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Cell-free DNA (cfDNA) is a dynamic biomarker reflecting the physiological state of the
body. Its unique physical and biochemical properties, inherited from the tissue of
origin, enable a wide range of clinical applications. From methylation patterns and
fragmentation profiles to genetic variants, cfDNA holds immense potential for
diagnosing and monitoring various diseases, including cancer. In this study, we
leverage a large collection of non-invasive prenatal testing (NIPT) dataset to
explore the genomic landscape of fetal cfDNA, aiming to identify novel biomarkers
associated with fetal development and maternal-fetal complications. Our study
identifies novel fetal-specific genomic regions, further demonstrating the potential
of cfDNA as a versatile biomarker. The prediction model achieved a 100% (12 of 12)
positivepredictive value (PPV) for hypothyroidism.Whereas for preeclampsia thePPV is
much lower (25%, 3 of 12). By establishing a foundation for early hypothyroidism
predictionandpreeclampsia,wecontribute to theexpandingapplicationsofNIPT. This
approachcanbe adapted to exploreother complex phenotypes and informbiomarker
discovery, ultimately advancing maternal-fetal medicine.
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Introduction

Cell-free DNA (cfDNA) is DNA circulating freely in the bloodstream, unbound by cell
nuclei. Released from cells through processes like apoptosis and necrosis, cfDNA levels fluctuate
based on factors such as cell death rates, tissue origin, and clearance efficiency. A predominant
feature of cfDNA is its nucleosome-sized fragments, approximately 166 base pairs long, resulting
from DNase I-mediated cleavage (Jiang et al., 2020). The molecular characteristics of cfDNA,
including fragment length, can vary depending on the tissue source (Shi et al., 2020).

Cell-free DNA is a valuable diagnostic tool due to its diverse origins and dynamic
properties, reflecting the physiological state of the body. The presence of fetal cfDNA in
maternal blood has enabled the development of non-invasive prenatal testing (Lo et al.,
1997). Additionally, cfDNA derived from tumors or transplanted tissues serves as a
sensitive biomarker for cancer monitoring and post-transplant surveillance (Agbor-
Enoh et al., 2018; Wan et al., 2017; Lo et al., 1998). Even in healthy individuals, cfDNA
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can indicate viral or bacterial infections, expanding the potential
applications of cfDNA-based diagnostics (Long et al., 2016; Tong
et al., 2022).

In actively transcribed genes, the promoter region, about 150 bp
upstream of the transcription start sites (TSS) is a nucleosome-
depleted region (NDR) that facilitates access to the bulky
transcriptional machinery and is flanked by arrays of well-
positioned nucleosomes (Ulz et al., 2016). Its nucleosome-free
promoter regions and characteristic fragmentation patterns offer
insights into chromatin structure and transcriptional activity.
Epigenetic modifications, such as DNA methylation, influence
cfDNA cleavage patterns, with hypermethylated CpG sites
exhibiting increased cleavage (Zhou et al., 2022). Fragmentomic
markers including cfDNA fragment size and various types of
fragment end motifs have been actively investigated, with
substantial biological and clinical implications (Shi et al., 2020).

Cell-free DNA is a valuable biomarker reflecting the genomic
landscape of its cellular origin. In this study, by analyzing the
fragmentomic features of cfDNA from non-invasive prenatal
testing samples, we aim to identify novel biomarkers associated
with fetal development and maternal-fetal complications.

Materials and methods

DNA extraction and sequencing

Peripheral venous blood (5mL) from each patient was preserved and
delivered to the laboratory in EDTA tubes (Sekisui, Tokyo, Japan) or
Streck tubes (La Vista, NE, US). Plasma was separated after 2 rounds of
centrifugation and stored at −80°C until DNA extraction. Cell-free DNA
was extracted from plasma according to standard commercial protocols,
together with library preparation using ChinaNationalMedical Products
Administration (NMPA) approved kit (Registration No. 20173400331).
Subsequently, 4.2 million single-end reads of 40 bp (SE40) were
generated for each sample library using NextSeq 550AR (Annoroad
Gene Tech, Beijing, China). All procedures were performed in a standard
negative-pressure laboratory with constant temperature and humidity.

Definition of fetus specific regions

Approximately 5,000 commercially tested NIPT samples from
karyotypically normal male fetuses were retrospectively collected and
stratified into 40 groups based on fetal fraction estimated using
conventional method based on chromosome Y dosage. Each group
contained approximately 125 samples with a median of 493.6 million
reads (minimum 475 million) and a fetal fraction between 5% and 20%.
Raw sequencing data of SE40was initially aligned to the human reference
genome (hg19) with BWA (Li and Durbin, 2009). Duplicated reads were
marked using samtools (Li et al., 2009), and finally only uniquelymapped
reads were kept. The uniquely mapped reads without duplication of each
fetal fraction group were then merged into one concatenated BAM file,
resulting in 40 merged libraries with raw reads number around 490 M.

Per-base depth of each merged libraries were first summarized.
A regression model was built between per-base coverage and the
average fetal fraction of each group. A commonly covered region on
chromosome Y is called fetal specific if it falls around the fitted

regression line with a fitted error less than 1.5%. Or in other words,
the coverage of the fetal specific region changes linearly as the fetal
fraction across groups. Consecutive fetal specific regions with at least
2 reads covered was taken and merged on chromosome Y. In a next
step, we looked for covered regions on other chromosomes yet with
similar level of correlation between fetal fraction and genome
coverage. We then applied a 50 bp window flanking of such fetal
specific regions and checked for the nucleotide’s distribution along
the window, resulting in a position weight matrix of 4 rows of A/T/
G/C and 100 columns for each position.

Refinement and validation of fetal fraction
estimation model

Leveraging these high confidence fetal-specific regions, it is
feasible to develop a fetal fraction estimation model for
individual NIPT libraries with substantially reduced sequencing
depth. We again retrospectively select a much larger collection of
10,000 individual NIPT samples from karyotypically normal male
fetuses. An n-dimensional feature vector Y was constructed, where
each element yn represents the count of uniquely mapped reads
aligning to the n-th fetal-specific region identified previously.

fcY � β0 + β1y1 +/ + βnyn

A jackknife resampling approach was employed to minimize the
sum of squared errors in fetal fraction estimation. In each iteration, 5%
of samples were randomly excluded frommodel fitting. The final set of
parameter estimates { β0, β1, . . ., βn} was determined as the median of
estimates from all 1,000 iterations. Model performance was evaluated
using Pearson correlation on an independent validation cohort of
5,000 male NIPT samples with known fetal fractions.

Multiple dimensional fitting

We further investigated cases previously misclassified as aneuploid
due to elevated Z-scores. These false positives often arise from placental
mosaicism, where a mixture of normal and aneuploid cells dilutes the
aneuploidy signal. Unlike true aneuploidies, these cases exhibit
inconsistent Z-score patterns across different fetal fraction estimation
methods (sex chromosome, fetal-specific regions, and aneuploidy-related
chromosome coverage). A combined Z-score, incorporating deviations
from expected fetal fraction, was calculated to identify potential false
positives. To establish a statistical threshold, a reference dataset including
a large number of true positive and false positive cases should be used to
determine a reference cutoff to flag outlying false positives. The combined
Z-score can serve as an independentmarker to identify potential placental
mosaicism in samples initially flagged as positive using traditional
Z-score-based aneuploidy detection.

Genome-wide scanning of open chromatin
structure and inference of differential fetus/
placenta gene expression

Fetal fraction is an indicator of fetal development. Therefore,
transcriptional activity of development related genes could be
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reflected in the open chromatin status of cfDNA. We further used
the 20,000 per-base depth profiles collected earlier, to construct four
new merged libraries with average group fetal fraction of 5%, 10%,
15% and 20% respectively. Each library contains equal number of
5,000 individual libraries. Per-base depth within each merged library
was normalized by total read count. To reduce data dimensionality,
an initial filtering step was applied to retain positions exhibiting
consistent fold-change patterns across fetal fraction groups. This
filter only included regions with monotonic relationship between
per-base coverage and fetal fraction, regardless of the magnitude of
the change.

By intersecting the previously identified fetal-specific regions
with those exhibiting consistent fold-change patterns across fetal
fraction groups, we defined a set of candidate regions indicative of
potential open chromatin structures. A differential coverage analysis
similar to RNA-seq methods (Love et al., 2014) was applied to these
regions. Fold-change related test statistics were recorded and
corrected for multiple testings. Regions demonstrating
consistently significant fetal-specific enrichment were prioritized
as potential markers of fetal development and associated
phenotypes.

We then extended the single nucleotide candidate marker list by
a 12 bp flanking in both directions, and evaluated the continuity of
possible overlapping 25 bp windows, only focusing on those whose
fold-change is negatively correlated with fetal fraction. Such
continuous segments correspond to a more opened chromatin
structure with increased transcriptional activity likely of fetus
origin. The number of such continuous windows drastically
decreases as expected. We then empirically cut the frequency
screeplot by selecting those consecutive regions of at least
5 windows, which is illustrated in Figure 4A. Genes downstream
of these regions were collected and subjected to a functional gene set
enrichment analysis via DAVID (Huang et al., 2009).

Cleavage profile of NIPT sample with
clinically significant phenotypes

A retrospective study was conducted on NIPT samples from
patients who subsequently developed early-onset preeclampsia.
NIPT data of 80 sample libraries with confirmed early onset
preeclampsia were pulled from data archive of 3 hospitals. The
80 individual NIPT sequencing data were merged and similarly
processed as described earlier. Per-base coverage was calculated and
visualized in pair with the 10% fetal fraction set data constructed in
the previous section. The difference in the coverage profiles between
preeclampsia and control groups were scanned across the whole
genome, especially around the transcription start sites of known
genes. When visualizing pair of coverage profiles on the gene level,
the per base depth value was normalized again within the viewing
area to further alleviate different numerical baselines
between profiles.

Significancy of the differences were evaluated in order to derive a
short list of loci with prediction potential. A subset of loci with
pronounced differential coverage was selected for further analysis,
using a similar setting as in the previous section when comparing
between fetal fraction groups, in this case a binary contrast between
preeclampsia and normal group. Using these loci windows as a

whole, similar to a small synthetic chromosome, an analogous form
of predictive score as NIPT Z-score can be built with a set of normal
background samples. One particular consideration was taken into
account of summing up read count mapped to regions showing
opposite directions of between groups changes. A signed sum was
used, for regions showing lowering coverage in the case group, the
reads mapped to those regions was subtracted instead. As a result,
higher scores indicated a greater likelihood of preeclampsia based on
the identified coverage patterns. It is also possible to construct two
sets of target statistics depending on their direction of change.

A retrospective analysis of 2,170 NIPT samples collected between
August and December 2023 fromHaidianMaternal and Child Health
Hospital was conducted, covering all NIPT tested subjects within the
period. A reference model was established using the entire dataset
blindly, against which individual samples were compared to generate
prediction scores. This is slightly different from constructing a typical
NIPT reference dataset, in which case only known euploid samples
were used. Inclusion of positive samples in the reference dataset might
reduce sensitivity but would still preserve relative ranking of test
samples. These scores were adjusted by adding a constant of 4, with
negative values set to zero.

Results

Feto-placental specific regions and fetal
fraction estimation model

We explored such regions by first building a regression model
between per-base coverage and the pooled estimated fetal fraction of
each group, and found that across all regions only as subset of
regions following the relationship of the fetal specific read depth and
the fetal fraction, this is particularly true when we are inspecting the
depth pattern on chromosome Y (Figure 1A). For those loci fall on
the purple line, the change in depth is consistent with the between
group ratio of average fetal fraction. This finding aligns with recent
studies demonstrating the utility of specific sex chromosome regions
for accurate fetal fraction estimation (Wang et al., 2016). On
Chromosome 21 and 22, we applied a similar technique as on
Chromosome Y, per-base coverage could be visually sorted into two
groups (Figures 1B, C), suggesting a set of regions which follows the
same trend as on chromosome Y and could be indicative for fetal
fraction. The same approach has been applied on other
chromosomes to identify fetal specific regions.

A high confidence sequence of nucleotides “CGGAA” could be
derived from the flanking position weight matrix, suggestive of a
potential transcription factor binding site, resembling a microsatellite
structure, as depicted in Figure 2A. However, when we looked at the
regions other than those fall along the purple line in Figure 1, no such
pattern could be identified in the flanking intervals, as demonstrated in
Figure 2B. Interestingly, it is known that transcription factors bind a
CGGAA motif better when both cytosines in the CG dinucleotide are
methylated (Yin et al., 2017; Ray et al., 2021). The refined fetal fraction
model, leveraging genome-wide fetal-specific regions, demonstrated a
strong correlation with the traditional Y-chromosome-based method,
achieving a Pearson correlation coefficient of 0.9423 (Figure 3A).

A well-established relationship exists between NIPT Z-scores and
fetal fraction in aneuploid samples, characterized by a linear correlation.
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Discrepancies between these metrics, particularly in cases with elevated
fetal fraction and borderline Z-scores, may indicate potential false
positives due to random sampling fluctuations or confined placental
mosaicism (CPM). By incorporating region-specific fetal fraction
estimates into an enhanced multidimensional fitting model, we
identified previously misclassified aneuploidy cases (red dots in
Figure 3B). These cases exhibited significant discrepancies between
region-specific and overall fetal fraction estimates, suggesting potential
false positives due to placentalmosaicism. Given the screening nature of
NIPT, cases identified as potential false positives through our refined
model should still be managed as positive results in clinical practice to

avoid missing true aneuploidies. Therefore, we did not further validate
this model.

Fetal fraction, as a proxy for fetal cell contribution, correlates with
the transcriptional activity of developmentally relevant genes, which
could be reflected in the open chromatin landscape of cfDNA. By
intersecting fetal-specific regions with consistently underrepresented
genomic segments across increasing fetal fraction groups, we
identified 1,657 downstream genes. These regions, potentially
associated with fetal regulatory elements, were enriched for gene
ontology (GO) terms related to embryonic development, particularly
in tissues such as the digestive tract, kidney, muscle, skeletal system,

FIGURE 1
The scatter plots of depth of commonly covered regions between two fetal groups. chromosome Y [(A), left], chromosome 21 [(B), center],
chromosome 22 [(C), right). The red line represents the 45° identity line, while the purple line signifies the ratio of estimated average group fetal fraction.
Theminor deviation from the lines could be explain by the over dispersion resulted from the overly wide dynamic range in sequencing, together with the
imperfect normalization method.

FIGURE 2
Sequence pattern of fetal specific regions. (A) (left), 6 to 26 bp in the 50 bp upstream of covered fetal specific regions, which suggests a marker
pattern of AGCGGAACGGAACG, which contains a short tandem repeat of CGGAA (3) units. (B) (right), in other covered regions, no such pattern could be
identified in such 50 bp intervals.
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nervous system, and brain. These findings align with the expected
temporal progression of fetal development after first trimester, within
the NIPT sampling window. A word cloud emphasizing terms like
“development,” “positive regulation,” and “signaling” (Figure 4B)
further supports these observations. Detailed of the top 30 GO
term enrichment results are presented in Table 1, with a minimum
P-value less than 0.013.

Utilization of phenotypically associated
coverage profile

It was established previously that serum expression of PIGF
shows significant decrease in women who later had preeclampsia, as
early as 12 weeks of pregnancy; however serological marker sFlt-1
only starts to elevate in high-risk patient after 20 weeks (Levine et al.,

FIGURE 3
Fetal fraction and test statistics derived using fetal specific regions. (A) (left), Pearson’s correlation coefficient between fetal specific region fraction
and traditional Y chromosome dosage estimates using validation dataset. (B) (right), previously predicted high risk samples of T13/T18/T21 trisomy
illustrated in 3-D space expanded by aneuploidy signal (AneuFC), Y chromosome fraction (sexFC) and fetal specific region fraction (RegFC). A cluster of
red dots were highlighted for those samples whose RegFC is significantly deviated from AneuFC when SexFC is not observed.

FIGURE 4
Size summary of fetal specific regions and transcriptional functions. (A) (left), size frequency of continuous 25 bp windows after intersecting fetal
specific regions with windows carrying consistent lower coverage in higher fetal fraction groups. (B) (right), word cloud of top 30 GO terms using
1,657 predicted genes of higher fetal specific transcriptional activity.

Frontiers in Genetics frontiersin.org05

Jia et al. 10.3389/fgene.2025.1527884

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1527884


2004). Our limited patient-control dataset revealed a distinctive
S-shaped pattern upstream of the PIGF gene in the preeclampsia
group (blue in Figure 5). This observation aligns with the hypothesis
that open chromatin facilitates active transcription. The increased
cfDNA coverage within the PIGF gene body and its upstream 5′
UTR region in preeclampsia cases suggests potential transcriptional
suppression of PIGF. While the FLT1 gene exhibited less
pronounced differences between groups, a subtle decrease in
upstream coverage was observed in the preeclampsia cases
compared to controls. This trend suggests a potential shift

towards a more open chromatin configuration in preeclampsia,
which may contribute to the later observed increase in
FLT1 expression.

After between groups scanning across the whole genome, we also
identified genes with significant changes in their gene body, depicted in
the lower track of Figure 5. DHFR encodes protein able to converts
dihydrofolate into tetrahydrofolate. Dihydrofolate reductase deficiency
has been linked to megaloblastic anemia and severe neonatal
neurologic disease, when DHFR is mutated and lost its function
(Cario et al., 2011). Other study also used folate deficiency as a

TABLE 1 Top 30 enriched GO terms of gene set related to fetal specific regions.

Term GeneNo Overlap% PValue

GO:0045893~positive regulation of transcription, DNA-templated 65 4.11913815 3.77E-04

GO:0032148~activation of protein kinase B activity 9 0.57034221 7.54E-04

GO:0048566~embryonic digestive tract development 7 0.44359949 0.00109859

GO:0008284~positive regulation of cell proliferation 58 3.67553866 0.00112482

GO:0042445~hormone metabolic process 6 0.38022814 0.00168902

GO:0007517~muscle organ development 17 1.07731305 0.00194273

GO:0007506~gonadal mesoderm development 5 0.31685678 0.00229907

GO:0045669~positive regulation of osteoblast differentiation 13 0.82382763 0.00276343

GO:0010595~positive regulation of endothelial cell migration 11 0.69708492 0.0032291

GO:0001501~skeletal system development 22 1.39416984 0.00334284

GO:0008584~male gonad development 17 1.07731305 0.00344918

GO:0007507~heart development 27 1.71102662 0.00348898

GO:0001837~epithelial to mesenchymal transition 9 0.57034221 0.00490232

GO:0007283~spermatogenesis 47 2.97845374 0.00501205

GO:0008285~negative regulation of cell proliferation 48 3.0418251 0.00519815

GO:0007420~brain development 27 1.71102662 0.00577131

GO:0010719~negative regulation of epithelial to mesenchymal transition 7 0.44359949 0.00672

GO:0007338~single fertilization 12 0.76045627 0.00710376

GO:0001525~angiogenesis 30 1.90114068 0.0075737

GO:0007417~central nervous system development 19 1.20405577 0.0078835

GO:0045786~negative regulation of cell cycle 9 0.57034221 0.00839841

GO:1900042~positive regulation of interleukin-2 secretion 4 0.25348542 0.00879714

GO:0001822~kidney development 15 0.95057034 0.00892399

GO:0045944~positive regulation of transcription from RNA polymerase
II promoter

101 6.40050697 0.00935017

GO:0007399~nervous system development 36 2.28136882 0.0097276

GO:0007169~transmembrane receptor protein tyrosine kinase signaling
pathway

16 1.0139417 0.01009885

GO:0007548~sex differentiation 7 0.44359949 0.01054713

GO:0007219~Notch signaling pathway 18 1.14068441 0.01109893

GO:0035115~embryonic forelimb morphogenesis 8 0.50697085 0.01254616

GO:0002040~sprouting angiogenesis 7 0.44359949 0.01294749
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differential diagnosis indicator for severe preeclampsia (Sisman et al.,
2019). Our finding of reduced function of DHFR in the preeclampsia
group aligning with its established role in preeclampsia pathogenesis.
PCBD2, a key enzyme in L-phenylalanine metabolism, exhibited
decreased expression in preeclampsia cases. This aligns with
previous findings of elevated phenylalanine levels in preeclamptic
patients (Prameswari et al., 2022), suggesting a potential link
between reduced PCBD2 activity and disease pathogenesis. The
observed changes in chromatin accessibility, characterized by altered
nucleosome occupancy, may contribute to the dysregulation of critical
genes like PCBD2. In both exemplary cases of DHFR and PCBD2, the
significant differences of cfDNA coverage were identified on the gene
body. It has been shown that complex epigenetic interaction between
methylation of DNA and histone modification exists, where
hypermethylation can lead to increased histone deacetylation

(Baylin, 2005), resulting in a more compact chromatin structure
and potentially increased cfDNA release.

With the constructed prediction model using peak features, we
blindly tested 2,170 recent NIPT samples without any clinical
information. 15 samples with prediction score above an empirical
quantile of 99% (5.024214, in Figures 6A, B) were retrospectively
checked after birth for any known clinical symptom identified during
routine clinic visit along the gestation period. The 15 samples in the lower
tail were also similarly reviewed. In Figure 6B, the prediction score shows
no clear numerical relationship with gestational week. The 30 samples
were all reported with low risk of aneuploidy in NIPT. None of the
15 patients in the lower tail have shown any sign of preeclampsia and
other known clinically relevant phenotypes before or after the NIPT
blood draw. Except for 3 (6.548891, 6.267465, 5.21113) of the high
scoring patients who were later transferred to other hospital or lost

FIGURE 5
Smoothed depth profile of four example genes with potential clinical relevance of preeclampsia. PIGF (top left), FLT1 (top right), DHFR (bottom left),
PCBD2 (bottom right) the red border signifies the outer most UTR of the gene, with patient data in blue and control data in red.
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contact, interestingly all other 12 of the 15 top scoring patients have been
diagnosed with hypothyroidism, but without identified symptoms of
preeclampsia at the time of NIPT sampling. 3 of the 12 have been later
diagnosed with preeclampsia at gestation week of 37w (5.311052), 21w
(5.237796) and 27w (5.596447) respectively. Technically, the model
achieved a 100% (12 of 12) positive predictive value (PPV) for
hypothyroidism. Whereas for preeclampsia the PPV is much lower
(25%, 3 of 12). It is unclear whether hypothyroidism is an early
contributing factor of later onset preeclampsia, or just an independent
pathway which further complicates the preeclampsia related symptoms
by interfering with the host’s endocrine system. Nonetheless evidence
have been shown that preeclampsia patients exhibited hypothyroidism
with increased level of serum thyroid-stimulating hormone (TSH)
(Hajifoghaha et al., 2022).

Discussion

Cell-free DNA is a versatile biomarker with applications spanning
multiple clinical domains. Methylation, fragmentation patterns, and
genetic variants (single nucleotide variations, insertions, deletions,
structural variants) serve as valuable biomarkers for various disease
conditions including cancer (Vanderstichele et al., 2022; Han and Lo,
2021). cfDNA-based NIPT has become a cornerstone of prenatal care,
with widespread adoption for detecting fetal aneuploidies. The
technology’s potential extends beyond this, encompassing the
screening of fetal subchromosomal copy number variations (CNVs)
through low-pass whole genome sequencing or targeted approaches
(Luo et al., 2019). Beyond aneuploidy detection, cfDNA analysis has
expanded to encompass fetal monogenic disease screening through
targeted sequencing (Brand et al., 2023). Additionally, clonal
deconvolution techniques utilizing SNPs and other polymorphisms
have been instrumental in refining fetal fraction prediction (Zhu et al.,
2021) and informing tumor subclone analysis (Tarabichi et al., 2021),
both critical for accurate test interpretation. Approach used in this study
could be adapted in any cfDNA based molecular testing to infer

epigenetic changes along with other DNA variants. By integrating
epigenetic and fragmentomic analyses, this methodology holds
promise for discovering novel biomarkers and advancing our
understanding of complex biological processes. Such multi-omics
approach has the potential to unlock new diagnostic and therapeutic
opportunities within maternal-fetal medicine and beyond.

Preeclampsia is a severe pregnancy complication characterized by
new-onset hypertension (Magee et al., 2022) and proteinuria after
20 weeks gestation, posing risks to both mother and fetus
(Dimitriadis et al., 2023). While traditional diagnosis relies on clinical
symptoms and serum biomarkers (Levine et al., 2004), the underlying
pathophysiology remains complex.Despite targeting preeclampsia, which
is normally diagnosed after 20w of gestation later than the typical time
frame of NIPT sampling, our prediction model based on genomic region
coverage profiles unexpectedly identified a cohort of samples primarily
associated with hypothyroidism. These samples exhibited significantly
higher prediction scores compared to the general population. Thyroid
hormones are essential for regulating metabolism, growth, and
development. Hypothyroidism, a condition characterized by
insufficient thyroid hormone production, has been linked to an
increased risk of preeclampsia. Meta-analyses consistently demonstrate
a higher incidence of preeclampsia among women with hypothyroidism
compared to those with normal thyroid function (Toloza et al., 2022;
Männistö et al., 2013). The precise mechanisms linking hypothyroidism
to preeclampsia remain elusive. However, potential contributors include
impaired placental function, compromised oxygen and nutrient delivery,
inflammatory processes, and vascular dysfunction, all of which can
contribute to the development of hypertension and proteinuria
characteristic of preeclampsia. The underlying biology suggests that
there might be tissue and disease condition specific epigenetic changes
in the studied genome which directly or indirectly affect the preference of
nuclease cleavage (Zhou et al., 2023). Further research is necessary to
elucidate the precise mechanisms linking hypothyroidism to these
epigenetic alterations and their subsequent impact on preeclampsia
pathogenesis. Our findings suggest that the developed NIPT-based
prediction model could serve as an early diagnostic tool for

BA

FIGURE 6
Distribution of test statistics for preeclampsia related disease prediction. Density of the prediction score [(A), left] and scatter plot of prediction score
versus gestation week [(B), right] of a retrospective cohort.
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hypothyroidism. Early intervention through dietary modifications may
potentially mitigate the risk of preeclampsia in susceptible individuals.
Recent study has shown potential of improving thyroid function with
polyunsaturated fatty acids (PUFAs)-enriched diet (Li et al., 2024).

Conclusion

By employing a comprehensive analysis of low-pass whole-genome
sequencing (WGS) NIPT data, we identified novel fetal-specific
genomic regions associated with key developmental processes and
maternal-fetal phenotypes. These findings underscore the potential
of cfDNA as a versatile biomarker for a range of clinical
applications beyond traditional NIPT, including liquid biopsy of
cancer and non-invasive screening of monogenic diseases. The
identification of fetal-specific genomic regions offers valuable
insights for optimizing primer and panel design in cfDNA-based
assays, thereby enhancing diagnostic sensitivity and specificity
through improved hybridization efficiency. Our study is the first to
show clinical perspective of using NIPT data to predict hypothyroidism
in early pregnancy, with potential to further differentiate preeclampsia,
offering a potential avenue for improved maternal and fetal health.
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