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Motivation: Predicting the response of cell lines to characteristic drugs based on
multi-omics gene information has become the core problem of precision
oncology. At present, drug response prediction using multi-omics gene data
faces the following three main challenges: first, how to design a gene probe
feature extraction model with biological interpretation and high performance;
second, how to develop multi-omics weighting modules for reasonably fusing
genetic data of different lengths and noise conditions; third, how to construct
deep learningmodels that can handle small sample sizes whileminimizing the risk
of possible overfitting.

Results:Wepropose an innovative drug response predictionmodel (NMDP). First,
the NMDP model introduces an interpretable semi-supervised weighted SPCA
module to solve the feature extraction problem in multi-omics gene data. Next,
we construct a multi-omics data fusion framework based on sample similarity
networks, bimodal tests, and variance information, which solves the data fusion
problem and enables the NMDP model to focus on more relevant genomic data.
Finally, we combine a one-dimensional convolution method and
Kolmogorov–Arnold networks (KANs) to predict the drug response. We
conduct five sets of real data experiments and compare NMDP against seven
advanced drug response prediction methods. The results show that NMDP
achieves the best performance, with sensitivity and specificity reaching
0.92 and 0.93, respectively—an improvement of 11%–57% compared to other
models. Bio-enrichment experiments strongly support the biological
interpretation of the NMDP model and its ability to identify potential targets
for drug activity prediction.
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1 Introduction

Precision oncology aims to leverage genomic information to
identify patient groups with similar biological traits, enabling the
delivery of the most suitable treatments (Dlamini et al., 2020;
Garraway et al., 2013; Hodson, 2020; Prasad, 2016; Prasad et al.,
2016). In clinical applications, this approach generally involves
choosing targeted therapies based on the individual genomic
profiles of patients (Ballester and Carmona, 2021). However,
research reveals that only approximately 9% of patients
experience effective outcomes from such targeted treatments,
which greatly restricts the broad applicability of precision
oncology (Barretina et al., 2012a; Rubio-Perez et al., 2015).
Moreover, limited drug response prediction models for non-
specific therapies mean that many patients miss out on the
benefits of precision oncology and may even receive ineffective
treatments. Fortunately, data from extensive pharmacogenomic
screenings have shown that nearly all cancer cell lines and
patient-derived xenografts (PDXs) respond to some form of
targeted therapy or non-specific chemotherapy (Barretina et al.,
2012b; Gao et al., 2015; Garnett et al., 2012). Thus, a primary
challenge now is accurately aligning cancer patients with treatments
that match their unique drug response profiles.

Currently, a significant research focus is predicting drug
responses in cancer patients using single genomics data (Adam
et al., 2020; Dong et al., 2015; Firoozbakht et al., 2022; Sheng et al.,
2015). For instance, as demonstrated by Geeleher et al., a ridge
regression model that utilizes gene expression data from the
Genomics of Drug Sensitivity in Cancer (GDSC) database has
shown effective application to clinical trial datasets for drugs
including erlotinib, cisplatin, docetaxel, and bortezomib. The
study also found that incorporating data from cancer cell lines
other than breast cancer can improve the predictive performance of
the docetaxel drug response model (Geeleher et al., 2014). Moreover,
our preliminary research indicates that combining statistical
methods based on individual genomic information from patients
with machine learning techniques can construct highly performant
drug response prediction models (Miao et al., 2020; Zheng et al.,
2024; Sharma et al., 2024).

Recently, the increasing availability of multi-omics datasets for
drug response has opened new avenues for machine learning
models, enabling a deeper understanding of biological processes.
Multi-omics data have shown notable success across various
bioinformatics tasks, including survival prediction, cancer subtype
classification, and target gene identification (Xu et al., 2024). As deep
learning continues to progress rapidly, constructing predictive
models that utilize multi-omics data through deep learning
techniques becomes a primary research focus. Several multi-
omics drug response models have been developed (Ballester
et al., 2022; Baptista et al., 2021; Chen and Zhang, 2021; Zhou
et al., 2024; Rashid, 2024; Baptista and Ferreira, 2023). For instance,
Chiu et al. developed a deep learning model that utilizes
autoencoders to combine diverse omics features for drug
response prediction (Chiu et al., 2019). Similarly, Hossein et al.
proposed a model that employs deep neural network fusion,
combining hidden layer representations from different multi-
omics networks to synthesize feature information effectively
(Sharifi-Noghabi et al., 2019). Peng et al. proposed a two-space

graph convolutional neural network (TSGCNN) that combines cell
line and drug feature spaces to predict drug responses by leveraging
both homogeneous and heterogeneous relationships (Peng et al.,
2023). Similarly, Trac et al. proposed a GCN-based drug response
prediction model for acute myeloid leukemia (AML), highlighting
the versatility of graph-based neural networks in oncology research
(Trac et al., 2023). Wang et al. proposed MOICVAE, a deep learning
model that integrates multi-omics data using a variational
autoencoder to improve drug sensitivity prediction (Wang et al.,
2023). Meanwhile, Sharma et al. proposed DeepInsight-3D,
architecture to fuse multi-omics data for anticancer drug
response prediction, offering an advanced deep learning
perspective for modeling complex interactions in diverse
biological datasets (Sharma et al., 2023).

Currently, the multi-omics drug response prediction model
faces three major challenges. First, genomic data typically involve
small sample sizes, which increases the likelihood of overfitting in
existing models (Deng et al., 2023). Developing an efficient and
biologically interpretable feature selection method to select key
genomic data is the first major challenge currently faced (Deng
et al., 2023). Second, most genomic datasets for drug response
prediction contain multiple independent genomic data types
(Munquad et al., 2024). The data lengths and noise levels of
these genomic datasets vary significantly, making the rational
design of the multi-omics fusion method the second major
challenge in constructing high-performance drug response
medical models. Third, considering that drug response prediction
is a complex biological problem and the dataset has only limited
training samples, constructing a sufficiently high-performance
prediction model based on a small sample of data remains the
third major challenge.

In this study, we introduce an innovative model for predicting drug
response (NMDP, Figure 1). The NMDP model is composed of four
main modules. 1) Key genome selection module: we propose an
interpretable, semi-supervised weighted sparse PCA to identify
essential biological features. 2) Similarity network construction
module: this module addresses the challenge of aligning data across
different omics. 3) Data fusion module: we introduce a weighted
similarity network fusion approach, incorporating the dip test
method and variance information. 4) Drug response prediction
module: we integrate one-dimensional convolutional neural networks
(CNNs) and the Kolmogorov–Arnold network (KAN) method.

2 Materials and methods

2.1 Datasets

In this study, we use publicly available datasets to extract drug
response and genomic data from cell lines. The first dataset is
Genomics of Drug Sensitivity in Cancer (GDSC), which provides
extensive data on drug response measurements. The second is the
Gene Expression Omnibus (GEO) and Cell Model Passports, along
with the European Bioinformatics Institute (EMBL-EBI) datasets.
These two datasets provide the genomic data needed for this
experiment.

It is important to note that the GDSC dataset comprises
624 unique drugs, 576,758 IC_50 values, and 978 cell lines.
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Genomic characteristics for each cell line include somatic copy number
alterations (SCNAs) across 21,878 genes, RNA-Seq expression levels for
44,421 probes, and methylation levels for 365,860 CpG sites. For our
study, we select 68 drugs: 14 FDA-approved targeted therapies, 49 drugs
with known target genes not yet FDA-approved, and 5 nonspecific
treatments (Supplementary Tables S1–S3).

2.2 Dataset of gene pathway data

The pathway data used in this study are sourced from the
Pathway Commons database, which contains commonly used
pathway datasets such as the Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Gene Ontology (GO).

FIGURE 1
Overview of the NMDPmodel workflow. (A)Multi-omics data input. (B) Semi-supervised weighted sparse PCA. (C) Similarity calculationmodule. (D)
Construct of the fusion feature matrix. (E) Prediction model. (F) Output.

FIGURE 2
Structure of the deep learning model used in the NMDP model.
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2.3 Drug response data

In addition to the preprocessing already performed by the
provider of this dataset, we also perform additional preprocessing.
The following are the steps and criteria of our preprocessing: first,
we remove samples with certain missing data, such as samples with
a missing rate of more than 10%; second, we remove drugs with
limited IC_50 test information, requiring the amount of IC_50 test
data for each drug to be no less than 200 samples. Third, we use
waterfall distribution to divide drug response data (Ding et al.,
2018). Waterfall distribution is a method that sorts drugs based on
their IC_50 values and uses a linear model to fit the data, which is
used to determine whether a drug is effective. Specifically, the
drugs are sorted according to the true IC_50 information. A linear
model is then constructed to fit the distribution, and Pearson’s
coefficient is used to evaluate the degree of fit of the model. If the fit
is higher than 0.95, then the median is chosen as the cut-off point.
If the fit is less than 0.95, a new monadic linear function is created,
and the parameters of the function are determined by the smallest
and largest points of IC_50. Finally, the point furthest away from
the unary linear function in the IC_50 curve is calculated as the
demarcation point. Ultimately, we classify divide drugs into two
categories: responsive and non-responsive. In addition, to ensure
that the data are balanced, we ensure that the response group
constitutes at least 25% of the total data.

2.4 Methods

In this section, we provide a detailed overview of the
architecture and algorithm flow of the NMDP model. This
NMDP method transforms the sparse PCA model from a non-
supervised to a semi-supervised approach, improving the ability of
feature selection (key genome selection module). Second:
Similarity network building module: in this module, we
construct a sample similarity network based on the Spearman
and Kendall correlation coefficients. Third: Data fusion module:

we develop a data fusion algorithm based on the dip and variance
tests. Fourth: Drug response prediction module: in this module, we
propose a drug response prediction model based on one-
dimensional convolution and KANs.

2.4.1 Key genome selection module
2.4.1.1 ESPCA method

Before introducing the NMDP model, we first define the sparse
PCA (SPCA) and edge sparse PCA (ESPCA) models. Suppose we
have an m × n feature matrix X ∈ Rm,n, where n represents the
number of samples and m represents the number of gene probes.
The definition of SPCA is given by Formula 1:

maximize
u‖ ‖2 ≤ 1

uTXXTu, s.t. u‖ ‖0 ≤ s. (1)

Here, ‖*‖2 and ‖*‖0 represent L2 and L0 norms, respectively. u
represents principal component (PC) loading, which has the
dimension as the number of gene probes. s represents the
retention number of gene probes. In most cases, the SVD
method is used to solve Formula 1. Therefore, the formula can
also be written as Formula 2:

maximize
u‖ ‖2 ≤ 1, v‖ ‖2 ≤ 1

uTXv, s.t.‖ u ‖0 ≤ s. (2)

In this case, v represents the weight information corresponding
to the sample, with dimensions matching the number of samples.
ESPCA builds upon SPCA by incorporating improvements. Its main
contribution is the integration of pathway structure information
from the genome as a priori knowledge. Suppose that the known
pathway structure information (edge set) is represented as
G � e1, . . . , el{ }. At this point, the researcher introduces ‖u‖ES
regulon, which is represented as Formula 3:

u‖ ‖ES � minimize
∀G′∈G,support u( )⊆V G′( ) G′∣∣∣∣ ∣∣∣∣. (3)

Here, G′ ∈ G and V(G′) represents the vertex set derived from the
‖u‖ES regulon. Therefore, ESPCA can also be represented as
Formula 4 (Min et al., 2018):

FIGURE 3
Results of 14 FDA-approved drugs for eachmodel. (A) Sensitivity and specificity of the NMDPmodel; (B) sensitivity and specificity of theMOLImodel;
(C) sensitivity and specificity of the netDxmodel; (D) sensitivity and specificity of the TSGCNNmodel; (E) sensitivity and specificity of theMOICVAEmodel;
and (F) accuracy of each model.
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maximize
u‖ ‖2 ≤ 1, v‖ ‖2 ≤ 1

uTXv, s.t.‖ u ‖ES ≤ s. (4)

2.4.1.2 Semi-supervised weighted edge sparse PCA
The existing SPCA and ESPCA methods are pure non-supervised

methods; this method has a great advantage in data analysis with small
samples and high dimensions. However, two primary issues arise: first,
the method cannot utilize existing grouping information, which may
reduce its effectiveness. Second, for the problem of drug response, the
existing sparse PCAmethod selects the exact same key gene probe for all
types of drugs; it obviously does not accord with the common sense of
biology. In this study, we propose a novel semi-supervised weighted
edge sparse PCA. This methodmainly includes a weighted parameter t,
which is calculated using a machine learning model. The parameter t
leverages known grouping information on drug responses. Each time
the model completes a cycle, we calculate t based on the currently
selected key gene probes and weight u. Finally, we can select different
key gene probes for each drug. The specific steps are shown in
Formulas 5–12.

In general, the semi-supervised weighted edge sparse PCA
method proposed in this paper can be expressed as Formula 5:

maximize
u‖ ‖2 ≤ 1, v‖ ‖2 ≤ 1

uTXv, s.t.‖ u ‖NM ≤ k. (5)

Here, ‖u‖NM is a sparse regulon representing the edge group
proposed by ESPCA and k is the regularization parameter. The
regulon is given by Formula 6:

u‖ ‖NM � minimize
∀G′w∈Gw,support u( )⊆V G′w( )

G′
w

∣∣∣∣∣ ∣∣∣∣∣. (6)

Here, G′
w represents a subset of vertices selected from the edge

set, with |G′
w| representing the count of vertices within this subset.

Additionally, support (u) represents the collection of non-zero
elements in the sparse vector u. Then, we specifically explain
how to calculate G′

w, supposing eh � (ui, uj) ∈ G, ui, uj ∈ Rm. At
the beginning of the algorithm, v is randomly initialized. We use
u � Xv to calculate the weight of u. Based on u, we use Formula 7 to
calculate the edge weight wh corresponding to eh:

wh �
������
u2
i + u2

j

√
. (7)

Finally, the edge weight can be represented as Gw � wh{ }l1. In this
paper, we used a greedy principle based on the random sampling
method, previously developed by our team, to sparsify u, as
represented in Formula 8 (Miao et al., 2022):

PGw z, k( )[ ]i � zi, ifGw i( ) ∩ sample I, k( ) ≠∅
0, otherwise

{ . (8)

Here, PG(z, k) represents the sparse projection, with
[PGp(z, k)]i(i � 1, . . . , m). I � supp(normDM

Gp
(e′), (1 + ω) × k).

sample(I, k) represents the random selection of k elements from
the set I. k denotes the number of non-zero elements selected in the
sparsification process. If gene i is selected, then [PG(z, k)]i � zi;
otherwise, [PG(z, k)]i � 0.

In this case, we can obtain a sparse gene weight vector
û � PGw(z, k). Since existing sparse PCA models are non-
supervised, identical input gene expression information results in
the same û for each drug. In order to find a more suitable key geneT
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set for different drugs, we design a linear evaluator based onmachine
learning, denoted as ŷ � fθ(x). For example, linear models or
random forests can be used as evaluators. Here, θ represents the
parameterized model, while the classification label corresponds to
the drug response grouping information. Each time the sparse PCA
model completes a cycle, we extract a new genome key expression
matrix X̂∈ Rp,n and X̂∈ X based on û, where p represents the
number of non-zero gene probes contained in û at that time.
Next, X̂ is input into ŷ, as represented in Formula 9:

θ* � argmin
θ

L X̂; θ,ω( ). (9)

Here, L represents the loss function. ω represents the optimizer of
the model. θ* represents the parameter after model training. Once
training is complete, an importance score t is calculated for each
gene probe associated with X̂. Finally, we obtain t � t1, . . . , tp{ }.
In order to ensure the stability in the weighting process, we
perform a normalization step on t,scaling the values to the range
0–2. Finally, we update û based on t, as represented in
Formula 10:

û � t1û1, . . . , tmûm{ }. (10)
In this case, if the gene probe corresponding to ti is not included

in the set of t, then ti � 0. We use Formulas 11, 12 to cross-update u:

u ← û

û‖ ‖, (11)

v ← v̂

v‖ ‖, where v̂ � XTu. (12)

1: u � Xv

2: foranyweightofedge einGw do

3: w′
h �

���
u2
i

√
+u2

j Gen erateadynamic network.

4: updateG′
w � w′

h

5: endfor

6: LetnormNM
G′
w
(e′) � (‖ e1

′‖,/, ‖e′
l ‖)T

7: I � supp (normNM
Cn

(e′), (1 + ω) × k)Extract (1 + ω) × kedges

8: Jk � sample (I,k)
9: ifω>0thenω � ω − ρ

10: VG′
w
� V(G′

w)
11: foranygeneiinVG′

w
do

12: ûi � ui

13: endfor

14: X̂ � X[û]
15: Class � RandomForestClassifier ( )
16: Class.fit (Class,Y) \#Trainandtesttheclassifier

17: t � Class.feature importances

18: û � t*û#Weight û

19: return û

20: uupdate � û
‖û‖

21: v ← v̂
‖v‖,where v̂ � XTuupdate

22: loss � ‖u − uupdate‖2,if loss<0.0001,end,thenreturnstep1

Algorithm 1. Semi-supervised weighted edge SPCA.

2.4.2 Similarity network building modules
For the same drug, we can get at least three different genomics

data. The experiments in this paper mainly include gene expression
data, copy volume data, and methylation data. Each omics performs
sparse PCA operations independently. Finally, we can obtain three
key feature matrices, namely, S ∈ Rk,n, C ∈ Rp,n, and M ∈ Rh,n.
k, p, h represents the number of key gene probes retained by
each of the three omics.

Because of the inconsistency of the data lengths for each omics,
data cannot be aligned. Therefore, we calculate a sample similarity
subnet for each omics based on the concept of the sample similarity
network. In this paper, we use two similarity measurement methods.
We use the Spearman correlation coefficient to calculate the sample
similarity subnet of gene expression and methylation omics, as
represented in Formula 13:

FIGURE 4
NMDP model precision results of 14 FDA-approved drugs.

TABLE 2 External independent validation results.

Precision Recall F1-score

Responsive 0.72 0.74 0.73

Non-responsive 0.83 0.81 0.82

Accuracy 0.77

Macro average 0.73 0.77 0.74

Weighted average 0.8 0.78 0.79
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ρ2 �
∑k

1 xi − �x( ) yi − �y( )��������������������∑k
1 xi − �x( )2∑k

1 yi − �y( )2√ . (13)

Here, for the x and yth sample, xi, yi represent the expression
information on the ith gene expression in each sample, with k
representing the total number of gene probes. The symbols �x, �y
indicate the average gene expression levels for each sample.

The Kendall correlation coefficient is used for the copy number
dataset, as provided in Formula 14:

Tau � C −D
1
2 k k − 2( ). (14)

Here, the x andyth sample can be showed as a set of two
elements containing p gene probe. C represents the number of
consistent elements. D represents the number of inconsistent
elements. k denotes the total number of gene probes in
each sample.

2.4.3 Data fusion module
After completing the construction of the sample similarity

subnet, we can obtain three feature matrices, namely, S′∈ Rn,n,
C′ ∈ Rn,n, and M′ ∈ Rn,n. Then, we propose a subnet fusion
algorithm based on the dip test and variance estimation using
Formula 15:

X′ � α1 × β1 × S′ + α2 × β2 × C′ + α3 × β3 × M′, (15)
where X′ represent the feature representation after fusion. α and β
are defined as the amount of statistical information corresponding
to the genomics data matrix. Theoretically, our goal is to retain as
much of the feature matrix as possible, prioritizing genomics with
higher statistical significance for drug response prediction. To
achieve this, we use two statistical methods to assess the
amount of information in the data. The first method is the
single peak test, which aims to retain similarity matrices that
exhibit more typical bimodal distributions. A bimodal
distribution is a statistical concept that represents a dataset in
more than two regions. In gene expression analysis, if the data
show a bimodal part, it indicates a significant statistical difference
within the sample. In this paper, we assess the bimodal property of
data using the dip test method, originally proposed by Hartigan
et al. (1985). We assume that ρ(F, G) follows Formula 16 for any
bounded functions F, G. Let μ be the class of unimodal
distribution functions.

ρ F, G( ) � supx F x( ) − G x( )| |. (16)

We define μ as a typical unimodal distribution function and F as
a dip distribution function. We can obtain Formulas 17, 18
as follows:

D F( ) � ρ F, μ( ), (17)
D F1( )≤D F2( ) + ρ F1, F2( ). (18)

It is important to note that D(F) � 0 for F ∈ μ, indicating that
the dip quantifies deviation from unimodality. Assume that the
result of the dip function is p, as shown in Equation 19:

p> 0.95: significant unimodality
p< 0.05: significant bimodality

. (19)

Another statistical method is the variance test. In addition to
information about the probability distribution of the samples, our
goal is to retain a matrix of sample similarity features that preserves
as much discrete information as possible. The formula for the
variance S information is provided in Formula 20:

S � ∑ X − �X( )2
n − 1

, (20)

where X is the variable, �X is the sample mean, and n denotes the
sample size. Suppose that the result of the variance of the i feature of
the ith histology is Sij. Then, βi of ith histology can be expressed as
Formula 21:

βi �
1
n
∑n
1

Sij. (21)

The computed β � β1, β2, β3{ } accounts for the possibility that β
having a large parameter. Therefore, we normalize β using Formulas
22, 23 as follows:

wi � a + p ki −Min( ), (22)
p � b − a( )/ Max −Min( ). (23)

Here, a and b are user-defined parameters, representing the
normalized range of data. p represents a scaling factor used to
normalize the raw data β to a user-defined range. Max and Min
represent the maximum and minimum values of β, respectively.

2.4.4 Drug response prediction module
Finally, we obtain the feature matrix X′. Although the problem

of the high dimensionality of data has been largely alleviated after
genomic feature extraction and similarity network computation,
researchers still need a powerful enough deep learning model to
achieve high performance and avoid overfitting. However,
considering the limitation of the number of samples, researchers
still need a sufficiently powerful drug response prediction deep
learning model to avoid model overfitting. In this study, we
construct a deep learning model based on one-dimensional
convolution and KANs to predict drug response (Figure 2). One-
dimensional convolution can further localize the features of the
samples and remove potential noise. Experimental results indicate
that one-dimensional convolution significantly enhances the
model’s prediction performance. KANs, proposed by Liu et al.
(2024), aim to replace the traditional fully connected neural
network layer. The network is based on the Kolmogorov–Arnold
theorem, which states that any continuous function f(x) in
n-dimensional real space, where x � (x1, . . . , xn) can be
represented as a combination of a single-variable continuous
function h and a series of continuous bivariate functions gi and
gi,j. Specifically, the theorem is expressed in Formula 24:

f x1, . . . , xn( ) � ∑2n
q�0

h ∑n
i�1
gq,i xi( )⎛⎝ ⎞⎠. (24)

The theorem shows that even a complex function in a high-
dimensional space can be reconstructed using a series of lower-
dimensional function operations. Specifically, a KAN layer with nin
dimensional inputs and nout dimensional outputs can be defined as a
matrix of one-dimensional functions, as represented in Formula 25:
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KANs � ϕq,p{ }, p � 1, 2, . . . , nin, q � 1, 2, . . . , nout, (25)

where the function ϕ is defined as shown in Formula 26 and consists
of a B-spline curve and a residual activation function b(x), all
multiplied by a learnable parameter w. The function ϕ is defined as
shown in Formula 26:

ϕ � w1 × spline x( ) + w2b x( ). (26)

The main advantage of KANs is that they can achieve results
beyond fully connected neural networks while using fewer
parameters. This is especially important for the drug response
prediction problem. Due to the limitation of the sample size, it is
unlikely that we can construct a deep learning model that contains a
huge neural network. To summarize, the module can be expressed
using Formulas 27, 28 as follows:

�X � One −Dimensional Convolution X′( ), (27)
out � KANs �X( ). (28)

3 Results

The procedure in this article consists of six distinct steps.
Initially, experiments were performed using 14 FDA-approved
targeted therapy drugs already authorized for clinical use. In the
second step, we broadened the model evaluation by testing it with
49 targeted therapy drugs not approved by the FDA. In the third
step, we conducted experiments on five chemotherapeutic agents
(non-targeted therapeutics) in order to verify that the NMDPmodel
has good scalability. We used seven state-of-the-art AI models for
comparison, namely, TSGCNN, MOICVAE, MOLI, netDx,
netDx–elastic network, deep autoencoder, and netDx–SVR. Five
evaluation indicators were used, namely, sensitivity, specificity,

precision, accuracy, and F1 score. The details of comparison
models are provided in Supplementary Materials.

In the fourth step, we selected the GDSC1 dataset for training
and testing and the GDSC2 dataset for validation. We selected
14 FDA-approved drugs to perform and calculate the mean value.
The consistency and reliability of the results were ensured by
calculating the mean value.

The fifth step included conducting ablation experiments to
determine the importance of each sub-module of the NMDP
model. We randomly selected 10 drugs for analysis and averaged
the results. All experiments were performed using the
GDSC2 dataset (Supplementary Table S7). We conducted four
independent experiments: the first experiment was conducted to
remove the multi-omics weighting module; the second experiment,
to remove the convolution module; the third experiment, to remove
the sample similarity network; and the last experiment, to replace
KANs with MLPs.

Ultimately, we used the Metascape platform to examine the
biological pathways associated with the gene probes chosen by the
NMDP model (Zhou et al., 2019). The details of the indicators are
provided in Supplementary Materials.

3.1 FDA-approved targeted therapy drugs

Based on the results presented in Figure 3 and Supplementary
Table S4, experiments show that the NMDP model is much better
than the advanced deep learning model. Notably, the NMDP
model achieves an average sensitivity of 0.92 and a specificity of
0.93. Among the models for comparison, the MOICVAE model
ranks highest, with a sensitivity of 0.77 and a specificity of 0.91.
The deep autoencoder model, however, performs the lowest, with
sensitivity and specificity values of 0.53 and 0.44, respectively.

FIGURE 5
NMDP model precision results of five non-specific therapeutic drugs.
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Based on Figure 3C, it is evident that the deep autoencoder model
exhibits overfitting across multiple drugs. Moreover, the NMDP
model demonstrates minimal fluctuation across 14 drugs,
indicating its superior stability (Figure 3F). Compared to other
models, all except the MOLI model show relatively high levels of
fluctuation, suggesting weaker stability in those models. The NMDP
model achieves values of 0.93, 0.92, 0.92, and 0.92 for average accuracy
and F1 score, outperforming the MOICVAE model by 10% in each
metric (Table 1). When compared to the deep autoencoder model, it
shows improvements of 31%, 48%, 52%, and 50%, respectively.

According to Figure 4, the NMDPmodel demonstrated excellent
performance in predictive accuracy. It is worth mentioning that out
of these 14 drugs, the prediction accuracy for 13 of them
exceeded 90%.

3.2 FDA non-approved targeted
therapy drugs

Across the 49 drugs not approved by the FDA, we observe similar
outcomes. Experimental findings indicate that the NMDP model
achieves average sensitivity and specificity values of 0.92 and 0.93,
respectively, outperforming the comparison models by 11%–57%
(Supplementary Figure S1; Supplementary Table S5). Supplementary
Figure S1F illustrates the NMDPmodel’s high stability, with only 5 out
of the 49 drugs showing precision below 0.9 (see Figure 5). In addition,
the average precision of theNMDPmethod can reach 0.95. F1 score can
reach 0.92, surpassing the MOLI model by 14%, 10%, and 13%
(Supplementary Table S1). Among the seven models compared,
MOLI achieves the highest performance. Nevertheless, its sensitivity,
specificity, precision, and accuracy for response, non-response, and all
samples are only 0.80, 0.88, and 0.86, respectively, with F1 scores of 0.83,
0.83, 0.83, 0.82, and 0.84.

3.3 Non-specific therapeutic drugs

In the study of five non-specific therapeutic drugs, we achieve
optimal outcomes in three experiments. Results indicate that the
NMDP model achieves 0.93 for average sensitivity, surpassing the
comparison models by 19%–42% (Supplementary Figure S2;
Supplementary Table S6). Additionally, the NMDP model
demonstrates a precision close to 0.95 across the five drugs
(Figure 6). The model also shows outstanding performance in

F1 score and accuracy, reaching 0.93 (Supplementary Table S2).
Compared to the other models, the MOLI model achieves the best
results, but its average F1 score and accuracy reach only 0.78. The
experimental results show that the NMDPmodel has good expansibility.

3.4 External independent validation results

To evaluate the model’s performance and test its generalization
ability, we design this external independent validation experiment.
The experimental outcomes demonstrate that the NMDP model
exhibits superior generalization capabilities. Specifically, the NMDP
model achieves an overall prediction accuracy of 0.77 and precision,
recall, F1 score, and accuracy of 0.73, 0.77, 0.74, and 0.77, respectively
(Table 2). It is worth noting that a slight decrease in accuracy is
observed on the validation set compared to the results on the test set.
This may be due to the noise difference between the datasets. Overall,
the NMDP model exhibits robustness and reliability, with the
capability for widespread application.

3.5 Ablation experiment

The experimental results show that the model feature extraction
effect is weakened by removing the multi-omics weighting module and
the convolution module, but the convolution module has a greater
impact on the model. The sample similarity network module has the
greatest impact, further verifying the importance of similarity across
samples. When KANs are replaced with MLPs, the performance of the
model improves but still does not surpass that of the original model.
This indicates that KANs have a unique advantage in capturing
complex relationships, especially when dealing with multi-omics
data. Taken together, the results of the ablation experiments fully
indicate that the sample similarity network and convolution module
are the key factors in improving the model performance. Among them,
the sample similarity network module has the greatest impact, and we
believe that the main reason is that, even after the feature filtering of the
sparse PCA model, the three modules are still able to save more than
9,000 gene probes collectively, and the excessively high data dimensions
make it easy for the model to fall into an overfitting state.

3.6 Enrichment analysis

To validate the biological interpretability of the NMDP model, we
conduct bio-enrichment analysis using gene selection results for
erlotinib across different omics types obtained from the first
principal component (PC) in the NMDP model. Erlotinib is an
FDA-approved non-small cell lung cancer drug, with EGFR as its
primary target (Tsao et al., 2005; Zhou et al., 2021). The analysis yields
promising results as the NMDP model successfully identifies lung
cancer-related pathways and gene probes. For instance, in copy number
omics, we discover pathways corresponding to genes like EGFR, CDK6,
RASSF5, BRAF, and CCND1, which are associated with non-small cell
lung cancer (Chen et al., 2018; Xue et al., 2019; Zhao et al., 2018)
(Figure 7A). In methylation omics, we observe the developmental
process pathway GO:0032502, involving genes such as EGFR,
FGFR2, GATA6, ASCL1, BMP4, and FOXA1, indicating relevance to

FIGURE 6
NMDP model precision results of five non-specific
therapeutic drugs.
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lung development (Bach et al., 2018; Ju et al., 2019; Murai et al., 2015)
(Figure 7B). In Seq omics, we identify pathways related to the KEGG
pathway, which include genes like EGFR, MAPK1, KRAS, CCND1,
HRAS, NRAS, PLCG1, and GRB2, which show strong connections to
non-small cell lung cancer (Betticher et al., 1996; Park et al., 2020; Pązik
et al., 2021) (Figure 7C). Remarkably, EGFR, the target gene of erlotinib,
is consistently identified across these three omics types.

Overall, the NMDP model demonstrates superior performance
compared to other models across all metrics.

4 Discussion

With advancements in bioassay technology, a growing number of
large-scale drug response datasets are being released, creating new
possibilities for building drug response prediction models. In recent
years, researchers have proposed a number of AI-based drug response
predictionmodels (Chiu et al., 2020). However, drug response prediction
data aremostly characterized by the typical features ofmulti-omics, small

samples, high dimensionality, and high noise. Designing feature selection
and multi-omics fusion methods based on regularization ideas becomes
very important. In addition, considering the potential overfitting
problem, it is difficult for researchers to build AI-based drug response
prediction models with many parameters.

In light of the aforementioned issues, we propose the NMDPmodel,
which integrates semi-supervised weighted SPCA, similarity networks,
dip tests, and KANs. Unlike the traditional unsupervised sparse PCA
model, the NMDP model proposes an independent evaluator that
converts the sparse PCA model from a traditional unsupervised to a
semi-supervised model. This improvement allows the NMDP model to
use known dataset grouping information, ultimately allowing the model
to stably select different potential target genes for different target drugs.
The experimental results show that the NMDP model inherits the
advantages of the sparse PCA model, such as good biological
interpretability and strong denoising ability, further enhances the
feature selection ability of the model in multi-omics gene data, and
greatly strengthens the stability of the model in high-dimensional small-
sample cases. Sample similarity networks further address the

FIGURE 7
(A) Pathway results from the first PC of copy number; (B) pathway results from the first PC of methylation data; and (C) pathway results from the first
PC of sequencing data.
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dimensionality challenge of the samples while helping themodel perform
multi-omics data alignment.We introduce a fusion algorithm that utilizes
both dip test and variance data with weighted integration, which allows
themodel to focus on important histological information, thus improving
prediction accuracy. Finally, we propose a one-dimensional convolution
combined with KANs for drug response predictionmodeling. Themodel
achieves efficient prediction with a small number of parameters, thereby
effectively avoiding the overfitting problem.

To enhance the validation of the model, we also conduct external
validation experiments to assess the generalization capability of themodel
using independent datasets. The experimental findings indicate that the
NMDP model performs consistently on different datasets, validating its
robustness and reliability. In addition, we conduct ablation experiments
to evaluate the contribution of each component to the model
performance. The results of the ablation experiments show that
removing the multi-omics weighting module and the convolution
module significantly degrades the model’s performance, and in
particular, the sample similarity network module plays the most
crucial role in influencing the model’s effectiveness. This further
emphasizes the importance of inter-sample similarity and the unique
advantage of KANs in capturing complex relationships. Bioenrichment
experiments fully validate the biointerpretability of the model, suggesting
that the NMDP model could help researchers in drug development.

We also acknowledge some limitations to this study: our
research is confined to predicting the response to a single drug,
without considering the effects of combination drug therapies.
Moreover, the weighted edge sparse PCA method has high time
complexity, which leads to slower model computations. In future
work, we plan to improve the model’s ability to predict responses to
drug combinations and optimize its computational efficiency.
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