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Identifying expression Quantitative Trait Loci (eQTL) and functional candidate
variants associated with blood biochemical parameters can contribute to the
understanding of genetic mechanisms underlying phenotypic variation in
complex traits in pigs. We identified eQTLs through gene expression levels in
muscle and liver tissues of LargeWhite pigs. The identified eQTLwere then tested
for association with biochemical parameters, cytokine profiles, and performance
traits of pigs. A total of 41,759 SNPs and 15,093 and 15,516 expression gene levels
from muscle and liver tissues, respectively, enabled the identification of
1,199 eQTL. The eQTL identified related the SNP rs345667860 as significantly
associated with interleukin-6 and interleukin-18 in liver tissue, while the
rs695637860 SNP was associated with aspartate aminotransferase and
interleukin-6, and rs337362164 was associated with high-density lipoprotein
of the blood serum. In conclusion, the identification of three eQTL
significantly associated with aspartate aminotransferase and cytokine levels in
both serum and liver tissues suggests a potential role for these variants in
modulating immune function and overall health in production pigs. Further
research is needed to validate these findings and explore their potential for
improving pig health and productivity.
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1 Introduction

The identification of single nucleotide polymorphism (SNP) located in coding regions
of the genome based on mRNA sequencing (RNA-seq) data that are associated with blood
biochemical parameters, cytokine profile, and productive traits can contribute to the
understanding of genetic mechanisms associated with animal health, welfare, and feed
efficiency. These parameters (blood biochemical parameters, cytokine profile, and
performance traits) can directly affect economic outcomes. Understanding the genetic
factors influencing them allows pig (Sus scrofa) breeders and producers to implement
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targeted breeding and management practices to enhance pig health
and productivity (Ye et al., 2018; Ponsuksili et al., 2019; Dall’Olio
et al., 2020).

Genome-wide association studies (GWAS) are powerful tools
for detecting genomic variants, such as SNPs, associated with
complex traits in livestock (Ding et al., 2021; Liu et al., 2021; Wu
et al., 2022). In addition to GWAS, information from RNA-seq has
been used to explore the transcriptome of specific tissues, offering
deeper insights into the effects of genetic variants on traits of interest
(Mancuso et al., 2017; Ramayo-Caldas et al., 2019; Li and
Ritchie, 2021).

The incorporation of expression quantitative trait loci (eQTL) in
GWAS enables the identification of functional candidate variants
and a better understanding of their role in genomic and biological
processes associated with traits such as disease resistance, metabolic
efficiency, and responses to stress (Zhao et al., 2019; Jehl et al., 2021).
This integration of GWAS with eQTL analyses has been used for the
discovery of candidate variants associated with various traits in pigs,
including meat quality indicators such as muscle pH, intramuscular
fat (IMF) content, backfit thickness, and lipid profiles (e.g., Chen
et al., 2013; Wei et al., 2023). This provides insights into the genetic
factors that influence meat quality and triglyceride levels.

Porcine eQTL analyses have also revealed significant
associations between genetic variants and the regulation of
cytokine expression, which plays a central role in modulating the
immune response in humans (Salnikova et al., 2020) and livestock
animals (Criado-Mesas et al., 2020; Freitas et al., 2024). According to
Salnikova et al. (2020), the mapped SNPs in cytokine genes highlight
strong links with inflammatory and immune-mediated diseases.
Cytokine-cytokine receptor interactions, such as T cell receptor
(TCR) signaling pathways, are involved in the intercellular
regulation of the immune system (Kim et al., 2021).
Furthermore, genetic variants that regulate immune responses
can have direct implications on feed efficiency (Banerjee et al.,
2020). This study emphasizes the importance of identifying eQTL
that regulates both cytokines and genes associated with metabolism,
providing a broader understanding of the genetic basis of health and
efficiency in pigs.

The use of indicators that reflect lipid metabolism, immune
function, welfare, and health status is essential in pig farming. Blood
biochemical parameters, which reflect animal metabolism and
health status, are of great significance in pig breeding research
and also serve as indirect indicators for productive traits and
meat quality in animal production (Song et al., 2022). For
example, fatter pigs have higher serum total protein (TP) levels
than leaner pigs, and the level of TP is an effective marker for early
assessment of fatness in pigs (He et al., 2012; Muñoz et al., 2012). In
this context, integrated eQTL and GWAS applied to serum
biochemical indicators could allow the exploration of genomic
information on economically important traits in pig production.

We hypothesize that eQTLs are associated with performance
traits, biochemical blood parameters, and cytokine profiles in Large
White pigs. Thus, the primary objectives of this study were to
evaluate the association of eQTL with these trait groups in pigs.
By utilizing transcriptome sequencing from skeletal muscle and liver
tissues of Large White male pigs, we identified cis- and trans-eQTLs
and evaluated their association with 34 production, biochemical
parameters, and cytokines profile traits in Large White pigs.

2 Methods

All experimental procedures involving animals were performed
according to the requirements of the Animal Care and Use
Committee of the Luiz de Queiroz College of Agriculture
(University of São Paulo, Piracicaba, SP, Brazil, protocol:
2018.5.1787.11.6 and number CEUA 2018–28). We also followed
ethical principles in animal research, according to the Guide for the
Care and Use of Agricultural Animals in Agricultural Research and
Teaching (Hill et al., 2020). This study was also conducted in
compliance with the ARRIVE guidelines.

2.1 Animals, sampling, and mRNA
sequencing

A complete description of the experimental animals,
phenotypes, sample extraction, and RNA-sequencing of muscle
and liver tissues are described in Almeida et al. (2021), Fanalli
et al. (2022), and Freitas et al. (2024). Briefly, a total of
72 immunocastrated Large White male pigs (28.44 ± 2.95 kg)
were used in a 98-day experimental period. All animals had ad
libitum access to feed and water throughout the experimental period
(98 days). Four days prior to their slaughter, blood samples were
taken from all pigs for determination of glucose (GLU; mg/dL),
aspartate aminotransferase (AST; U/L), total proteins (TP; g/dL),
albumin (ALB; g/dL), globulin (GLOB; g/dL), triglycerides (TG; mg/
dL), cholesterol (CHOL; mg/dL), high-density lipoprotein (HDL;
mg/dL), low-density lipoprotein (LDL; mg/dL), and very low-
density lipoprotein (VLDL; mg/dL).

After 98 days, all pigs were slaughtered (average final body
weight of 133.9 ± 9.4 kg), and skeletal muscle (Longissimus
lumborum) between the 10th and 11th ribs and right lobe of the
liver samples were collected within a maximum of 30 min after
bleeding. The tissue samples were quickly collected, snap-frozen in
liquid nitrogen, and then stored at −80oC until further analyses. At
slaughter, meat and carcass quality traits were also measured,
including slaughter weight (SW; in kg), cold carcass yield as a
percentage of the slaughter weight (CCY; %), loin eye area
measured by ultrasound (LEA; cm2), backfit thickness measured
by ultrasound (BFT; cm2), intramuscular fat content (IMF, %), and
liver fat content (LFC; in %). Furthermore, tissue samples were used
to measure the abundance of cytokine levels in skeletal muscle, liver,
and blood for Interleukin-10 (IL-10; MFI), interferon-gamma (IFN-
γ; MFI), interleukin-1 beta (IL-1β; MFI), interleukin-6 (IL-6; MFI),
interleukin-18 (IL-18; MFI), and tumor necrosis factor-alpha (TNF-
α; MFI).

2.2 RNA extraction, sequencing, and data
processing

Skeletal muscle (Longissimus lumborum) and right lobe liver
tissue samples were collected after slaughter for RNA-seq. Total
RNA was extracted from the frozen tissue samples, and the RNA
integrity was verified based on RNA integrity number (RIN). Only
samples with RIN higher than seven were used. Sequencing adaptors
and low-complexity reads were removed using the Trim Galore

Frontiers in Genetics frontiersin.org02

Freitas et al. 10.3389/fgene.2025.1533424

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1533424


0.6.5 software (Krueger et al., 2019), and reads longer than or equal
to 70 bases and a Phred score threshold greater than 33 were kept for
further analyses. After this quality filtering step, alignment and
mapping were performed using the current reference pig genome
(Sscrofa 11.1) (Warr et al., 2020), generating Genomic Variant Call
Format (GVCF) (McKenna et al., 2010; Van der Auwera et al., 2013;
Franke and Crowgey, 2020) files for each sample from the liver and
skeletal muscle tissues.

2.3 Variant calling and SNP annotation

The Genome Analysis Toolkit (GATK, v. 4.1.9.0) was used in the
GVCF format (Van der Auwera et al., 2013), adopting the
HaplotypeCaller algorithm (Van der Auwera et al., 2013) for
individually calling the variants for each sample. The output data
files with the annotated variants were merged by tissues using the
CombineGVCF tool (Van der Auwera et al., 2013; Poplin et al.,
2018), and the joint genotyping analysis was performed using the
GenotypeGVCF. Subsequently, a VCF file with all samples
genotyped for each tissue was obtained and the variants’
annotation and functional consequences were predicted using the
Ensembl Variant Effect Predictor tool v. 101 (VEP) (McLaren et al.,
2016). The SNP data from muscle, liver, and GGP50K (GeneSeek
Genomic Profiler -GGP Porcine 50K, a medium-density SNP chip
array with 50,915 SNPs) were merged into a single dataset for
subsequent analyses. When the alleles of SNPs between the datasets
were different, is the SNP was considered as missing, and both were
removed. The variants were filtered based on variant quality scores
equal to or greater than 30 (QUAL) and total coverage depth (DP)
greater than 10, using BCFtools v. 1.9 (Danecek et al., 2011; 2021; Li,
2011). Moreover, SNP with call rate lower than 95%, minor allele
frequency (MAF) lower than 5%, SNPs located in non-autosomal
chromosomes, SNPs with extreme departure from the Hardy-
Weinberg equilibrium (P < 10−6), and non-biallelic markers were
removed from the genomic dataset. Finally, linkage disequilibrium
(LD) pruning was applied based on a r2 threshold of 0.8 within a
100 kb window (Freitas et al., 2024). LD pruning was incorporated
into the quality control process to minimize false positives and
remove redundant markers. Furthermore, as demonstrated by
Freitas et al. (2024), pruning SNPs in linkage disequilibrium can
substantially improve the detection of relevant eQTLs in complex
traits by reducing confounding effects.

2.4 Identification of eQTL

The cis- and trans-eQTL were evaluated using an additive linear
model implemented in the Matrix eQTL package (Shabalin, 2012).
Principal components (PCs) were fitted as covariates in the models
to correct for potential population stratification, along with sire
information, dummy categories for treatment effect, and initial body
weight as a linear covariate. The expression levels in muscle and liver
tissues were tested for association using the combined SNP dataset
described above. Gene expression levels were normalized using the
average method while preserving rank, a method endorsed by the
GTEx consortium (Aguet et al., 2020). Cis-eQTL, defined as local
effects, were considered if they were within 1 Mb upstream or

downstream of the genes (first and final base pair positions in the
gene map). Trans-eQTL were defined as those with a distance
greater than 1 Mb from the genes. The model fitted can be
defined as:

g � α + γ x + βs + ε,

where g is the gene expression level in transcripts per million (TPM);
α is the mean term; γ is the slope coefficient of x, which represents
the kth covariates, including the top 10 principal components
(which explained approximately 28% of the structural population
variance), initial body weight in kg as a covariate, sire dummy
variables, and categorical effect of treatment dummy variables; β is
the slope coefficient of s, which represents the genotype coded as 0
(homozygous for the reference allele), 1 (heterozygous), and 2
(homozygous for the alternative allele), and ε is the residual of
the model. We adopted the False Discovery Rate (FDR) correction
method for p-values (Benjamini and Hochberg, 1995; Huang et al.,
2018) with a significance threshold of 0.05.

2.5 eQTL association with traits

After the eQTL analyses, significant eQTL were used for
association with the biochemical and cytokine profiles in pigs.
The traits analyzed included GLU, AST, TP, ALB, GLOB, TG,
CHOL, HDL, LDL, VLDL, SW, CCY, LEA, BFT, IMF, LFC, IL-
10, IFNg, IL-1β, IL-6, IL-18, and TNF-α in skeletal muscle or liver
tissues and blood serum of pigs. The association analysis was
conducted using the GCTA software (v.1.94.1) (Yang et al.,
2011), employing the mixed linear model (MLMA-LOCO) with
the genomic relationship matrix of the animals (GRM). Phenotypic
traits were previously adjusted to treatment and block effects. The
model used was:

y � a + bx + g− + ε,

where y represents the trait, a is the observed mean, b is the
additive effect (fixed effect) of the SNP or eQTL candidate being
tested for association, x is the indicator variable of the SNP genotype
coded as 0 (homozygous for the reference allele), 1 (heterozygous),
and 2 (homozygous for the alternative allele), g− is the polygenic
effect (random effect), representing the cumulative effect of all SNPs,
except those located on the chromosome of the candidate SNP (the
variance is re-estimated each time when a chromosome is excluded),
and ε is the residual effect. The p-values resulting from the
association analysis were corrected for multiple testing using the
FDR method (Benjamini and Hochberg, 1995; Huang et al., 2018)
and a significance threshold of 0.05. To illustrate the results, we used
the CMplot (Yin et al., 2021) package of the R, to generate the
density plot, Q-Q plot, and Manhattan plot in the R environment.

2.6 Functional genomic analyses

The functional genomic analyses were performed following
Freitas et al. (2024). Briefly, the GALLO R package (Fonseca
et al., 2020) was used to perform the QTL annotation and
enrichment of the eQTL associated with biochemical parameters
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and cytokine profiles. The eQTL annotation and enrichment were
performed using known QTL data obtained from the PigQTLdb
database (Release 53 – Sscrofa11.1, 28 Apr 2024), considering a
genomic window of up to 500 kb downstream and upstream of the
genomic coordinates of the eQTL. The QTL enrichment analyses
were performed using a hypergeometric test to reduce the bias of
overrepresented traits.

The gene enrichment analysis was performed using the Over-
Representative Analysis (ORA) method on theWEB-based Gene Set
Analysis Toolkit (Elizarraras et al., 2024; Liao et al., 2019; Elizarraras
et al., 2024). The Gene Ontology terms include Biological Processes,
Cellular Components (non-redundant), Molecular Functions (non-
redundant), and Biological Pathways. The gene list was based on
annotations, considering a window of 500 kb up and downstream of
significantly associated eQTL genomic coordinates. The gene data
annotation of the Sus scrofa (Assembly Sscrofa11.1; genome-build-
accession GCA_000003025.6; available at: https://ftp.ensembl.org/
pub/release-112/gtf/sus_scrofa/) were extracted from the Ensembl
platform (Ensembl release 112 - August 2024) (Aken et al., 2016) in
the General Transfer Format (“. gtf” format). Finally, multiple
protein-protein interaction (PPI) analyses were performed using
the STRING 12.0 package (version: 26 July 2023, https://string-db.
org/). We explored protein-protein interactions using the gene list
with a focus on the Sus scrofa species. For that, the same genes
annotated around eQTL were used as input. Furthermore,
functional genomic annotations were obtained by consulting
databases such as UniProt (www.uniprot.org), Ensembl (www.
ensembl.org/Sus_scrofa/), and National Center for Biotechnology
Information (NCBI, www.ncbi.nlm.nih.gov/).

3 Results

3.1 SNP data combination and
quality filtering

Initially, 84,809 SNPs were identified in liver samples with a
genotyping rate of 0.947. Upon merging with the GGP-50k dataset,

the number of SNPs increased to 122,325, with a combined
genotyping rate of 0.952. Further merging with 75,447 muscle
tissue SNPs resulted in 146,344 unique SNPs, and the final
genotype rate was 0.926. Quality filtering was then applied to the
combined SNP dataset. After removing SNPs with a missing
genotype rate greater than 5% (67,861 variants removed), an
extreme departure from the Hardy-Weinberg equilibrium test
(p-value <10−6, 539 variants removed), and MAF below 5%
(7,251 variants removed), 70,693 SNPs remained for further
analyses. Additional 28,934 SNPs were removed during the LD
pruning step and 41,759 SNPs from seventy-two animals remained
for further analyses, with a final genotyping rate of 0.989. The
detailed process and results of SNP data combination, quality
filtering, and LD pruning are provided in Supplementary
Tables S1–S3.

The SNPs (n = 41,759) were tested for association with the
expression level of 15,093 and 15,516 genes from muscle and liver,
respectively. The number of significant eQTL and regulated genes
found in muscle and liver tissue are shown in Figure 1, and a
summary of eQTL analysis is provided in Supplementary Material 1.

3.2 eQTLs associated with biochemical
blood parameters and cytokine profiles

Figure 2 shows the number of eQTLs for each 1 Mb window,
dispersed across the chromosomes used to test associations with the
traits (1,199 eQTLs). The descriptive statistics of the performance
traits, blood biochemical parameters, and cytokine profiles of pigs
are presented in Supplementary Table S4.

The Q-Q plot (Figure 3) shows the expected distribution of
-log10(p) values versus the observed distribution for the phenotypes
in blood serum AST, HDL, IL-6, and liver tissue IL-6 and IL-18. A
summary of the genomic inflation factors of the p-values resulting
from the GWAS analysis with eQTL are presented in
Supplementary Table S5.

Figures 4, 5 illustrate the distribution of eQTLs across the
genome for the phenotypes in liver tissue IL-6 and IL-18

FIGURE 1
Number of cis- and trans-eQTL and the regulated genes for each tissue evaluated (muscle and liver). The SNP dataset includes genotypes from the
GGP-50K plus the RNA-Seq SNP calling of the skeletal muscle and liver tissues after linkage disequilibrium pruning.
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FIGURE 2
Number of eQTL within 1 Mb window size along the chromosomes, used to test associations with the traits. Each vertical bar represents a genomic
window, and the density of eQTLs is indicated by the color scale, ranging from green to red as the eQTL density increases.

FIGURE 3
Expected distribution of -log10(p) values versus the observed distribution for the phenotypes (A) Interleukin-6 (IL6_l, liver tissue, λ = 1.048), and
Interleukin-18 (IL18_l, liver tissue, λ = 1.016) (B) Aspartate Aminotransferase (AST_s, blood serum, λ = 0.876), High-Density Lipoprotein (HDL_s, blood
serum, λ = 1.252), Interleukin-6 (IL6_s, blood serum, λ = 0.878).

Frontiers in Genetics frontiersin.org05

Freitas et al. 10.3389/fgene.2025.1533424

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1533424


(Figure 4), as well as blood serum, AST, HDL, and IL-6 (Figure 5).
The highlighted points in the plots represent the significant eQTL.
Specific SNPs such as rs345667860 (3′UTR), rs695637860
(Downstream), and rs337362164 (Missense) are indicated, with
effects predicted using the Variant Effect Predictor (VEP)
from Ensembl.

The Manhattan and QQ plots of all other traits are in
Supplementary Material 2 (.zip). Furthermore, the summary
statistics table of GWAS, which includes all genomic inflation
values is presented in Supplementary Table S5.

3.3 Functional genomic analyses

The QTL types enriched with the significant eQTLs (FDR <0.05)
located at SSC12:39,493,883, 8:39,107,307, and 5:88,678,346
(chromosome:base-pair) was “Health” followed by “Production”
and Meat and Carcass.” Top significant traits in Production,
Health, Meat, and Carcass enrichment analyses around eQTL
associated with AST, HDL, IL-6 in pig serum, and IL-18 and IL-
6 in pig liver tissue are shown in Figure 6.

The gene enrichment type analysis for the genes around
significant eQTL included 34 mapped genes from unique Entrez
gene IDs. Parameters included a minimum of three gene IDs per
category, with an enrichment significance level adjusted to
FDR <0.05. The bar charts in Figure 7 show the distribution of
these Gene Ontology categories (Biological Processes–BP, Molecular
Functions–MF, and Cellular Components–CC).

The significant GO (Gene Ontology) and MP (Molecular
Pathway) terms are shown in Figure 8, where the x-axis
corresponds to the log2 enrichment ratio relative to the -log10
FDR on the y-axis for genes annotated around the eQTL
associated with biochemical parameters from pig blood and
liver tissue.

For better understanding the enrichment analysis, a directed
acyclic graph (DAG, output report for ORA from WebGestalt, the
complete results can be accessed on https://2024.webgestalt.org/
results/1732400034/) was generated to describe the hierarchical
relationships between the enriched biological processes, and the
full version can be viewed in Supplementary Figure 1 (.png). We
highlighted the nodes corresponding to “Cytokine Response–GO:
0034097” in Figure 9.

FIGURE 4
Manhattan plot for the (A) Interleukin-6 and (B) Interleukin-18 from pigs. The Manhattan plot displays the genomic positions of eQTLs on the x-axis
and the -log10(p) values on the y-axis for the phenotypes IL-6 and IL-18 in pig liver tissue. The highlighted points represent eQTLs with significant
associations based on the FDR <0.05. The variant rs345667860 (3′UTR) is indicated with respective effect predicted using the Variant Effect Predictor
(VEP) from Ensembl. IL-6 = Interleukin-6 (MFI), IL-18 = Interleukin-18 (MFI).
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A PPI network analysis for genes annotated around eQTLs
associated with blood serum biochemical parameters and cytokines
in Sus scrofa, which was performed to investigate their relationship

with the annotated genes around eQTLs associated with biochemical
parameters from pig blood serum and liver tissue are shown in
Figure 10. The PPI network displayed an average node degree of

FIGURE 5
Manhattan plots for the (A) aspartate aminotransferase (B) High-Density Lipoprotein, and (C) Interleukin-6 from pigs. Manhattan shows the
distribution of p-values by genomic positions of eQTLs on the x-axis and the -log10(p) values on the y-axis for the phenotype’s aspartate
aminotransferase (AST; U/L), high-density lipoprotein (HDL; mg/dL) and interleukin-6 (IL-6; MFI) in pig serum. The highlighted points represent eQTLs
with significant associations based on the FDR <0.05 threshold. The variants rs695637860 (Downstream) and rs337362164 (Missense) are indicated
with respective effects predicted using the Variant Effect Predictor (VEP) from Ensembl.
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1.79 and a local clustering coefficient of 0.455, suggesting moderate
connectivity among the nodes (medium confidence). The PPI
enrichment p-value <10−16 indicates that the observed interactions
are significantly more frequent than expected by chance, suggesting
potential functional relationships among these genes. Clusters within
the network were identified using Markov Cluster Algorithm (MCL)
clustering with an inflation parameter of 3, highlighting groups of
genes involved in processes such as chemotaxis and cytokine signaling
pathways. The nodes without links were hidden, but the complete

analysis can be accessed on https://version-12-0.string-db.org/cgi/
network?networkId=bE85LK5REtmx and Supplementary Material 3.

4 Discussion

In this study, we used SNPs from medium-density SNP chip
arrays (i.e., GGP-50K) and SNPs identified in the transcriptome of
liver and skeletal muscle tissues to find cis- and trans-eQTL similar

FIGURE 6
Top significant traits in Production, Health, Meat, and Carcass enrichment analyses around eQTL associatedwith AST, HDL, IL-6 in pig serum, and IL-
18 and IL-6 in pig liver tissue. The area of the bubbles represents the number of observed QTL for that class, while the color represents the p-value scale
(the darker the color, the more significant the p-values). Additionally, the X-axis shows the richness factor for each QTL, representing the ratio of the
number of QTL and the expected number of that QTL. AST = Aspartate aminotransferase (U/L), HDL = high-density lipoprotein (mg/dL) and IL-6 =
interleukin-6 (MFI) in pig serum, IL-6 = Interleukin-6 (MFI), IL-18 = Interleukin-18 (MFI) in pig liver tissue.

FIGURE 7
Distribution of Gene Ontology (GO) categories identified in enrichment analysis annotated around eQTLs associated with biochemical parameters
and cytokine profiles from pig blood serum and liver tissue. The left chart (red) shows the Biological Process (BP) categories. The middle chart (blue)
presents Cellular Component (CC) categories. The right chart (green) illustrates the Molecular Function (MF) category.
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to the previous approach (Freitas et al., 2024). We subsequently
evaluated their association with blood biochemical parameters,
performance traits, and cytokine levels in skeletal muscle, liver,
and blood of Large White pigs.

The number of eQTLs found, as shown in Figure 1, indicated the
prevalence of cis-eQTLs compared to trans-eQTLs in skeletal
muscle and liver tissues, which are in line with our previous
findings (Freitas et al., 2024) and in the literature. For instance,

Farhangi et al. (2024) identified 4,293 cis-eQTLs in liver tissue and
6,871 inmuscle tissue, with cis-eQTLs showing stronger associations
with their target genes compared to trans-eQTLs. By including SNPs
detected in other regions of the genome, we enabled the detection of
more distant associations (Freitas et al., 2024). However, liver tissue
had a predominance of local regulation eQTLs, much greater when
compared to skeletal muscle tissue. An important aspect of cis-eQTL
detection is related to a greater ease (generally) of interpreting the

FIGURE 8
Distribution of Gene Ontology (GO) terms and metabolic pathways terms (MP) based on gene enrichment analysis annotated around eQTLs
associated with biochemical parameters from pig blood serum and liver tissue. The x-axis displays the log2 of the enrichment ratio, indicating the
magnitude of enrichment, while the y-axis shows the -log10 of the FDR, representing the statistical significance. Each point on the plot corresponds to a
specific GO term or pathway, with points further to the right and higher on the plot indicating terms with both high enrichment and strong
significance. The color gradient represents varying levels of enrichment, with darker colors indicating higher enrichment scores.

FIGURE 9
The hierarchical structure of biological processes identified through enrichment analysis for biological processes ontology terms. Highlighted nodes
correspond to processes related to “Response to cytokine–GO:0034097”, and the complete directed acyclic graph (DAG) with all GO terms and
metabolic pathways is available in Supplementary Figure S1.
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effect of genetic modulation due to its proximity to the modulated
gene. On the other hand, the greater the distance between the eQTL
and the gene, the greater the complexity and difficulty of detection,
as in the case of trans-eQTLs. However, the detection of both cis-
and trans-eQTLs contributes to the understanding of genetic
variability and regulatory mechanisms of important traits for
animal production.

The Manhattan plots for IL-6 and IL-18 (Figure 4) in pig liver
tissue highlight significant eQTL associations, particularly with the
variant rs345667860 (3′UTR), which was identified using the VEP
tool. This observation aligns with studies that focused on the
regulatory influence of eQTL on cytokine expression in immune
tissues, such as the work by Salnikova et al. (2020), who
demonstrated the role of cytokine-related eQTLs in immune
regulation. In the blood serum, the Manhattan plots for AST,
HDL, and IL-6 also reveal significant eQTL associations,
including the variants rs695637860 (downstream) and
rs337362164 (missense). However, no significant associations

were observed for the other traits. This may be due to the
limited number of observations per trait (36 or 72), which
reduced the power to detect associations between eQTLs and the
studied traits. Furthermore, the use of only eQTL (1,199) for GWAS
restricts the possibility of significant associations to a limited
number of variants. The use of a larger number of SNPs could
contemplate more associations with more traits. However, we
considered only regulatory variants of gene expression for the
GWAS analyses when selecting the eQTLs.

The enrichment of GO categories related to metabolic processes
and protein binding (Figures 7, 8) is in line with the findings of
previous studies that highlighted the role of metabolic pathways
involving lipid metabolism in influencing feed efficiency and
immune responses in pigs (Banerjee et al., 2020). In addition,
Salnikova et al. (2020) identified enriched immune-related
pathways, particularly those involving cytokine signaling, through
eQTL analysis in the regulation of immune traits. In this sense
indicating that eQTL associated with productive traits, biochemical

FIGURE 10
A network of genes annotated around eQTLs associated with blood biochemical parameters and cytokines from pig blood serum and liver tissue.
The line thickness indicates the strength of data support, and the clusters are represented by letters (and colors). The clusters are (A) SYNRG,DDX52, and
HNF1B (B) AP2B1, and PEX12 (C) HEATR9, RASL10B, GAS2L2, MMP28, and SLFN11 (D) CCL14, CCL5, CCL4, CCL16, and LOC100516039 (E) CCL3L1, and
LOC100515857 (F) CWH43, SPATA18, DCUN1D4, and FRYL (G) LRRC66, and USP46. These results can also be accessed at https://version-12-0.
string-db.org/cgi/network?networkId=bE85LK5REtmx.
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parameters, and cytokines may be inserted into metabolic pathways
related to the immune response, in the modulation of the
physiological and productive characteristics of pigs. The
representation of protein binding in the MF category resonates
with the work of Kim et al. (2021), who identified key interactions
between cytokines and their receptors, underlining the critical role
of protein interactions in immune signaling pathways. Furthermore,
the CC category is consistent with findings from studies on cytokine
signaling, such as those by Salnikova et al. (2020), which
demonstrated the involvement of membrane-associated proteins
in immune regulation. This indicates a possible involvement of
eQTLs in the immune response, since these proteins often serve as
receptors or signaling molecules that mediate the immune response,
further supporting the relevance of membrane-related components
in the regulation of cytokine profiles and other immune-
related traits.

The DAG and gene network illustrated in Figures 9, 10, focusing on
eQTL associated with blood biochemical parameters and cytokines,
highlights the interconnectedness of various genes involved in immune
responses and metabolic processes. For instance, the cluster containing
genes like CCL5, CCL4, and CCL16 underscores the role of chemokines
in mediating inflammatory responses, which is consistent with findings
from studies that have shown the involvement of chemokine signaling
pathways in immune regulation (Salnikova et al., 2020). These
chemokines are known to be important in the recruitment of
immune cells to sites of inflammation, suggesting an involvement in
the immune system. Additionally, the involvement of genes such as
MMP28 and HEATR9 within another cluster highlights the potential
role of matrix metalloproteinases and heat shock proteins in tissue
remodeling and stress responses. These findings are supported by
research indicating that such genes play a role in both normal
physiological processes and pathological conditions, particularly in
the context of inflammation and immune response regulation
(Banerjee et al., 2020). Moreover, clusters containing genes like
SYNRG and HNF1B suggest potential involvement in regulatory
networks that control cellular metabolism and gene expression,
linking metabolic processes with immune function. This is in line
with broader literature emphasizing the interconnected nature of
metabolism and immunity, where metabolic pathways can influence
immune cell function (Farhangi et al., 2024).

According to Fishbourne et al. (2013), chemokines such as CCL2
and CCL4 play a critical role in pigs infected with African swine fever
virus (ASFV), particularly in cases involving high-virulence strains.
The study demonstrated significant increases in CXCL10 and CCL2
expression, which correlates with our findings of significant eQTL
associations with cytokines like IL-6 and IL-18. This suggests a direct
link between the genetic regulatory mechanisms we identified, and
the immune responses observed in pigs.

The protein encoded by the CCL3L1 gene takes part in immune
responses to viral infection (Fishbourne et al., 2013) and inflammation
(Jaing et al., 2017; Kim et al., 2021), as evidenced by their upregulation
in response to infection or activation of immune pathways (Kim et al.,
2020). CCL3L1 is also linked to cytokine-cytokine receptor interaction
and natural killer cell-mediated cytotoxicity pathways (Jaing et al., 2017;
Kim et al., 2021). The expression of these proteins is differentially
regulated in response to various stimuli (Tada et al., 2020), indicating
their interconnected roles in immune and inflammatory processes (Kim
et al., 2021).

Our identification of rs695637860 as a local (cis-) eQTLmodulating
the A0A286ZXF4 gene, which encodes a WAP domain-containing
protein known for several functions, in this case as a serine
endopeptidase inhibitor, and in the case of peptidases inhibition,
protein digestion would be compromised. The association of this
SNP with blood levels of AST and IL6 suggests a potential link
between genetic variation and proteolytic enzyme activity, which
could influence animal performance. The link between
rs695637860 and levels of AST and IL-6 in the blood suggests that
genetic variations in the CCL3L1 region could influence liver function
and systemic inflammation. Aminotransferases are enzymes that play a
role in amino acid metabolism and are commonly used as biomarkers
for liver health. Increased AST and IL-6 levels are indicative of an
inflammatory response, which are associated with several inflammatory
and autoimmune conditions. One might speculate is that the CCL3L1
gene and its encoded protein F1S1A1 may influence the expression of
A0A286ZXF4, thereby modulating peptidase activity and consequently
affecting inflammatory pathways. The upregulation of F1S1A1 in
response to infection or immune activation could lead to
downstream effects on A0A286ZXF4, altering the balance of
cytokine production and peptidase inhibition.

The identification of association between variants, such as
rs345667860 and rs345667861 in liver tissue with IL-6 and IL-18,
and rs695637860 and rs337362164 in serum with AST, HDL and IL-
6, adds valuable insights into the genetic architecture underlying
complex traits in pig production and health. However, as previously
mentioned, there are possible limitations regarding the sample size,
which could have reduced the statistical power to detect variants,
especially those with a small effect. Future studies should aim to
address these limitations by increasing sample sizes, expanding
tissue types analyzed, and incorporating functional experiments
to validate and further explore the roles of the identified
genetic variants.

5 Conclusion

We identified associations between eQTL/SNPs and traits,
including rs345667860 and rs345667861 associated with
aspartate aminotransferase (AST) and interleukin-6 (IL-6) in
liver tissue, and rs695637860 and rs337362164 associated with
high-density lipoprotein (HDL) and IL-6 in blood serum. These
eQTLs were significantly associated with the A0A286ZXF4_PIG
(WAP domain-containing protein), OCIAD2 (OCIA domain
containing 2), and TMCC3 (transmembrane and coiled-coil
domain family 3) genes, which are all protein coding genes.
These findings can also be applied in the development of
genetic markers that may be used into strategies to predict the
performance of animals in terms of health and production and
contribute to understand how genetic variations relate to
phenotypic traits in pigs.
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Glossary
ALB Albumin (in g/dL)

AST Aspartate aminotransferase (in U/L)

BFT Backfat thickness measured by ultrasound in cm

BFT Backfat thickness measured by ultrasound (in cm2)

BP Biological Process

CC Cellular Component

CCY Cold carcass yield in percentage of the slaughter weight

CHOL Cholesterol (in mg/dL)

DNA Deoxyribonucleic acid

DP Total coverage depth

eQTL Expression Quantitative Trait Locus

eQTLs Expression Quantitative Trait Loci

FDR False Discovery Rate

GGP-50K GeneSeek Genome Porcine medium density SNPs from SNP array

GLOB Globulin (in g/dL)

GLU Glucose (in mg/dL)

GO Gene Ontology

GRM Genomic Relationship Matrix between the pair of animals

GVCF Genomic Variant Calling Format

HDL High-density lipoprotein (in mg/dL)

HWE Hardy-Weinberg Exact balance test

IFN-γ Interferon-gamma (MFI)

IL-10 Interleukin-10 (in MFI)

IL-18 interleukin-18 (in MFI)

IL-1β Interleukin-1 beta (in MFI)

IL-6 Interleukin-6 (in MFI)

IMF Muscle fat content in percentage

Kb Kilobase (1,000 base pairs)

LD Linkage disequilibrium

LDL Low-density lipoprotein (in mg/dL)

LEA Loin eye area measured by ultrasound (in cm2)

LFC Liver fat content (in %)

MAF Minor allele frequency

Mb Mega base pair

MF Molecular function

MFI median intensity fluorescence

MLMA Mixed Linear Model Association

MP Metabolic pathways

N Number

PC Principal components

QTL Quantitative trait loci

QUAL Phred score

r2 Correlation

RNA Ribonucleic acid

RNA-seq RNA sequencing

SD Phenotypic standard deviation

SNP Single nucleotide polymorphism

SSC1 Sus scrofa chromosome 1

SSC18 Sus scrofa chromosome 18

SW Slaughter weight (in kg)

SW Slaughter weight in kg

TG Triglycerides (in mg/dL)

TNF-α Tumor necrosis factor-alpha (in MFI)

TP Total proteins (in g/dL)

TPM Transcripts per million

VCF Variant calling format

VEP Variant Effect Predictor

VLDL Very low-density lipoprotein (in mg/dL)
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