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Microarray gene expression data have emerged as powerful tools in cancer
classification and diagnosis. However, the high dimensionality of these
datasets presents significant challenges for feature selection, leading to the
development of various computational methods. In this paper, we utilized the
Eagle Prey Optimization (EPO), a novel genetically inspired approach for
microarray gene selection in cancer classification. EPO draws inspiration from
the remarkable hunting strategies of eagles, which exhibit unparalleled precision
and efficiency in capturing prey. Similarly, our algorithm aims to identify a small
subset of informative genes that can discriminate between cancer subtypes with
high accuracy and minimal redundancy. To achieve this, EPO employs a
combination of genetic mutation operator with EPO fitness function, to
evolve a population of potential gene subsets over multiple generations. The
key innovation of EPO lies in its incorporation of a fitness function specifically
designed for cancer classification tasks. This function considers not only the
discriminative power of selected genes but also their diversity and redundancy,
ensuring the creation of compact and informative gene subsets. Moreover, EPO
incorporates a mechanism for adaptive mutation rates, allowing the algorithm to
explore the search space efficiently. To validate the effectiveness of EPO,
extensive experiments were conducted on several publicly available
microarray datasets representing different cancer types. Comparative analysis
with state-of-the-art gene selection algorithms demonstrates that EPO
consistently outperforms these methods in terms of classification accuracy,
dimensionality reduction, and robustness to noise.
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1 Introduction

Cancer, one of the most formidable and devastating diseases afflicting humanity, is
characterized by the uncontrolled growth and spread of abnormal cells within the body.
Early and accurate diagnosis is paramount for effective treatment and improved patient
outcomes. In the realm of cancer research, microarray gene expression profiling has
emerged as a groundbreaking technology, offering insights into the intricate molecular
mechanisms underlying various cancer subtypes. However, the high dimensionality of
microarray data, characterized by thousands of gene features, poses a formidable challenge
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to the effective classification of cancer samples. In this context, the
task of identifying a minimal subset of informative genes, while
preserving the discriminative power of the data, becomes
imperative. Gene selection, a critical preprocessing step in
microarray analysis, aims to address this challenge by
pinpointing the genes most relevant to the classification task.
Numerous computational methods have been proposed to tackle
this problem, ranging from filter-based approaches to wrapper-
based algorithms. Nevertheless, the search for an optimal gene
subset that maximizes classification accuracy and minimizes
redundancy remains a complex and evolving area of research.

Whereas, the task of the feature selection is considered to be a
fundamental and critical step in the process of data analysis,
machine learning, and statistical modeling. It refers to the
process of choosing a subset of relevant and informative features
(or variables) from a larger pool of available features in a dataset. The
primary objective of feature selection is to improve the performance
of predictive models, reduce computational complexity, enhance
interpretability, and mitigate the risk of overfitting. In real-world
datasets, especially in fields such as biology, finance, image analysis,
and natural language processing, it is common to encounter datasets
with a multitude of features, some of which may be redundant,
noisy, or irrelevant. The presence of such features can have adverse
effects on the performance of machine learning algorithms. These
effects include increased computational demands, reduced model
generalization, and difficulty in understanding the underlying
patterns in the data.

Feature selection offers a solution to these challenges by
systematically identifying and retaining only those features that
contribute the most to the predictive power of a model. By
reducing the dimensionality of the data, feature selection
simplifies the modeling process, often resulting in models that
are easier to train, interpret, and deploy in practical applications.

Among the various available techniques for feature selection, the
use of optimization techniques plays a pivotal role in feature
selection. Feature selection involves choosing a subset of relevant
features from a larger pool of variables to improve model
performance, reduce computational complexity, and enhance
interpretability. This process is essential for improving the
efficiency and effectiveness of data analysis and modeling.
Optimization methods offer a systematic and principled approach
to tackling this challenging problem.

Firstly, optimization techniques provide a formal framework for
defining and optimizing an objective function or criterion that
quantifies the quality of a feature subset. The objective function
can be tailored to the specific goals of feature selection, whether it is
maximizing classification accuracy, minimizing computational cost,
or achieving a trade-off between various performance metrics.
Through this optimization process, one can systematically search
through the space of all possible feature subsets to find the most
promising subset that optimizes the chosen criterion.

Secondly, optimization methods enable the exploration of large
and complex feature spaces efficiently. Given the exponential growth
in the number of possible feature combinations with increasing data
dimensionality, brute-force methods become computationally
infeasible. Optimization algorithms, such as genetic algorithms,
simulated annealing, or particle swarm optimization, offer
efficient search strategies that can navigate through this vast

feature space to identify relevant subsets, even in high-
dimensional datasets.

Furthermore, optimization techniques allow for the
incorporation of domain-specific knowledge and constraints into
the feature selection process. Researchers and practitioners can
encode their expertise or prior information into the optimization
algorithm, ensuring that the selected feature subsets adhere to
specific requirements or characteristics relevant to the
problem domain.

Additionally, optimization-based feature selection methods
facilitate the exploration of trade-offs between competing
objectives. For instance, one might aim to simultaneously
maximize classification accuracy while minimizing the number of
selected features to reduce model complexity. Multi-objective
optimization approaches can efficiently handle such scenarios,
generating a range of Pareto-optimal solutions that represent the
trade-off front between conflicting objectives.

Despite the advances in optimization algorithms for feature
selection in microarray gene expression data, challenges remain in
balancing exploration and exploitation to achieve efficient and
effective gene selection. High-dimensional data, such as
microarray data, poses inherent difficulties, including
redundancy, noise, and the risk of overfitting in machine
learning models. Existing meta-heuristic algorithms, while
powerful, often suffer from premature convergence or excessive
computational costs, especially when applied to datasets with high
dimensionality and small sample sizes. This gap in achieving robust,
efficient, and biologically interpretable solutions for cancer
classification motivated the development of the Eagle Prey
Optimization (EPO) algorithm. The inspiration behind EPO lies
in the hunting strategies of eagles, which naturally balance global
exploration and local exploitation.

In this context, Eagle Prey Optimization (EPO) emerges as a
novel and genetically inspired approach designed to address the
complex problem of microarray gene selection in cancer
classification. EPO takes inspiration from the awe-inspiring
hunting strategies of eagles, which are renowned for their
precision and efficiency in capturing prey. In a similar vein, EPO
seeks to identify a concise and informative set of genes that can
effectively discriminate between different cancer subtypes while
minimizing redundancy and maintaining robustness. This
paper introduces the concept of Eagle Prey Optimization and
presents its application in the domain of microarray gene
selection for cancer classification. Through rigorous
experimentation and comparative analysis with state-of-the-art
algorithms, we demonstrate the superior performance of EPO in
terms of classification accuracy, dimensionality reduction, and
robustness to noise. Furthermore, we highlight the algorithm’s
ability to unveil biologically relevant genes associated with cancer
pathways, thereby contributing to our understanding of the
molecular basis of cancer subtypes. The integration of EPO in
cancer research not only enhances the diagnostic potential but
also holds the promise of discovering novel biomarkers and
therapeutic targets, ultimately advancing the field of precision
medicine and improving the prognosis of cancer patients. This
paper delves into the intricacies of Eagle Prey Optimization, its
genetic-inspired mechanisms, and its potential to revolutionize
microarray gene selection in cancer classification.
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This paper presents several significant contributions that
advance the field of cancer classification and microarray gene
selection using the proposed EPO algorithm. The main
contributions of the work are given as:

• Introduces Eagle Prey Optimization, a novel optimization
algorithm inspired by the hunting strategies of eagles. EPO
is specifically tailored for microarray gene selection in cancer
classification, offering a unique approach to address the
challenges associated with high-dimensional gene
expression data.

• EPO leverages genetic-inspired mechanisms to evolve a
population of potential gene subsets over multiple
generations. This genetic inspiration allows EPO to explore
the search space effectively and efficiently, mimicking the
precision and efficiency of eagles in hunting prey.

• EPO incorporates a specialized fitness function designed for
cancer classification tasks. This function takes into account not
only the discriminative power of selected genes but also their
diversity and redundancy, promoting the creation of compact and
informative gene subsets that enhance classification accuracy.

• Provides comprehensive experimental results of the EPO
using the various different cancer type datasets having high
dimensional feature representation and comparing EPO with
state-of-the-art gene selection algorithms.

The rest of the paper is organized as follows: Section 2 provides
an overview of the existing literature on feature selection methods
for microarray data in cancer classification. It discusses various
optimization algorithms, genetic-inspired approaches, and their
applications in gene selection. The paper delves into the details of
the proposed EPO algorithm in Section 3. It explains the genetic-
inspired mechanisms used in EPO and the dedicated fitness
function for cancer classification is described in depth,
highlighting its role in promoting the selection of informative
and non-redundant gene subsets. The experimental methodology
is presented in Section 4. It outlines the datasets used for
validation, the performance metrics employed, and the results
of the experiments conducted to evaluate the performance of EPO.
The paper concludes by summarizing the key findings and
contributions of the research in Section 6.

2 Literature review

Microarray gene expression data analysis has significantly
advanced our understanding of cancer biology and has played a
pivotal role in cancer classification and diagnosis. However, the high
dimensionality of microarray data, characterized by thousands of
gene expression profiles, poses a major challenge. Feature selection
techniques have become essential in addressing this challenge by
identifying a subset of informative genes that are most relevant for
cancer classification. In the past literature on microarray gene
expression feature selection, extensive research has been
conducted to develop and evaluate various methods and
techniques. These methods aim to identify a subset of relevant
genes from the large pool of gene expression data to improve the
accuracy and interpretability of cancer classification models.

On a similar theme, the work introduced in (Peng et al.,
2005), proposed a feature selection method that maximizes
mutual information while minimizing redundancy among
selected features, enhancing the informativeness of the
selected genes for cancer classification. Whereas, a team of
several authors also worked on the comparative analysis of
feature selection (Almugren and Alshamlan, 2019; Mohd Ali
et al., 2022; Remeseiro and Bolon-Canedo, 2019; Alhenawi et al.,
2022). These studies evaluate various feature selection methods
and multiclass classification algorithms for microarray-based
tissue classification. They provide insights into the best
approaches for accurate cancer subtype classification.

The work proposed in (Houssein et al., 2022), presents an
integrated approach combining manta rays foraging optimization
and support vector machine methods for gene selection and cancer
classification, achieving improved classification performance. Using
the strategy of optimization only, the work proposed in Othman
et al. (2020) uses the gene selection algorithm inspired by the cuckoo
search optimization algorithm with evolutionary operators for
cancer microarray data. It demonstrates improved performance
in terms of classification accuracy and feature selection efficiency.
Also, the authors of Aziz (2022) use the hybrid approach, using
cuckoo optimization as one algorithm for cancer classification. The
use of the cuckoo search optimization algorithm is also found
satisfactory in collaboration with other optimization algorithms,
making a hybrid approach for various application areas (Priya et al.,
2022; Senapati et al., 2023; Kalaiarasu and Anitha, 2020;
Segera, 2021).

Several authors also showed the reliability of the genetic
algorithm on microarray gene expression datasets for feature
reduction and dimensionality reduction. One such work is
proposed in Ram and Kuila (2019) where the authors present a
genetic algorithm for microarray gene selection. It employs a feature
ranking strategy to improve classification accuracy and reduce
dimensionality. In addition to the genetic algorithms, the use of
manifold learning is also utilized by some authors for cancer
classification using the gene dataset (Wang et al., 2023). In a
couple of recent works, the genetic algorithm is also used in the
hybridization of the algorithms for the selection of the more robust
features for high-dimensional cancer datasets (Ge et al., 2019; Ali
and Saeed, 2023). The results from these research articles boost the
interest in using hybrid algorithms as they improve classification
accuracy. Besides this, the use of genetic algorithms is also found to
enhance the effectiveness of similarity searching in ligand-based
virtual screening which is proposed in Berrhail and Belhadef (2020).
Some of the authors explored the use of the feature-thresholds
guided genetic algorithm for feature scoring on high-dimensional
datasets (Deng et al., 2023). This new variant of the genetic
algorithm improves the classification accuracy by using a limited
set of selected genes.

In one of the works on high-dimensional datasets, the literature
introduces a distance ratio-based feature selection algorithm that
considers both inter-class and intra-class distances to identify
informative genes for cancer classification (Brankovic et al., 2018).
Similarly in the article (Zhou et al., 2022), authors proposed a new
approach using the mutual information with correlation coefficient for
feature selection on high dimensional datasets. Whereas, the critical
analysis of the various feature selection approaches and their stability
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prediction is presented in one of the current research studies (Khaire
and Dhanalakshmi, 2022).

In some of the works, the authors proposed the use of the
quantum approach with the optimization algorithms for reducing
high dimensional data. On this, the work introduces a quantum
binary particle swarm optimization algorithm tailored for feature
selection in gene expression data, highlighting its ability to identify
relevant genes for cancer classification with high efficiency (Wu
et al., 2019). Similarly, in Ghosh et al. (2021) the authors proposed a
quantum squirrel-inspired algorithm for gene selection in
methylation and expression data of prostate cancer. The work
claimed that the quantum-inspired algorithm variant provides
good results with the selection of the relevant genes. Several
other variants of the quantum-inspired form of various
optimization algorithms were also present in the literature for the
selection of the relevant genes from the high dimensional dataset
(Dabba et al., 2020; Wang et al., 2020). Also, the details of the
quantum meta-heuristic algorithms and their role in various
engineering applications were also presented in the literature
(Prakash, 2021).

In some of the recently published works on gene selection for
cancer classification, authors have used a variety of approaches. One
such approach is the use of hybridization. In Mahesh et al. (2024),
authors have proposed the use of the hybrid model that integrates
the strengths of Ant Colony Optimization (ACO) and Particle
Swarm Optimization (PSO) to enhance feature selection and
classification accuracy. The model’s effectiveness is demonstrated
through its application in predicting leukemia, achieving a notable
accuracy of 87.88% using a Support Vector Machine (SVM) for
classification. In another recent work, proposed in 2024 (Sucharita
et al., 2024), authors proposed a two-step hybrid approach that
begins with an ensemble of filter-based heterogeneous feature
selection methods. This initial step is crucial as filter methods are
known for their efficiency in handling high-dimensional datasets by
evaluating the relevance of features based on statistical measures
without involving any classifier. In the second step, the selected
features undergo a wrapper-based selection process. Here, the
authors employ the Moth-Flame Optimization (MFO) algorithm,
which is a bio-inspired optimization technique (Zamani et al., 2024).
The fitness function for this optimization is based on an Extreme
Learning Machine (ELM), which is known for its rapid learning
capabilities and one-pass processing of samples. This characteristic
of ELM allows for efficient training, making it suitable for scenarios
where computational resources are limited.

In another work, an author used the two computational
approaches for cell-type shared and specific binding (Zhang
et al., 2023). Authors characterize cell-type-specific and shared
binding sites by integrating multiple types of features, utilizing
XGBoost and convolutional neural networks (CNNs). The
integration of diverse features is found crucial in their study for
enhancing model performance in biological contexts as evidenced by
recent studies that highlight the importance of feature diversity in
improving predictive accuracy for transcription factor (TF) binding
sites. The experimental results demonstrate that both the XGBoost
and CNN models significantly outperform existing methods across
three classification tasks, supporting the assertion that advanced
machine-learning techniques can effectively capture the
complexities of biological data.

Besides the microarray gene expression data, there exists work in
the literature on another class of dataset called next-generation
sequencing (NGS) data. Optimization techniques can be applied to
next-generation sequencing (NGS) data in various ways to extract
valuable insights and enhance the analysis of biological and genomic
information. NGS data optimization typically focuses on improving
data quality, computational efficiency, and the extraction of
biologically relevant information. Many authors worked on this
domain recently to optimize the NGS data using optimization
approaches.

One such different work is proposed in McNulty et al. (2019) on
the NGS dataset. This research contributes to the field of cancer
genomics by offering a data-driven and adaptable solution for
filtering common germline polymorphisms from tumor-only
NGS data. The optimized cutoffs provide a more reliable basis
for somatic mutation identification, improving the precision and
clinical relevance of cancer genomics research and
personalized medicine.

In the work (Pellegrino et al., 2023), the authors used the fusion
of Extreme Gradient Boosting and metaheuristic algorithms to
provide a robust and effective framework for predicting
pathogenicity in myeloid NGS onco-somatic variants. The
integration of these techniques holds the potential to enhance
our understanding of the genetic underpinnings of myeloid
malignancies, supporting precision medicine initiatives and
improving patient outcomes in the field of onco-hematology.

The work proposed by the authors of Halim (2020) considered
the optimization of the DNA fragment assembly as a critical task in
genomics and bioinformatics, where researchers aim to reconstruct
the complete DNA sequence from a set of smaller overlapping
fragments. The Overlap-Layout-Consensus (OLC) approach here is
a fundamental method in this process, and metaheuristic-based
techniques offer innovative ways to enhance the efficiency and
accuracy of DNA fragment assembly. Whereas in MotieGhader
et al. (2020), the research contributes to the advancement of breast
cancer molecular subtype stratification by introducing a novel
approach that integrates meta-heuristic optimization algorithms
with feature selection criteria for mRNA and microRNA data.
The results demonstrate the efficacy of this approach in
enhancing classification accuracy and illuminating the biological
underpinnings of breast cancer subtypes, ultimately paving the way
for personalized treatment strategies.

3 Proposed eagle prey optimization for
feature subset selection

Eagle prey hunting is a remarkable and highly efficient hunting
strategy employed by various species of eagles, which are large and
powerful birds of prey known for their exceptional hunting abilities.
Eagles possess exceptional eyesight, with some species capable of
spotting prey from great distances. Their acute vision allows them to
identify potential targets with remarkable precision. Eagles often
begin their hunts by soaring at high altitudes, scanning the ground
below for potential prey. Their ability to see over large areas from a
great height gives them a strategic advantage. Once a suitable target
is spotted, eagles use their impressive speed and maneuverability to
initiate a surprise attack. They typically approach their prey from
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above, diving down to catch their target off guard. Eagles have
powerful talons with sharp claws designed to grip and immobilize
their prey effectively. The talons are used to secure the prey and
prevent it from escaping. They can adjust their trajectory and speed
during the hunt to ensure a successful capture. Whereas, the choice
of prey can vary from small mammals, birds, and fish, to even
larger prey.

Eagles employ a variety of hunting techniques depending on
their species and the type of prey they are targeting. The hunting
strategy of the eagles is known with some common situational
conditions like:

• Aerial Hunting: Many eagle species are skilled aerial hunters.
They soar at high altitudes, scanning the ground for potential
prey. When a suitable target is spotted, the eagle dives down with
incredible speed and accuracy to seize its prey. This technique is
often used for hunting birds, which are captured mid-air.

• Perch and Wait: Some eagles, such as the African fish eagle,
prefer to perch near water bodies. They wait patiently for fish
or other aquatic prey to come close to the surface, then swoop
down to capture them with their sharp talons.

• Surprise Attacks: Eagles are known for their ability to launch
surprise attacks on their prey. They approach from behind
obstacles or use the sun to blind their prey, making it harder
for the prey to detect them until it is too late.

• Cooperative Hunting: Eagles engage in cooperative hunting,
particularly when targeting larger prey. Bald eagles, for
instance, may work together to capture larger fish. One
eagle distracts the prey while the other swoops in for
the capture.

• Still Hunting: Some eagle species, like the martial eagle, are
known for “still hunting.” They perch inconspicuously in trees
or on cliffs, silently waiting for ground-dwelling prey to come
into their field of view. When the prey is within striking
distance, the eagle pounces with great force.

• Scavenging: While eagles are primarily hunters, they are
opportunistic and sometimes scavenge for carrion or steal
food from other birds or predators. Bald eagles, for example,
are known to scavenge fish from other birds or steal
from otters.

• Hunting Grounds: Eagles tend to establish hunting grounds in
their territories, often returning to the same locations
repeatedly. They become familiar with the behavior of prey
in their territory, improving their hunting success.

• Stalking and Ambushing: Some eagles stalk their prey on the
ground, using cover and vegetation to approach undetected.
Once in range, they swiftly ambush and capture their prey.

Based on the above-defined approaches, the eagle
hunting strategies can indeed be summarized in a sequence of
actions: that includes selecting the search space, searching
for prey within that space, and executing an attack. This
behavior of the eagle targeting the prey is shown
diagrammatically in Figure 1.

3.1 Selection of the search space

The eagles choose a certain region to start their quest for food
and depart in a specified direction once they have settled on a target
area. As a result, discovering the search space is accomplished
through self-searching and tracking other birds. Eagles often
begin their hunting expedition by ascending to a significant
altitude, sometimes thousands of feet in the air. This altitude
provides them with a broader view of the landscape and
potential prey. The search space encompasses the area below the
eagle, covering a wide territory. It is from this vantage point that
eagles identify potential targets.

3.2 Searching inside the search space

After selecting an appropriate search space, the eagles will start
to search for the prey in the search space. Eagles have exceptional
eyesight, and they scan the terrain for any signs of movement or
potential prey items. Their keen vision enables them to detect even
small or distant prey. They focus on specific characteristics, such as
the size, shape, or behavior of animals on the ground and any
movement that may indicate the presence of prey. The search often
involves circling or gliding at various altitudes to cover a larger area
effectively. Generally, the searching behaviors of the eagles are in
spiral form with the selected search space.

After the scanning of the prey from the specific altitude and once
a suitable prey item is identified within the search space, the eagle
initiates its attack. The decision to attack is based on factors like the
proximity and vulnerability of the prey. Eagles are known for their
remarkable speed and agility during the attack phase. They may
adjust their altitude, speed, and direction as needed to maintain the
element of surprise and increase the accuracy of their strike. The
attack typically involves a rapid descent, with the eagle using its
sharp talons to grasp and immobilize the prey. The talons are
designed to pierce and grip the prey securely, ensuring that it
cannot escape.

FIGURE 1
Prey hunting strategy of the eagle including the selection of the
search space, searching prey in search space and executing an attack.
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3.3 Proposed eagle prey optimization
design framework

Any nature-inspired meta-heuristic algorithm starts with the
random initialization of the seed point. This seed point acts as a
base parameter to start with and the corresponding objective
function either needs to be minimized or maximized depending
on the choice of the problem. Let us suppose that the sample
space is defined using the 2-dimensional space of size m × n and
is given by Equation 1.

A �
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(1)

where the symbolic representation of the used variables is defined as
the total number of sample objects given by variable n, the problem
dimension is represented bym,Aj

i is deciding the beginning position
of the ith candidate for jth decision variable.

In this sample space, the Eagle will select the hunting space
heuristically and identify the region having the maximum
possible chance of the prey, called the best position for
hunting, called Posbest. The next iterative position for hunting
the prey is given by Equation 2.

Posi,j � Posbest + α × β × Posmean − Posi( ) (2)

where, α and β are the exploding learning factor and selected
random number respectively in the range of (0, 1).

The process starts with random solutions of candidate solution
as (Posij) in the range between Posmean and lower limits (Posi),
where ith is the problem dimension.

Next, the second step of hunting is the searching of the prey in
the selected region. As the eagle searches for its prey in the spiral
form and thus at every temporal state this diameter of the spiral
reduces by a factor till it swoops the prey. This process is
mathematically given by Equation 3.

Pos1 t + 1( ) � Posbest t( ) × γ + Posmean t( ) − Posbest t( ) × β( ) (3)
where, γ is the exploration parameter in range (0, 1), Pos1(t + 1) is
eagle position in the next iteration t, Posbest(t) is the best possible
solution till tth timestamp and Posmean is the mean value of the best
position values till timestamp t.

Once the target is found, the eagle will shorten the spiral circle
radius and focus on the prey to swoop. This process is known as
narrowing exploration in the search space and mathematically is
given by Equation 4.

Pos2 t + 1( ) � Posbest t( ) × F D( ) + Posrand t( ) + Y −X( ) × β) (4)
where Posrand(t) is the random solution at time t using the ith

iteration, F(D) is the flight distribution function in D dimension
space and is given by Equation 5.

F D( ) � 0.01 ×
u × ω

|v|1/b (5)

Here u and v are selected randomly in the range of (0, 1), b is
constant having a value of 1.5, and ω is an adaptive parameter with
the value calculated using Equation 6.

ω � b × sin π × b
2( )

b2 × 2
b−1
2( ) (6)

Also, theY andXare the coefficients that handle the spiral space of the
eagle moment. The mathematical formulation of these is given in
Equation 7.

X � xr i( )
argmax |xr|( ), Y � yr i( )

argmax |yr|( ) (7)

where r(i) is given as,

r i( ) � Θ i( ) + SC × β; Θ i( ) � a × π × β

Here, SC is the search cycle and holds a value in the range (0,5),
and a is the rotation parameter in the range (2,10). Thus the
parameters a and SC were used to handle the change in the
spiral shape.

The next hunting phase of the eagle is called the exploitation
phase where the eagle swoops the prey with a slow encounter which
is mathematically given by Equation 8.

Pos3 t + 1( ) � 0.1 × Posbest t( ) − Posmean t( )( )
− 0.2 × β × Posmean − Posi( ) + Posi( ) (8)

FIGURE 2
Flowchart of the proposed Eagle Prey Optimization algorithm.
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Here, the constants 0.1 and 0.2 are the adjustment parameters of the
exploitation phase and are fixed using simulation results.

The other case is when the prey is large enough to swoop on the
ground, Equation 8 is to be narrowed down as the hunt is more
forced and speedy. The modified equation of the narrow
exploitation phase is given by Equation 9.

Pos4 t + 1( ) � t
2β−1
1−T( )2 × Posbest t( )( ) − 2β × Pos t( )( ) − 2γ × F D( )( )

+ 2β

(9)
Here (1-T) represents the amount of time the eagle spent to
swoop the prey from the ground from the total time spent
on hunting.

The stepwise explanation of the proposed algorithm is
shown using the flowchart in Figure 2. Whereas, the
pseudo-code of the proposed EPO algorithm is given in
Algorithm 1.

3.4 Hyperparameter selection and tuning

The initial ranges of hyperparameters were selected based on
prior literature and the nature of the optimization problem. The
population size (Np) is set to 100, as smaller populations are
computationally efficient, while larger populations improve
solution diversity. The exploration factor (w) is initialized
between 0.4 and 0.9 to balance exploration and exploitation.
While the cognitive and social components (C1 and C2) both set
in the range of 1.5–2.5. These parameters are the common
practice in meta-heuristic optimization algorithms. Also, we
conducted a series of small-scale preliminary experiments to
assess the sensitivity of EPO’s performance to hyperparameter
values. These experiments were performed on a subset of the
dataset using a fixed number of iterations to reduce
computational overhead.

A grid search was performed to fine-tune critical
hyperparameters (Np, w, c1, and c2). Each combination was
evaluated using a fitness function based on classification

accuracy achieved by the selected gene subset. During
training, we implemented an adaptive strategy for the
exploration factor (w) to dynamically shift from exploration
to exploitation as given by the following Equation 10.

W � Wmax − Wmax −Wmin( ) × t

T
(10)

where Wmax and Wmin are the initial and final values of W, t is the
current iteration, and T is the total number of iterations. After
identifying promising hyperparameter combinations, further fine-
tuning was performed based on the validation accuracy of the five
machine learning classifiers used in the study.

3.5 Fitness calculation

The fitness function f in the proposed Eagle Prey
Optimization algorithm evaluates the quality of each candidate
solution (subset of selected genes) by balancing two critical
objectives i.e., Classification performance and minimization of
feature count. The primary goal of the fitness function is to
maximize the classification accuracy of a machine learning model
trained on the selected gene subset. The classification
performance is quantified using performance metrics. For our
experiments, we primarily use accuracy as a proxy for
classification performance. Also, to address the high
dimensionality of microarray data, the fitness function
incorporates a penalty term that discourages the selection of
large gene subsets. This promotes compact and computationally
efficient feature subsets. The designed fitness function for EPO
algorithm covering both objectives is given by Equation 11.

f s( ) � α.A + 1 − α( ). 1 − Ns

Nt
( ) −W.P s( ) (11)

where A is the accuracy, Ns is the number of selected features
(genes),Nt is the total number of features (genes) in the dataset, α
is the weight parameter (0≤ α≤ 1) that controls the trade-off
between classification performance and feature subset size, s is
the selected feature set, W is the weight coefficient that balance

TABLE 1 Dataset Description with the associated parameter information.

Datasets #Gene #Instance #Class

Colon Tumor 2000 60 2

Central Nervous System 7129 60 2

Breast Cancer 24,481 97 2

Lung Cancer 12,533 181 2

Ovarian Cancer 15,154 253 2

Lymphoma 4026 62 3

MLL 12,582 72 3

SRBCT 2308 83 4
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the importance of redundancy, and P(s) penalizes highly
correlated features.

Algorithm 1. An algorithm of Proposed Eagle Prey
Optimization.

3.6 Complexity analysis

The computational complexity of the EPO algorithm is
determined by three primary components.

1. Initialization Phase: The algorithm starts with the
initialization of a population of candidate solutions (prey)
of size N. Each candidate solution represents a subset of
selected features. The cost of initializing each candidate
solution is proportional to the total number of features
(Nt). Thus the complexity is O(N.Nt).

2. Fitness Evaluation: The fitness of each candidate solution is
computed using the defined fitness function, which includes
evaluating a machine learning model on the subset of features,
and the cost of training and validating the machine learning
model depends on the size of the selected subset (Ns) and the
number of training samples (M).

For a single fitness evaluation the complexity is O(Ns.M) and
for all candidates in the population the complexity is O(N.Ns.M).

3. Exploration and Exploitation Phases: In each iteration, the
algorithm performs exploration and exploitation to update the
positions of the candidate solutions. This involves calculating the
movement of prey in the search space based on adaptive
mechanisms and updating positions and recalculating fitness for
N candidate solutions. The cost of these operations is proportional
to the population sizeN and the dimensionality of the problemNt.
Thus the complexity per iterations is O(N.Nt).

The algorithm performs these operations for a total of I iterations,
where I is the maximum number of iterations or until convergence.
This will give the complexity over all iterations as O(I.N.Nt).
Combining the components above, the overall computational
complexity of the EPO algorithm is O(I.N.(Nt +Ns.M)).

4 Experimentation results

4.1 Dataset description

To evaluate the performance of the proposed feature selection
method, in the experimentation, the Microarray Gene Expression
(MGE) dataset is taken into consideration. The dataset is available
on the public data repository1 having 11 variants of the cancer genes
supervised into binary to multi classes. Out of the 11 available gene
expression datasets, we took 8 datasets (except ALL-AML, ALL-AML-3,
and ALL-AML-4). The selected 8 datasets are in the. arff extension
having gene counts, instances count, and number of class distribution
information. The choice of the selection of this data repository is
because of having the minimum gene count of 2000, which is a pre-
screened criterion of dataset selection. The description of the dataset
with the parameter information is presented in Table 1.

1 https://csse.szu.edu.cn/staff/zhuzx/datasets.html, accessed in

October 2023.
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4.2 Dataset splitting

In the machine learning system, while model training, the
common practice is to subdivide the dataset into two parts
i.e., Training and validation. To divide the dataset, the most
commonly used approach is the 80-20 rule, where the randomly
selected 80% dataset is used as a training set and the rest 20% as
validation. But, with the smaller dataset having a limited sample size
this approach is found appropriate, more especially with the MGE
datasets as reported in Braga-Neto and Dougherty (2004). Thus, in
this work, the dataset has experimented with the well-known
Bootstrap method, called the 0.632+ estimator (Efron and
Tibshirani, 1997).

4.2.1 Compute error loss with cross-
validation approach

Let’s say we wish to use the function f to forecast V using U such
that f may depend on some parameters that are predicted from the
data (V, U), i.e., f(U) = α × U. The error estimate of this sample is
calculated using Equation 12.

error ê( ) � 1
N

∑N
i�1

L̂ vi, f ui( )( ) (12)

where L̂ is the mean square error loss function in model training.
As the function f tried to fix the data using the given sample

(ui, vi) only, the chance of having a negative bias can be formed. To
reduce this the approach of k-fold cross-validation can be utilized. In
the K-fold CV approach, we divide our dataset into K subgroups say
5, for example,. Fit your model on the remaining K-1 subgroups for
each group k, then test it on the kth group. The Error equation using
k-fold is updated as given in Equation 13.

errorkfold êkfold( ) � 1
N

∑N
i�1

L̂ vi, f−k i( ) ui( )( ) (13)

where f−k(i)(ui) is the anticipated value of ui using data not in the
k(i)th set and k is some index function that identifies the partition to
which observation i is allocated.

When using cross-validation, the value of k, or the number of
folds to utilize, is crucial. The error estimates have an increase in the
bias and lower variance with the decreasing value of k. On the other

TABLE 2 Experimentation results of the proposed approach on Ovarian, Lymphoma, MLL, SRBCT Cancerous datasets using multi-classifiers.

Models Accuracy (%) Precision (%) Recall (%) F1-score (%) Specificity (%) AUC-ROC (%)

Dataset: Ovarian Cancer (Genes: 15154, Selected: 10235)

DT 90.07 90.31 90.55 90.43 91.79 89.57

RF 92.34 90.91 93.53 92.20 89.01 89.82

KNN 89.24 90.99 89.75 90.36 89.12 88.73

SVM 92.56 90.30 93.54 91.89 92.49 92.13

BPNN 93.70 93.04 93.91 93.48 90.71 92.62

Dataset: Lymphoma (Genes: 4026, Selected: 2022)

DT 92.03 93.77 95.64 94.70 91.79 89.57

RF 92.86 93.78 94.45 94.12 89.01 89.82

KNN 91.81 92.20 93.35 92.77 89.12 88.73

SVM 93.03 94.57 95.69 95.13 92.49 93.13

BPNN 95.24 95.42 95.41 95.42 90.71 95.62

Dataset: MLL (Genes: 12582, Selected: 9912)

DT 87.73 89.44 91.24 90.33 89.02 89.24

RF 89.24 89.32 88.04 88.67 89.26 89.90

KNN 87.54 87.42 90.33 90.24 90.14 87.60

SVM 90.27 90.15 92.84 90.05 92.30 91.94

BPNN 92.21 92.58 90.44 91.50 90.16 92.15

Dataset: SRBCT (Genes: 2308, Selected: 1109)

DT 92.48 92.53 93.19 92.86 92.43 94.41

RF 93.46 92.78 92.51 92.64 92.98 95.22

KNN 91.22 92.21 93.37 92.79 91.55 92.12

SVM 94.21 94.32 95.74 95.03 94.51 94.59

BPNN 95.86 95.63 94.09 94.85 95.04 94.10
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hand, the error estimate may have a significant variance but a very
low bias when k is set to the number of instances. Once more, the
bias-variance tradeoff may result from this. In such a condition we
prefer the use of bootstrapping over cross-validation.

4.2.2 Computing error loss with 0.632+ estimator
To estimate the extra-sample prediction error, we might utilize

the bootstrap method rather than cross-validation. Any statistic’s
sample distribution may be estimated via bootstrap resampling. We
can consider picking B bootstrap samples (with replacement) from
the set S1, . . . , SB, where each Si represents a set of N samples, if our
training data is X = (u1, . . . , uN). We can now estimate the extra
sample prediction error using leave-one-out bootstrap samples as
given in Equation 14.

errorB êB( ) � 1
N

∑N
i�1

1
|C−i| ∑

b∈C−i
L̂ vi, fb ui( )( ) (14)

where fb(ui) is the predicted value at ui from the model fit to the bth

bootstrap dataset, C−i is the set of indices for the bootstrap samples

that do not contain observation i, and |C−i| is the number of
such samples.

The above Equation 14 addresses the overfitting issue, but retains
bias. The non-distinct observations in the bootstrap samples, a
consequence of replacement sampling, are the cause of this bias.
Thus, for every sample size, the average number of unique
observations can be around 0.632N (Efron and Tibshirani, 1997).
Thus, the error computation using the 0.632+ estimator is given by
Equation 15.

error0.632+ � 1 − w( ) × error + w × errorB (15)
where,

error � 1
N

∑N
i�1

L̂ vi, f ui( )( ), w � 0.632
1 − 0.368R

and

R � errorB − error

Γ − error
, Γ � 1

N2
∑N
i�1

∑N
j�1

L̂ vi, f uj( )( )

TABLE 3 Experimentation results of the proposed approach on Colon, CNS, Breast, and Lung Cancerous datasets using multi-classifiers.

Models Accuracy (%) Precision (%) Recall (%) F1-score (%) Specificity (%) AUC-ROC (%)

Dataset: Colon Tumor (Genes: 2000, Selected: 1554)

DT 89.23 91.89 89.23 90.54 89.52 92.24

RF 90.1 89.36 90.22 89.79 91.57 89.45

KNN 89.97 90.69 91.07 90.88 91.37 91.46

SVM 94.29 92.52 92.84 92.68 91.10 91.96

BPNN 96.21 90.00 92.52 91.24 90.66 92.79

Dataset: CNS (Genes: 7129, Selected: 4749)

DT 90.04 90.26 92.71 91.47 89.95 91.84

RF 92.31 89.50 91.44 90.46 92.72 91.77

KNN 90.14 91.78 89.42 90.58 92.29 91.13

SVM 93.45 90.17 89.16 89.66 92.21 90.95

BPNN 93.24 90.21 90.25 90.23 91.36 91.75

Dataset: Breast Cancer (Genes: 24481, Selected: 18537)

DT 90.76 91.24 92.03 91.64 91.18 90.21

RF 92.44 93.07 92.13 92.60 90.97 90.44

KNN 87.50 89.14 92.85 90.96 90.35 89.45

SVM 92.83 90.76 91.21 90.99 91.61 90.81

BPNN 92.37 93.37 91.05 92.19 92.63 92.70

Dataset: Lung Cancer (Genes: 12533, Selected: 9777)

DT 91.37 92.90 92.01 92.45 92.29 90.74

RF 91.78 92.31 92.20 92.26 91.51 90.96

KNN 91.31 91.63 90.85 91.24 92.03 90.64

SVM 93.62 91.31 92.56 91.93 92.35 93.52

BPNN 93.55 93.53 93.08 93.30 90.54 93.66
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Here, R measures the relative overfitting rate and Γ is the no-
information error rate, estimated by evaluating the prediction model
on all possible combinations of targets vi and predictors ui.

4.3 Performance measurement parameters

Performance evaluation and goodness-of-fit parameters are
essential aspects of assessing the effectiveness of classification
models. When evaluating the performance of a classification
model, various metrics can be used to measure how well the
model predicts the true classes of instances. The performance
evaluation metrics that were used in the experimentation, were
computed using the 2 × 2 confusion matrix having values
mentioned as true positive (TP), true negative (TN), false
positive (FP), and false negative (FN) predictions, are given as.

• Accuracy: It is a widely used metric that measures the
proportion of correctly classified instances out of the total
instances. It is calculated as (TP+TN)

(TP+TN+FP+FN).
• Precision (Positive Predictive Value): measures the accuracy of
positive predictions. It is calculated as TP

(TP+FP) and indicates the
ability of the model to avoid false positives.

• Recall (Sensitivity, True Positive Rate): measures the
proportion of actual positives that were correctly predicted
by the model. It is calculated as TP

(TP+FN) and indicates the
ability of the model to identify all relevant instances.

• F1 Score: is the harmonic mean of precision and recall. It
provides a balanced measure between precision and recall. It is
calculated as 2 × (Precision × Recall)

(Precision+Recall) .
• Specificity (True Negative Rate): Specificity measures the
ability of the model to correctly identify the negative
instances. It is calculated as TN

(TN+FP).

TABLE 4 Result showing the accuracy of the models with and without using the proposed feature selection algorithm.

DT RF KNN SVM BPNN

Dataset: Colon Tumor (Genes: 2000, Selected: 954)

With 89.23 90.1 89.97 94.29 96.21

Without 62.46 64.13 63.86 66.81 68.84

Dataset: CNS (Genes: 7129, Selected: 4749)

With 90.04 92.31 90.14 93.45 93.24

Without 79.16 80.0 81.43 81.46 81.88

Dataset: Breast Cancer (Genes: 24,481, Selected: 18,537)

With 90.76 92.44 87.50 92.83 92.37

Without 80.73 82.12 77.13 81.86 82.46

Dataset: Lung Cancer (Genes: 12533, Selected: 9777)

With 91.37 91.78 91.31 93.62 93.55

Without 84.19 83.22 82.49 83.45 82.56

Dataset: Ovarian Cancer (Genes: 15154, Selected: 10235)

With 90.07 92.34 89.24 92.56 93.70

Without 80.98 83.46 77.56 81.67 81.56

Dataset: Lymphoma (Genes: 4026, Selected: 2022)

With 92.03 92.86 91.81 93.03 95.24

Without 82.82 82.11 79.97 83.66 84.79

Dataset: MLL (Genes: 12582, Selected: 9912)

With 87.73 89.24 87.54 90.27 92.21

Without 70.0 75.43 78.37 77.77 80.09

Dataset: SRBCT (Genes: 2308, Selected: 1109)

With 92.48 93.46 91.22 94.21 95.86

Without 80.37 81.0 79.68 81.55 86.08
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• Area Under the Receiver Operating Characteristic (ROC)
Curve (AUC-ROC): AUC-ROC measures the area under
the ROC curve, which plots the true positive rate against
the false positive rate. It provides an aggregate measure of the
model’s ability to distinguish between classes.

4.4 Machine learning models for
classification

In the experimentation, various machine learning models are
used for classification tasks, each with its strengths and weaknesses
depending on the nature of the data. A short description of these
machine learning models is given as.

1. Decision Trees (DT): Decision Trees recursively split the
dataset based on features, creating a tree structure. They are
easy to interpret and can handle both categorical and
numerical data. We have used the traditional gradient
boosting technique that optimizes decision trees by
minimizing loss functions in a sequential manner.

2. Random Forests (RF): Random Forests are an
ensemble of decision trees. They build multiple trees and
combine their predictions to improve accuracy and reduce
overfitting.

3. Support Vector Machines (SVM): SVMs are effective for both
binary and multiclass classification. They find the hyperplane
that best separates classes in the feature space.

4. k-Nearest Neighbors (k-NN): k-NN classifies instances based on
themajority class of their k nearest neighbors in the feature space. It
is simple but can be computationally expensive for larger datasets.

5. Backpropagation neural network (BPNN): The backpropagation
algorithm is a method that involves training a neural network to
learn the mapping from input features to output classes with the
updation of the weight parameters while backpropagation.

4.5 Results

To evaluate the performance of the proposed feature selection
algorithm on the selected 8 gene expression datasets we have used
the six performance metrics and evaluated the performance using

TABLE 5 Details of the selected optimization algorithms with their parameter settings and values.

Algorithm Parameter Value

General parameters common for all Population
Iteration count

Count of independent runs
Dimensionality

30
100
20

Feature size

Giant Trevally
Optimizer (GTO)

β
W
P

2
0.6
0.05

Parrot
Optimization Algorithm (PO)

Cognitive coefficient (C)
Social accelerated coefficient (S)

Constants - a1, a2, P
Flowing factor

Flight Behaviours

1.5
1.5
1

[0.5, 0.9]
3

Hunger Games Search
optimization (HGS)

T
δ

3
0.3

Mean Variance Optimisation (MVO) Wormhole existence probability (WEP)
Travelling Distance Rate (TDR)

[0.2, 1]
[0.6, 1]

Harris Hawks optimization (HHO) β 1.5

Particle Swarm Optimization (PSO) Cognitive Learning Coefficient (c1)
Social Learning coefficient (c2)

Inertia Weight

2.5
2.5

0.4–0.9

Cuckoo Search Optimization
(CSO)

α
λ

1
1.5

Firefly Algorithm (FA) α, β, γ 1

Bat Algorithm (BA) fmax

fmin

α, β
A

1.8
0.1
1
2

Flower Pollination Optimization (FPO) λ 1.5

Whale Optimization Algorithm (WOA) b, l 1

Grey Wolf Optimization (GWO) α, β, δ [0.4, 0.6, 0.5]
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5 machine learning classifiers. The experimental results of the
proposed method are presented in Tables 2, 3. Based on the
experimentation results it was observed that the performance of
the SVM and the BPNN classifiers are found significant as compared
with the other three classifiers. However, the datasets having binary
class labels show the best performance (accuracy%) with the SVM
classifier as compared with BPNN, which is marginally better. While
the datasets have multi-class labels, show their best performance
with the BPNN classifier, which shows an upregulation in the
accuracy by approx 1%.

The experimentation results show the impact of using the
feature selection algorithm, especially showing its relevance on
the used dataset, is presented in Table 4. The results show the
experimentation values (accuracy%) on the used dataset with and
without the feature selection algorithm. Based on the result values it
was found that the performance of the machine learning models are
much improved with the use of the proposed feature selection
algorithm. While the results without feature selection algorithm
was significantly on the lower side. Thus, the implication of the
feature selection algorithm is found relevant in the study.

TABLE 6 Comparative analysis of the Proposed EPO algorithmwith othermeta-heuristic algorithms. The result presented here is the accuracy (%) on Colon,
CNS, Breast, and Lung Cancerous datasets.

DT RF KNN SVM BPNN DT RF KNN SVM BPNN

Dataset: Colon Tumor Dataset: CNS

GTO (Sadeeq and Abdulazeez, 2022) 74.95 77.78 72.56 80.12 81.33 85.46 88.91 82.29 89.46 90.85

PO (Lian et al., 2024) 71.55 73.10 72.10 76.31 78.49 81.0 82.49 80.0 83.47 86.46

HGS (Onay and Aydemr, 2022) 70.93 71.82 70.23 75.61 76.23 80.12 81.23 80.11 84.56 86.76

MVO (Paskaramoorthy and Woolway, 2022) 75.02 75.87 72.09 77.0 79.83 85.23 86.45 86.46 88.66 89.99

HHO (Heidari et al., 2019) 76.46 77.29 70.98 78.82 80.12 85.56 87.0 86.73 90.07 91.23

PSO (Mahesh et al., 2024) 78.56 78.98 76.12 80.23 81.98 89.45 91.36 90.46 92.89 93.13

CSO (Chitara et al., 2018) 73.64 75.01 71.23 74.98 75.12 88.84 89.43 87.49 90.05 91.54

FA (Kumar and Kumar, 2021) 70.12 71.61 70.91 74.44 76.37 81.08 82.46 80.49 85.45 89.16

BA (Mirjalili et al., 2014) 71.09 72.34 70.83 74.64 77.21 88.54 88.54 84.23 89.55 91.34

FPO(Mejahed and Elshrkawey, 2022) 72.31 73.33 72.08 75.37 77.25 87.55 89.46 84.31 89.39 90.10

WOA (Rana et al., 2020) 78.19 80.82 73.16 80.64 81.23 90.11 91.25 88.91 91.65 92.0

GWO (Qiu et al., 2024) 80.34 81.94 80.04 82.27 83.46 88.21 89.98 89.65 91.23 92.04

MFO (Zamani et al., 2024) 82.24 84.64 84.85 86.37 87.09 89.16 90.23 91.29 92.22 92.94

EPO 89.23 90.1 89.97 94.29 96.21 90.04 92.31 90.14 93.45 93.24

Dataset: Breast Cancer Dataset: Lung Cancer

GTO (Sadeeq and Abdulazeez, 2022) 81.44 87.29 81.17 84.35 83.63 87.67 87.97 87.09 90.55 88.40

PO(Lian et al., 2024) 80.12 80.56 81.09 83.98 83.97 88.38 85.90 89.40 90.65 87.14

HGS (Onay and Aydemr, 2022) 85.77 82.08 87.51 87.46 81.26 89.92 88.29 89.12 83.42 83.97

MVO (Paskaramoorthy and Woolway, 2022) 88.45 87.48 81.27 80.38 82.32 86.64 88.78 88.41 87.68 91.64

HHO (Heidari et al., 2019) 80.49 86.29 86.66 85.91 81.52 86.32 86.58 88.12 84.35 89.70

PSO (Mahesh et al., 2024) 88.76 85.35 86.77 83.54 88.62 84.19 86.20 90.85 83.76 91.62

CSO (Chitara et al., 2018) 83.17 87.65 81.98 81.71 85.28 83.79 87.17 87.24 87.10 91.78

FA (Kumar and Kumar, 2021) 88.80 83.54 82.96 88.38 83.85 83.09 88.32 87.80 85.41 87.03

BA (Mirjalili et al., 2014) 80.65 84.51 83.49 85.99 87.50 88.91 90.09 88.82 88.83 86.99

FPO (Mejahed and Elshrkawey, 2022) 84.90 84.42 85.91 80.27 85.65 88.50 87.48 85.63 87.32 88.92

WOA (Rana et al., 2020) 82.87 85.09 87.35 81.60 81.17 85.43 87.12 87.29 83.60 90.85

GWO (Qiu et al., 2024) 87.23 83.01 82.10 83.29 88.74 89.40 90.10 89.91 88.20 90.23

MFO (Zamani et al., 2024) 88.32 89.97 83.37 84.61 90.22 89.16 90.55 90.94 91.67 92.04

EPO 90.76 92.44 87.50 92.83 92.37 91.37 91.78 91.31 93.62 93.55
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5 Comparative analysis

As in the previous section it was found that the performance of
the machine learning models were enhanced with the use of the
feature selection algorithm. However, to validate the performance of
the proposed algorithm further experimentation’s were made with
the various other feature selection algorithms exist in the literature
irrespective of their use on same datasets. Here we present the
detailed comparative study of the proposed algorithm with the
existing feature selection algorithms.

5.1 Optimization algorithms with
parameter settings

To evaluate the comparative results of the proposed feature
selection algorithm with the benchmark meta-heuristic
optimization algorithms, literature was studied to explore the
existing algorithms that were used in various application areas
for selecting relevant features. Based on the study, here 12 well
known algorithms were selected to compare the result. These
algorithms are Giant Trevally Optimizer (GTO), Backtracking

TABLE 7 Comparative analysis of the proposed EPO algorithm with other meta heuristic algorithms. The result presented here is the accuracy (%) on
Ovarian, Lymphoma, MLL, and SRBCT Cancerous datasets.

DT RF KNN SVM BPNN DT RF KNN SVM BPNN

Dataset: Ovarian Cancer Dataset: Lymphoma

GTO (Sadeeq and Abdulazeez, 2022) 87.39 85.00 88.59 90.26 89.37 89.58 87.09 87.51 90.03 93.24

PO (Lian et al., 2024) 88.63 89.23 86.55 90.38 91.41 89.04 92.30 88.32 85.92 93.08

HGS (Onay and Aydemr, 2022) 89.12 89.42 88.51 86.24 90.06 92.72 93.96 87.22 87.48 88.80

MVO (Paskaramoorthy and Woolway, 2022) 87.41 86.14 87.21 86.38 89.26 93.85 90.87 89.19 88.46 92.00

HHO (Heidari et al., 2019) 90.51 91.57 88.20 87.65 87.14 88.14 92.16 86.91 89.54 92.93

PSO (Mahesh et al., 2024) 90.76 89.94 86.25 86.42 89.49 92.77 92.60 84.22 85.53 88.77

CSO (Chitara et al., 2018) 85.63 86.09 88.98 90.90 91.03 93.23 87.33 87.99 87.88 91.28

FA (Kumar and Kumar, 2021) 89.10 88.56 88.17 84.52 88.61 90.39 89.83 86.43 86.09 89.11

BA (Mirjalili et al., 2014) 91.84 86.54 86.03 89.83 89.22 90.40 91.99 88.91 90.53 89.33

FPO (Mejahed and Elshrkawey, 2022) 85.01 84.11 87.03 84.35 88.64 90.45 92.79 89.92 88.32 92.39

WOA (Rana et al., 2020) 89.31 89.35 88.41 85.56 91.58 92.99 91.36 89.32 85.37 88.92

GWO (Qiu et al., 2024) 84.46 89.37 88.55 91.91 91.72 93.63 91.53 87.89 90.50 90.82

MFO (Zamani et al., 2024) 86.37 90.37 88.99 92.09 92.10 91.59 91.38 91.72 91.60 91.08

EPO 90.07 92.34 89.24 92.56 93.70 92.03 92.86 91.81 93.03 95.24

Dataset: MLL Dataset: SRBCT

GTO (Sadeeq and Abdulazeez, 2022) 86.33 84.03 84.29 84.20 91.59 88.55 93.89 89.41 88.02 94.55

PO (Lian et al., 2024) 88.88 84.67 82.79 86.91 88.40 93.54 89.71 86.49 88.98 94.11

HGS (Onay and Aydemr, 2022) 85.62 86.32 83.39 85.51 90.36 90.16 88.14 89.63 91.52 92.38

MVO (Paskaramoorthy and Woolway, 2022) 90.29 85.85 81.58 90.78 89.53 93.41 90.30 86.48 91.14 90.59

HHO (Heidari et al., 2019) 90.20 84.52 83.79 89.62 90.30 90.12 90.70 88.61 91.06 92.62

PSO (Mahesh et al., 2024) 89.05 91.36 80.90 86.03 89.43 87.76 93.14 87.97 87.16 93.61

CSO (Chitara et al., 2018) 85.89 87.34 84.35 86.94 91.60 90.26 91.28 87.51 87.91 92.09

FA (Kumar and Kumar, 2021) 87.50 84.27 81.81 89.00 90.25 88.56 87.72 86.07 87.76 93.52

BA (Mirjalili et al., 2014) 88.60 86.86 82.98 91.46 91.39 87.90 88.24 86.93 90.99 94.56

FPO (Mejahed and Elshrkawey, 2022) 87.83 88.75 81.96 91.05 90.01 89.88 91.08 88.60 88.69 94.48

WOA (Rana et al., 2020) 90.95 85.96 80.16 86.32 87.50 88.76 87.20 88.67 91.99 92.74

GWO (Qiu et al., 2024) 86.63 88.83 82.27 84.48 87.71 89.30 92.72 88.10 90.85 90.84

MFO (Zamani et al., 2024) 87.01 88.89 85.37 87.73 89.35 91.06 92.88 89.90 92.92 93.68

EPO 87.73 89.24 87.54 90.27 92.31 92.48 93.46 91.22 94.21 95.86
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Search Optimization Algorithm (BSA), Hunger Games Search
(HGS) Optimization, Mean Variance Optimisation (MVO),
Harris Hawks optimization (HHO), Particle Swarm Optimization
(PSO), Cuckoo Search Optimization (CSO), Firefly Algorithm (FA),
Bat Algorithm (BA), Flower Pollination Optimization (FPO), Whale
Optimization Algorithm (WOA), and Grey Wolf Optimization
(GWO). The parameter setting of these algorithms used in the
experimentation is shown in Table 5.

5.2 Comparison with other optimization
algorithms

The comparative analysis of the proposed EPO algorithm with
the other benchmark meta-heuristic algorithms is presented in
Tables 6, 7. The results presented in the table gives the
computation accuracy of the various machine learning algorithms
with optimization algorithms on the selected datasets. Based on the
experimentation results it was concluded that the performance of
the EPO algorithm is much better as compared with the other
benchmark algorithms.

5.3 Statistical validation

In this work, the performance of the proposed model is validated
statistically using three statistical measures i.e., Paired t-Test,

Wilcoxon Signed-Rank Test, and Effect Size (Cohen’s d). A paired
t-test was conducted to compare the performance metrics precision,
recall, and F1-score of the proposed Eagle Prey Optimization (EPO)
approach with each of the benchmark algorithms. The test was
performed across multiple runs (100 independent runs) for each
algorithm to account for randomness in model initialization and data
splitting. Since the distribution of the performance metrics might not
alwaysmeet the assumptions of normality required for a t-test, we also
performed the non-parametric Wilcoxon signed-rank test. This test is
particularly suitable for comparing paired samples without assuming
normality. To quantify the magnitude of the observed differences, we
calculated the effect size using Cohen’s d. This provides a measure of
practical significance, complementing the p-values from the statistical
tests. The experimentation results of these tests are presented in
Tables 8–10.

For precision, recall, and F1-score, the p-values obtained from
both the paired t-test and Wilcoxon signed-rank test were less than
0.05, indicating that the improvements achieved by EPO over
benchmark methods are statistically significant. The effect size
calculations (Cohen’s d) further confirmed that the observed
differences are meaningful, with medium to large effect sizes
observed for most comparisons. The statistical tests thus provide
strong evidence that the improvements in precision, recall, and F1-
score achieved by EPO are not marginal or due to random
variability. While some differences may appear small (1%–2%),
their statistical significance highlights that they consistently hold
across multiple runs and are therefore meaningful in practice.

TABLE 8 Significance test results for precision.

Comparison Mean
(Proposed)

Mean
(Benchmark)

p-value
(t-test)

p-value
(Wilcoxon)

Cohen’s
d

Confidence
Interval (95%)

EPO vs. GWO 0.91 0.89 0.001 0.003 0.65 [0.015, 0.031]

EPO vs. WOA 0.91 0.9 0.015 0.02 0.45 [0.007, 0.018]

EPO vs. CSO 0.91 0.88 0.0005 0.002 0.78 [0.020, 0.035]

TABLE 9 Significance test results for recall.

Comparison Mean
(Proposed)

Mean
(Benchmark)

p-value
(t-test)

p-value
(Wilcoxon)

Cohen’s
d

Confidence
Interval (95%)

EPO vs. GWO 0.88 0.86 0.002 0.005 0.55 [0.010, 0.025]

EPO vs. WOA 0.88 0.85 0.009 0.012 0.48 [0.008, 0.022]

EPO vs. CSO 0.88 0.84 0.0008 0.003 0.72 [0.015, 0.028]

TABLE 10 Significance test results for F1-Score.

Comparison Mean
(Proposed)

Mean
(Benchmark)

p-value
(t-test)

p-value
(Wilcoxon)

Cohen’s
d

Confidence
Interval (95%)

EPO vs. GWO 0.89 0.87 0.003 0.006 0.6 [0.012, 0.026]

EPO vs. WOA 0.89 0.86 0.012 0.017 0.51 [0.010, 0.021]

EPO vs. CSO 0.89 0.85 0.0007 0.002 0.75 [0.018, 0.033]
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6 Conclusion

In this study, we investigated the efficacy of Eagle Prey
Optimization (EPO) as a meta-heuristic approach for microarray
gene selection in cancer classification. Our evaluation included the
application of EPO to five well-established machine learning
classifiers, and the results were benchmarked against twelve state-
of-the-art optimization algorithms commonly used in gene selection
tasks. Our experiments demonstrated that Eagle Prey Optimization
consistently exhibited robust performance across various machine
learning classifiers, namely, Decision Tree, Random Forest,
K-Nearest Neighbor, Support Vector Machine, and Back
Propagation Neural Network. The adaptability of EPO to
different classification models underscores its versatility in the
context of microarray gene selection for cancer classification.

In comparison to twelve benchmark optimization algorithms,
EPO showcased competitive or superior performance in terms of
both convergence speed and solution quality. The results suggest
that the unique search strategy inspired by the hunting behavior of
eagles equips EPO with an effective exploration-exploitation
balance, making it particularly well-suited for gene selection tasks
in cancer classification. Also, the detailed analysis of the convergence
curves and selected gene subsets provided insights into the behavior
of EPO across different classifiers. The algorithm demonstrated a
remarkable ability to identify biologically relevant gene subsets,
contributing to enhanced cancer classification accuracy.

The findings of this study have significant practical
implications for the field of bioinformatics and cancer
research. The success of Eagle Prey Optimization in selecting
informative gene subsets highlights its potential as a valuable tool
for aiding in the identification of biomarkers associated with
specific cancer types. Thus, using the collective results it was
concluded that the proposed Eagle Prey Optimization emerges as
a promising meta-heuristic approach for microarray gene
selection in cancer classification. Its performance across
various classifiers and benchmark algorithms positions it as a
competitive and potentially transformative tool in the quest for
accurate and interpretable cancer biomarkers.

While our study provides compelling evidence for the
effectiveness of EPO in microarray gene selection, there is room
for further exploration. Future work can focus on addressing several
limitations of EPO in several ways. First, extending EPO to a
distributed or cloud-based framework could significantly reduce
computation time, enabling its application to larger and more
diverse datasets. Second, incorporating an adaptive
hyperparameter tuning strategy or integrating reinforcement
learning mechanisms could enhance the algorithm’s efficiency
and reduce manual intervention. Third, combining EPO with
ensemble learning techniques could further improve classification
performance and robustness. Lastly, validating the selected gene
subsets across multiple independent datasets and exploring their

biological implications through pathway enrichment and functional
analysis would strengthen the translational impact of the study.
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