidopsis were also part of these 42 genes
(Supplementary Table S8). These duplicated AsTCP genes,
exhibiting collinearity with other species, likely participated more
frequently in gene duplication events, playing significant roles in the
evolutionary trajectory of oats.

3.6 Protein interaction network and miRNA
prediction of AsTCP gene

The predicted protein interaction relationships of AsTCP genes
as well as miRNA realisation results were visualised by Cytoscape
software. The results showed that 35 AsTCP proteins were predicted
to have interaction relationships with other proteins, among which,
8 proteins, AsTCP005, AsTCP016, AsTCP019, AsTCP030,
AsTCP037, AsTCP038, and AsTCP051, had a higher number of
interacting proteins. Among those interacting proteins, SAUR65,
SRFR1, APRR1, SAP11, and CYCB1-1 have higher chance to
interact with these 8 AsTCP proteins as mentioned above
(Figure 6A). When predicting the upstream regulator miRNAs of
AsTCP genes, 197 upstream regulator miRNAs were found for
15 AsTCP genes, including AsTCP004, AsTCP006, AsTCP007,

AsTCP026, and AsTCP027. When the expectation value was less
than 2.5, all the upstream regulatory factors weremiR319 (Figure 6B;
Supplementary Table S9). Therefore,miR319may play an important
regulatory role in the AsTCP gene family.

3.7 Expression profiles of AsTCP genes
under abiotic stresses

Given the critical role of the TCP gene family in regulating plant
stress resistance, the expression patterns of 83 AsTCP genes under
silicon-mediated drought stress alleviation and salt stress treatments
were analyzed (Supplementary Tables S10, S11). 83 AsTCP genes
(excluding AsTCP068, AsTCP020, AsTCP076, AsTCP078,
AsTCP077, AsTCP082, AsTCP075, AsTCP079) had significant
responses to drought and salt stresses (Figure 7). Under drought
treatment, AsTCP005, AsTCP010, AsTCP011, AsTCP021,
AsTCP053, AsTCP056, AsTCP065, AsTCP069, and AsTCP072
were significantly downregulated, whereas in the control group,
these genes were generally significantly upregulated. On the other
hand, AsTCP007, AsTCP033, AsTCP044, AsTCP045, AsTCP071,
AsTCP073, and AsTCP080 were significantly upregulated under
drought treatment but significantly downregulated silicon-
mediated drought stress alleviation. These genes generally
exhibited low expression levels in the control group (Figure 7A).
These results suggest that the aforementioned genes may play key
roles in responding to drought stress. Under short-term salt stress,
different oat varieties exhibited varying sensitivities to salt stress.
There were significant differences in the timing and expression
patterns of some AsTCP genes between the two cultivars, Huazao-2
and Hanyou-5. In addition, the majority of AsTCPs were
significantly upregulated at 8 h and 12 h of salt stress (Figure 7B).

3.8 Expression patterns of AsTCP genes in
abiotic stresses

To investigate the expression levels of AsTCP genes in different
oat varieties under drought stress (20% PEG6000) and salt stress
(100 mM NaCl), six stress-responsive genes were selected from the
oat TCP expression profile for qRT-PCR analysis. Among them,
AsTCP021 and AsTCP033 were identified in the “SFS”, AsTCP044
and AsTCP053 were identified in both the “SFS” and “Sang”, while
AsTCP025 and AsTCP058 were identified in the “SFS”, “Sang” and
“OT3098v2”. In NY6, AsTCP044 and AsTCP058 were significantly
upregulated at 4 h under NaCl treatment, whereas AsTCP021,
AsTCP033, and AsTCP053 were significantly downregulated at
4 h (Figure 8A). In QY1, AsTCP021, AsTCP033, and AsTCP053
were significantly upregulated at 24 h under NaCl treatment, while
AsTCP033, AsTCP044, and AsTCP058 were significantly

FIGURE 2 (Continued)

motif, and LAMP-element, part of a light responsive element; MRE, MYB binding site involved in light responsiveness; GT1-motif and Sp1, light
responsive element; ACE, cis-acting element involved in light responsiveness; A-box, cis-acting regulatory element/sequence conserved in alpha-
amylase promoters; O2-site, cis-acting regulatory element involved in zein metabolism regulation; CAT-box, cis-acting regulatory element related to
meristem expression; MSA-like, cis-acting element involved in cell cycle regulation; RY-element, cis-acting regulatory element involved in seed-
specific regulation.
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downregulated at 0 h (Figure 8B). Comparison with transcriptome
results from Huazao-2 and Hanyou-5 revealed that AsTCP025,
AsTCP033, AsTCP044, and AsTCP058 displayed similar
expression trends at 0 h and 2 h across the four varieties.

Furthermore, AsTCP053 showed consistent expression trends in
the four varieties, being downregulated at 0 h, 2 h, and 4 h, and
upregulated at 8 h, 12 h, and 24 h, except for QY1, where it was
upregulated at 2 h. In NY6, AsTCP021, AsTCP025, and AsTCP053

FIGURE 3
Chromosomal location of the AsTCP genes in the “SFS”.
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were significantly upregulated at 24 h under PEG treatment, while
AsTCP021, AsTCP025, AsTCP033, and AsTCP053 were significantly
downregulated at 4 h (Figure 8A). In QY1, AsTCP033, AsTCP044,
and AsTCP053 were significantly upregulated at 24 h under PEG
treatment, while AsTCP021 and AsTCP033 were significantly
downregulated at 0 h (Figure 8B). The qRT-PCR results for
AsTCP021 and AsTCP053 in NY6 under drought stress from 0 h
to 12 h were largely consistent with transcriptome results, both
showing a trend of downregulation.

In both NY6 and QY1, the six AsTCP genes exhibited significant
responses to both salt and drought stress, with the most notable
changes observed at 0 h, 4 h, and 24 h. At 0 h under drought and salt
stress, AsTCP058 was significantly downregulated in both varieties.
At 4 h, AsTCP044 was significantly upregulated in both varieties,
while AsTCP053 was significantly downregulated. At 24 h,
AsTCP025, AsTCP033, and AsTCP053 were significantly
upregulated in both varieties. Additionally, in the QY1 variety,
AsTCP033 and AsTCP053 showed the most significant
upregulation at 24 h under both drought and salt stress. The

expression patterns of different genes at different time points
varied significantly between the two varieties, particularly at 24 h,
where the notable upregulation of some genes in QY1 reflected a
stronger response to stress. These findings indicate that varietal
differences in stress sensitivity significantly influence the expression
patterns of these genes.

4 Discussion

TCP gene family members have been identified in various grass
species, including 66 in wheat (Zhao et al., 2018), 46 in maize (Ding
et al., 2019), 24 in Arabidopsis, and 28 in rice (Yao et al., 2007), as
well as 20 in sorghum (Lei et al., 2021), 42 in willowherb (Huo et al.,
2019), and 22 in orchardgrass (Wang C. et al., 2023). In this study,
we identified 83, 65, and 30 TCP genes in the three oat genomes,
respectively. Each of these AsTCP genes was specific to their
corresponding oat genomes (Supplementary Table S2). As oats
are heterozygous hexaploids, the presence of multiple gene copies

FIGURE 4
Synteny analysis of AsTCP genes in oat. Red colored lines indicate segmental duplication gene pairs, black lines indicate tandem duplication pairs.
Chromosomes 1 red, 2 orange, 3 gray, 4 green, 5 blue, 6 maroon, 7 purple, Un black.
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within their genomes can be attributed to extensive replication and
diversification during evolution (Song et al., 2015). The differences
in the number of TCP genes among the three oat genomes may be
attributed to several factors. Firstly, with the advancement of
sequencing technologies and the availability of reference oat
genomes, the genome assembly techniques and methods used in
later sequencing projects have become more refined, allowing for
greater sequencing depth. Additionally, different gene annotation
methods and parameters can lead to variations in the number of
identified genes (Tortuero et al., 2021). Secondly, transcription
factors exist in various subtypes or alternative splicing forms,
which may be identified as distinct genes in different genomes.
Moreover, transcription factor families evolve rapidly, and events
such as gene duplication, loss, or variation in different genomes can
result in significant differences in gene copy numbers within these
families (Adams andWendel, 2005;Wang et al., 2018). Despite these
differences, the AsTCP genes were classified into three subclasses:
Class I (PCF), Class II (CIN), and (CYC/TB1) (Supplementary
Figure S1). The high similarity between oat TCP genes and those
in Arabidopsis, rice, and wheat suggests that TCP genes are highly
conserved in plants (Martín-Trillo and Cubas, 2010). This further
indicates that the AsTCP genes in oats evolved from a common
ancestor within the Gramineae family, undergoing different modes
of divergence in different lineages. In our study, we found that most

of the TCP genes with amino acid deletions within the bHLH
structure lacked Motif 1 and Motif 2, which are presumed to be
key components of the TCP structural domain. Additionally, we
observed that most oat TCP genes lacked intronic structures
(Figure 1D and Supplementary Figures S4, S5). This may be
related to the fact that intronless genes are often derived from
horizontal gene transfer of intronless ancient prokaryotes,
replication of existing intronless genes, or retrotranscription of
intron-containing genes (Zou et al., 2011). Moreover, differences
in conserved motifs and gene structures among subfamilies within
the oat AsTCP gene family likely contribute to its
functional diversity.

Members of the oatTCP family exhibit extensive variation in amino
acid sequences, isoelectric points, relative molecular masses, and exon
numbers, indicating their structural complexity and functional diversity
(Xiao et al., 2018). Subcellular localization analysis revealed that most
oat TCP proteins are localized in the nucleus and are also present in the
extracellular, plasma membrane, cytoplasm, chloroplasts, and
mitochondria (Supplementary Table S4). This distribution pattern
may be associated with the broad range of roles that TCP genes
play in plant growth and development. Transcription factors (TFs)
specifically bind to cis-acting elements to regulate the expression of
target genes (Zhao et al., 2021), and the diversity of these cis-acting sites
determines the regulatory functions of TFs(Lei et al., 2021). Our analysis

FIGURE 5
Synteny analysis of AsTCP genes between oat and six representative plant species. The gray lines show colinear blocks in the genomes of oat with
other plants, while the red line highlights the colinear TCP pairs. The species name with the prefixes “A.sativa”, “A.thaliana”“O. sativa” ‘B.distachyon”,
“A.tauschii”, “Z.mays” and “T. aestivum” indicate Avena sativa, Arabidopsis thaliana, Oryza sativa, Brachypodium distachyon, Aegilops tauschii, Zeamays,
and Triticum aestivum, respectively.
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of promoter cis-acting elements found a variety of elements involved in
hormone response, light response, and stress response were widely
distributed in the promoters of the 83 AsTCP genes (Figure 2). This
further highlights the involvement of TCP family genes in various
biological processes, including photosynthesis, hormone regulation,
growth and development, and stress response in plants (Ling et al.,
2020; Ren et al., 2021; Xiong et al., 2022). In the oat genome, TCP genes
exhibit a widespread phenomenon of multiple copies, such as
AsTCP024/AsTCP023/AsTCP025, which are distributed in the A/C/

D subgenomes. They demonstrate the closest evolutionary relationship
among the three oat subgenomes. Additionally, AsTCP001/AsTCP002
show amore similar evolutionary relationship toAsTCP009/AsTCP008/
AsTCP010, as well as AsTCP013/AsTCP012 to AsTCP014/AsTCP015.
These genes are distributed in both the “SFS” and “Sang”
(Supplementary Figure S1; Supplementary Table S2). These closely
related genes in evolutionary terms likely share more similar sequences
and structures, potentially indicating higher functional similarity
(Peterson et al., 2010). Plants have undergone large-scale

FIGURE 6
Protein-Protein Interaction Network and miRNA Prediction for AsTCP Genes. (A) The protein interaction network based on the Arabidopsis
homologue AsTCP protein; (B) The relationship between members of the AsTCP gene family and miRNAs.
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FIGURE 7
The expression patterns of 83 AsTCP genes stress levels are based on RNA-seq data.(A) Analysis of TCP gene expression induced by exogenous
silicon addition Under drought conditions,D (Drought stress),Dsi (Adding exogenous silicon under drought stress); (B) Expression analysis of TCP genes
was conducted on Huazao-2 under salt stress at 0 h (A1), 2 h (A2), 4 h (A3), 8 h (A4), 12 h (A5), and 24 h (A6), and on Hanyou-5 at 0 h (A7), 2 h (A8), 4 h (A9),
8 h (A10), 12 h (A11), and 24 h (A12) under salt stress.
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chromosome doubling events during evolution (Flagel and Wendel,
2009), and each replication or doubling of the genome leaves traces of
loss, transfer, and recombination on the chromosomes (Peng et al.,
2022). Our study revealed a direct correlation between the distribution
of TCP genes in the three oat genomes and the lengths of the
chromosomes, with none of the being located on chromosome 1C.
Gene duplication analysis indicated that segmental duplications
predominated in the oat TCP gene family, with two pairs of tandem
duplication events consistently present in all three genomes (Figure 4
and Supplementary Figure S10). These findings suggest that segmental
duplications contribute to the amplification and evolution of the oat
TCP gene family. Interestingly, segmental duplications are also
prevalent in Arabidopsis and rice, suggesting a common mechanism
for TCP gene duplication in plant genomes (Liu et al., 2022). Genome-
wide covariance analysis demonstrated that oats had the highest
number of covariant pairs with wheat and the fewest with
Arabidopsis (Figure 5). This difference may be attributed to the
genomic characteristics and evolution of oats, being a homozygous
hexaploid plant that shares a closer evolutionary origin with wheat.

Arabidopsis thaliana, a diploid dicotyledonous plant, evolved from a
common ancestor shared with gramineous plants. However, the
evolution of monocots predates that of dicots, and TCP genes may
have undergone different modes of divergence between these two
plant groups.

Oats are known for their high adaptability to harsh
environments, and a gene’s function can often be inferred from
its expression profile (Jewiss, 1972). Our analysis revealed that more
than half of the AsTCP genes are involved in the response of oats to
drought and salt stress (Figure 7). Similar results have been reported
in canola (Brassica napus) (Wen et al., 2021), cotton (Yin et al.,
2018), and orchardgrass (Huo et al., 2019). Studies have shown that
TCP genes are involved in plant defense against abiotic stresses by
regulating the expression of downstream genes. For example, rice
OsPCF2 regulates the downstream OsNHX1 genes to enhance salt
and drought tolerance (Almeida et al., 2017), whereas bamboo
PeTCP10 binds to the downstream BT gene to regulate drought
tolerance (Liu et al., 2020). In our study, we observed temporal
differences in the response of TCP genes to salt and drought stress in

FIGURE 8
Expression of 6 AsTCP Genes Under Untreated (CK), Drought (PEG6000), and Salt (100 mM NaCl) Conditions. (A) Expression of six AsTCP genes in
NY6; (B) Expression of six AsTCP genes in QY1. Explanations: CK Group: AsTCP genes expression with 0 h as the control, NaCl and PEG Groups. AsTCP
genes expression with the corresponding CK time point as the control. Significant differences between treatment and control groups are indicated by *
(LSD test, p < 0.05) and ** (p < 0.01).
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two oat varieties, with variations in expression patterns and degrees
of response (Figure 7B). The same conclusions were drawn from the
expression profiles of Huazao-2 and Hanyou-5 under salt stress.
Specifically, in QY1, the expression of AsTCP044, AsTCP058, and
AsTCP033 was significantly downregulated at 0 h and 4 h after NaCl
treatment (Figure 8B). In NY6, their expression was significantly
downregulated at 0 h and 4 h but upregulated at 0 h after NaCl
treatment (Figure 8A). Similarly, after PEG treatment, AsTCP021
and AsTCP053 were significantly downregulated and upregulated at
4 h and 24 h in NY6(Figure 8A), but downregulated at 0 h in QY1
(Figure 8B). These differences in expression may be attributed to the
varying sensitivities of different oat varieties to the stress
environment. Furthermore, at 0 h, 4 h, and 24 h of both stress
treatments, the expression pattern of the AsTCP053 gene was
consistent in the two varieties, but there were differences in the
degree of response to stress between them at 4 h and 24 h. Notably, at
24 h of drought and salt stress, the upregulation of the AsTCP053
gene was more prominent in QY1 compared to NY6 Particularly
under salt stress at 24 h, the upregulation of AsTCP053 in QY1 was
remarkably significant. Our study revealed that the expression of the
AsTCP053 gene exhibited an upregulation trend at 8 h, 12 h, and
24 h under salt stress treatment across four varieties, with expression
levels gradually increasing over time. Prediction analysis
indicated that the promoter region of AsTCP053 is enriched
with various cis-acting elements, including MYB and ARE.
Under salt stress conditions, ARE element may interact with
Nrf2-like transcription factors to activate genes related to
antioxidant synthesis, thereby scavenging ROS accumulation
(Zgorzynska et al., 2021). Meanwhile, the MYB element may
function through the ABA signaling pathway by cooperating with
MYB transcription factors to further activate downstream stress-
responsive genes (Bo et al., 2015). The coordinated regulation of
antioxidant and stress-responsive mechanisms mediated by ARE
and MYB elements likely constitutes the key molecular basis for
the dynamic regulation of AsTCP053 under salt stress conditions.
We hypothesize that the AsTCP053 gene is a key regulator in oat
response to salt stress, but currently, there is a lack of reports on
its downstream genes in the salt stress pathway. We will focus on
the exploration of the downstream gene functions of AsTCP053
in our future research.

5 Conclusion

We analyzed the genome data of oats “SFS”, “Sang” and
“OT3098v2” to identify TCP genes and perform bioinformatics
analysis on them. Additionally, we selected six representative
AsTCP genes to examine their expression patterns in hulled and
hulless oats under drought and salt stress treatments.

1. In the genomes of the three oat varieties “SFS”, “Sang” and
“OT3098v2”, we identified 83, 65, and 30 TCP genes,
respectively, with some genes being unique to
specific genomes.

2. The bHLH domain of some AsTCPs showed varying degrees of
deletion, withMotif 1 andMotif 2 being key components of the
bHLH domain. Only a small proportion ofAsTCP genes in oats
contain introns.

3. Segmental duplication is a common mechanism driving the
expansion of the AsTCP gene family, with two pairs of
tandemly duplicated TCP genes consistently present in the
three oat genomes.

4. The genes AsTCP021, AsTCP025, AsTCP033, AsTCP044,
AsTCP053, and AsTCP058 are involved in the oat response to
drought and salt stress, with significant gene expression observed
at 0 h, 4 h, and 24 h. Due to differences in variety sensitivity to
stress, the response time and gene expression patterns varied
between the two oat varieties under the same stress conditions
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