
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Genet.
Sec. Computational Genomics
Volume 16 - 2025 | doi: 10.3389/fgene.2025.1527300
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Determining drug-target affinity (DTA) is a pivotal step in drug discovery, where in-silico methods can significantly improve efficiency and reduce costs. Artificial intelligence (AI), especially deep learning models, can automatically extract high-dimensional features from the biological sequences of drug molecules and target proteins. This technology demonstrates lower complexity in DTA prediction compared to traditional experimental methods, particularly when handling largescale data. In this study, we introduce a multimodal deep neural network model for DTA prediction, referred to as MDNN-DTA. This model employs Graph Convolutional Networks (GCN) and Convolutional Neural Networks (CNN) to extract features from the drug and protein sequences, respectively. One notable strength of our method is its ability to accurately predict DTA directly from the sequences of the target proteins, obviating the need for protein 3D structures, which are frequently unavailable in drug discovery. To comprehensively extract features from the protein sequence, we leverage an ESM pre-trained model for extracting biochemical features and design a specific Protein Feature Extraction (PFE) block for capturing both global and local features of the protein sequence. Furthermore, a Protein Feature Fusion (PFF) Block is engineered to augment the integration of multi-scale protein features derived from the abovementioned techniques. We then compare MDNN-DTA with other models on the same dataset, conducting a series of ablation experiments to assess the performance and efficacy of each component. The results highlight the advantages and effectiveness of the MDNN-DTA method.
Keywords: Drug-target Affinity, Multimodal network, attention mechanism, deep learning, feature extraction
Received: 13 Nov 2024; Accepted: 24 Feb 2025.
Copyright: © 2025 Gao, Yan, Zhang, Wu, Shang, Zhang and Yang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Kecheng Yang, Zhengzhou University, Zhengzhou, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.