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As the development ofmolecular diagnosticmethods, a large number of clinically
relevant or disease-related copy number variations (CNVs) could be detected,
and the demand for genetic counselling and clinical treatment is also increasing.
For patients with pathogenic or likely pathogenic CNVs, preimplantation genetic
testing (PGT) could provide a feasible path to prevent the inheritance of the
genetic disorder in the offspring. In this study, we included a couple with
1q21.1 recurrent microduplication to conduct molecular diagnosis and PGT
clinical application. The optical genome mapping (OGM) successfully verified
the orientation and location of the microduplication, which further proved OGM
as a promising approach for chromosomal anomalies detection with high
resolutions. In PGT application, linkage-analysis-based PGT and high
resolution PGT-A were simultaneously conducted for the pedigree and all the
embryos. The results were consistent between linkage analysis and high
resolution aneuploid analysis in the targeted region. One embryo that was
absent of paternal 1q21.1q21.2 duplication was selected for further
transplantation. This successful clinical practice in this study shed light for
future molecular diagnosis and PGT application in tandem microduplications.
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1 Introduction

The widespread chromosome copy number variations (CNVs) in the human genome
contribute a major source of human genetic diversity, also are associated with rare and
complex diseases (Stankiewicz and Lupski, 2010; Cook and Scherer, 2008; Watson et al.,
2014). The CNVs size can range from kilobases (kb) to megabases (Mb), which are difficult
to be identified by karyotyping analysis (Smeets, 2004). Owing to the development of
diagnostic methods such as chromosomal microarray (CMA), whole exome sequencing
(WES) and optical genome mapping (OGM), a large number of CNVs, especially those
submicroscopic CNVs with ranges less than 5 Mb has been widely identified in recent years
(Vissers et al., 2005; Alkan et al., 2011; Kosugi et al., 2019; Schwartz et al., 1993). An
increasing number of cases carrying different CNVs has been identified, made it possible to
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evaluate the correlation of phenotypes with genotypes, and many
CNVs were verified to be clinically relevant or disease-related (Wang
et al., 2017). And spontaneously, interpretation of clinical
significance and genetic counselling for CNVs has become more
and more complicated.

Recurrent rearrangements of chromosome 1q21.1 was one
subset of CNVs that has been reported in association with
variant clinical phenotypes (Mefford et al., 2008). The
chromosome 1q21.1 locus, with multiple low-copy repeats, is
susceptible to recurrent deletions and duplications. Carriers of
the 1q21.1 recurrent microduplications (with a minimal
duplication size of ~1.35 Mb) present variable phenotypes
ranging from normal clinical features to developmental delay
(DD), autism spectrum disorders (ASDs), seizures and congenital
anomalies (Kaminsky et al., 2011; Qiao et al., 2017; Huang et al.,
2023). The diverse phenotypes and incomplete penetrance, made
genetic counselling for 1q21.1 microduplication challengeable.

Once a pathogenic CNV is recognized in a couple, prenatal
diagnosis or preimplantation genetic testing (PGT) can be utilized to
prevent the transmission of the pathogenic CNV (Geraedts and
Sermon, 2016; Sabria-Back et al., 2022). Recently, PGT strategy
based on SNP haplotyping has been applied in couples with small
pathogenic CNVs to identify unaffected embryos, since the
conventional PGT-A platform is not fully available because of the
limited resolution (Xie et al., 2022).

In this study, we performed PGT for a couple with an
approximately 1.69 Mb of duplication in chromosome
1q21.1q21.2 region. We first validated that the duplication is
arranged in tandem arrays by OGM, then we performed SNP-
based PGT and high-resolution PGT-A for the embryos. A total of
5 embryos were obtained and 2 of them were absence of the
inherited duplication, of which 1 embryo was selected for
transplantation after further PGT-A analysis. Our results
validated the significant advantages of OGM in detecting small
CNVs, especially to identify the locations of microduplications.
Also, the results verified the value of linkage-analysis -based
PGT-M application in tandem microduplications.

2 Methods

2.1 Molecular diagnosis by optical
genome mapping

Peripheral blood sample was collected and ultrahigh molecular
weight DNA was extracted from the man with
1q21.1q21.2 duplication via the SP Blood and Cell Culture DNA
Isolation Kit (Bionano Genomics, San Diego, CA, United States).
Subsequently, genomic DNA sample were labelled with DLS DNA
Labeling Kit (Bionano Genomics), loaded on a Saphyr chip and
imaged on the Saphyr instrument following the manufactory’s
directions. Data collection and analysis were performed with
Bionano Solve software v.3.5 (Bionano Genomics), Bionano
Access software (version1.7.1) (Bionano Genomics), as we
described previously (Ren et al., 2023). The reference for analysis
is hg19_DLE1_0 kb_0labels.cmap and map rate for this case is
around 93.7%. For CNVs, the data calls were output and annotated

with confidence score (set at 0.99) and feature CNV overlap
precision was over 500 kb (Dremsek et al., 2021).

2.2 In vitro fertilization, trophectoderm
biopsy and whole genome
amplification (WGA)

Ovarian stimulation, in vitro fertilization and later embryo
transfer processes after genetic testing were conducted in the
reproductive medical center according to the standard protocol
(Schoolcraft et al., 2011; McArthur et al., 2005). Trophectoderm
(TE) biopsy were conducted for a total of 5 embryos. Two-steps of
whole genome amplification method of multiple annealing and
looping-based amplification cycles (MALBAC) (Yikon Genomics)
was applied in WGA for each embryo following the standard
protocol (Zong et al., 2012). Whole genome products were then
purified using DNA Clean-up Kit (CWBIO).

2.3 SNP haplotyping analysis based
on MARSALA

Genomic DNA was extracted from both peripheral blood
samples of this couple and amniotic fluid cells from the affected
offspring according to the manufacturer’s instructions (QIAGEN,
QIAamp DNA Micro Kit). Then, the mutated allele revealed by
sequencing with aneuploidy and linkage analyses (MARSALA) were
conducted for all the samples (Yan et al., 2015). Around 5 Mb of
valid reads were collected for each sample by sequencing on theMGI
200 or T7 platform. An average sequencing depth of 2-3× were
obtained, which is sufficient for measuring call-targeted SNPs
(Xiong et al., 2019). Raw reads were filtered by fastp and aligned
to human reference genome (hg19) (BWA). Bam files were then
exported after marking duplicates (markdup) by samblaster
program. Variant calling and SNP annotation were conducted
using bcftools. SNPs with a depth of less than 4× or with low
quality were filtered out. The heterozygous SNPs with frequencies
outside the range of 0.2–0.8 and homozygous within the range of
0.1–0.9 were filtered out. Haplotyping analysis was then conducted
using informative SNPs which were heterozygous in the male (the
microduplication carrier) and homozygous in the female (the
normal spouse). Particularly in this case, the same and
homozygous SNPs inside the microduplication region for the
female and the affected offspring, could also be selected for
linkage analysis. MARSALA procedure and haplotyping analysis
were then conducted for embryos.

2.4 Sanger sequencing validation

To validate the detection efficiency of MARSALA, a total of
5 informative SNPs from both upstream and downstream of
microduplication region were selected to perform Sanger
sequencing validation. Five pairs of specific primers were
designed to amplify the segments containing the SNPs sites. PCR
amplifications were performed as before (Peng et al., 2023).
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Subsequent Sanger sequencing was performed and data was
analyzed using ChromasPro software.

2.5 CNV analysis and direct mutation
detection by MARSALA

The NGS data obtained based on MARSALA platform for
each embryo was sufficient for whole genome CNV analysis, even
for precisely detection of 1.69 Mb duplication in this case (Yan
et al., 2015). Valid reads for each sample were around 5 Mb. The
raw reads were filtered by fastp (https://github.com/OpenGene/
fastp) and aligned to reference sequence using BWA software.
For >4 Mb CNVs analysis, the reads were counted with the bin
size of 1 Mb. For analysis of small CNVs (around 1 Mb) in target
region, 400 kb of bin size was divided. Circular binary
segmentation algorithm (CBS) and R-language were used for
copy number variations reporting and visualization for the whole
genome based on each bin.

3 Results

3.1 Patient and genetic background

A couple with advanced maternal and paternal ages
(both >35 years old) who have experienced recurrent miscarriage
(RM) was included in this study (Figure 1A). The phenotypes and
karyotypes were both normal for the couple. Chromosomal
microarray analysis for amniotic fluid cells from the most recent
pregnancy detected a 1,690 kb of microduplication in
1q21.121.2 region, which is paternal inherited (data not shown
here). After sufficient genetic counselling and fully informed
consent, this couple hope to avoid the inheritance of this
microduplication by the help of PGT, in spite that no definite
phenotypes were described in the male carrier.

3.2 Molecular diagnosis of 1q21.1 tandem
microduplication by optical
genome mapping

To successfully apply SNP haplotyping-based PGT in this case,
OGM analysis was applied to further accurately locate the duplication
segment. The results showed a microduplication of around 1.69 Mb in
chr1 (q21.1-q21.2) as shown in Figure 1B. The red box on the top
showed the region of microduplication in chromosome 1. CNV plot
and sample genomemap against reference showed the exact duplication
range of chr1:146305863-147992406 (GRCh37) (black box). The
genome-wide circos plot exhibited the whole chromosomes and the
CNV profile represented by the blue line in the black box highlighted
the microduplication in chromosome 1 (Supplementary Figure S1). No
evidence showed the microduplication inserted in other chromosome
by OGM. The results verified the duplication was a tandem repeat
nearing the original location in 1q21.1.

3.3 SNP haplotyping and sanger sequencing
validation

Once the molecular diagnosis of 1q21.1 tandem
microduplication was verified, the PGT strategy based on SNP
haplotyping would be applicable. In this study, we first
conducted next-generation sequencing for the couple and the
affected offspring based on MARSALA platform. Haplotyping
analysis was then conducted using informative SNPs within the
2-million base pair (Mbp) region flanking the target
microduplication region (chr1:146305863-147992406). The
representative informative SNPs used in linkage analysis were
listed in Table 1. Paternal hap 1 represented the high-risk
haplotype linked with the 1q21.1 microduplication, and hap
2 represented the low-risk haplotype on the contrary. Notably, in
microduplication region, these heterozygous SNPs in the male while
same and homozygous in the female and the affected offspring,

FIGURE 1
Pedigree of family (A) and the OGM results (B). (A) In the pedigree, the affected fetus inherited the paternal mutated allele of microduplication. (B)
The red box on the top showed the region of duplication in chromosome 1. The black box showed the duplication range of chr1:146305863-147992406
(GRCh37) based on CNV plot (CN) and sample genome map against reference chromosome 1.
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could also be selected for linkage analysis as showed in Table 1
(marked with grey shading). For these SNPs, affected offsprings
should be homozygous same as the proband, while unaffected
offsprings should be heterozygous. In clinical cycle, embryos were
then conducted linkage analysis after WGA and sequencing. A total
of 5 embryos was obtained after two IVF cycles and two of them
(E2 and E5) were verified that not inherited the paternal high-risk
haplotype based on SNP linkage analysis (as shown in Figure 2;
Table 1). Five SNPs sites were selected to further conduct Sanger
sequencing on all the samples to validate the accuracy of NGS (data
not shown here).

3.4 CNV analysis

In our conventional PGT-A procedure, only deletions or
duplications greater than 4 Mb will be reported when reads

are aligned. In this study, CNVs greater than 1 Mb will be
presented after CNV analysis of the specific duplication case.
The CNVs results were summarized in Table 2, and sketch maps
were displayed in Figure 3. As the results shown in Table 2;
Figure 3, the embryo E4 showed a deletion of around 53 Mb in
region of 4q28.3q35.2 other than the microduplication of
1q21.1q21.2. Embryo E5 showed chromosomal number
abnormalities of chromosome 20, 21 and 22, though without
microduplication in 1q21.1q21.1. On the contrary, embryo
E1 and E3 inherited the paternal microduplication, although
there are no other chromosomal abnormalities. Thus, only
embryo E2 was normal karyotype and absent of
1q21.1q21.1 microduplication. Direct duplication detection
also showed that E1, E3 and E4 exhibited a copy number
variations in the target region (Figure 4). In summary, based
on SNP haplotyping and CNV analysis, embryo E2 could be
selected for subsequent transplantation after the PGT analysis.

TABLE 1 Representative informative SNPs used in linkage analysis.

RSID POS Distance Male Paternal
hap 1

Paternal
hap 2

Female Proband E1 E2 E3 E4 E5

rs1747899 144,939,820 −1366043 C/G C G C/C C/C C/C C/G C/C C/C C/G

rs117176,741 145,555,016 −750847 A/T T A A/A A/T A/T A/A A/T A/T A/A

rs11804687 145,569,027 −736836 A/C C A C/C C/C C/C A/C C/C C/C A/C

rs10910830 145,587,540 −718323 C/G G C C/C C/G C/G C/C C/G C/G C/C

rs3754342 145,595,542 −710321 G/C C G G/G G/C G/C G/G G/C G/C G/G

rs11591191 145,675,931 −629932 T/C T C T/T T/T T/T T/C T/T T/T T/C

rs12750384 145,681,484 −624379 T/C T C T/T T/T T/T T/C T/T T/T T/C

rs1023945 145,703,115 −602748 T/C T C T/T T/T T/T T/C T/T T/T T/C

rs1970612 145,703,590 −602273 G/T G T G/G G/G G/G G/T G/G G/G G/T

rs74696952 146,791,849 T/C T/T T/T T/T T/C T/T T/T T/C

rs117246310 146,793,088 T/G T/T T/T T/T ./ T/T T/T T/G

rs2353991 146,933,543 T/A A/A A/A A/A T/A A/A A/A T/A

rs74609846 147,045,875 C/G C/C C/C C/C C/G C/C C/C C/G

rs183547578 147,186,471 C/T C/C C/C C/C ./ C/C C/C C/T

rs3009468 147,825,454 A/G A/A A/A A/A A/G A/A A/A A/G

rs2999617 147,825,662 T/C T/T T/T T/T T/C T/T T/T T/C

rs55886213 147,825,732 C/G C/C C/C C/C C/G C/C C/C C/G

rs2999618 147,825,763 G/A G/G G/G G/G G/A G/G G/G G/A

rs2999619 147,825,765 G/A G/G G/G G/G G/A G/G G/G G/A

rs17581,597 149,860,372 1,867,966 C/T T C C/C C/T C/T C/C C/T C/T C/C

rs141696447 149,903,396 1,910,990 C/A A C C/C C/A C/A C/C C/A C/A C/C

rs117037899 149,934,524 1,942,118 G/A G A G/G G/G G/G G/A G/G G/G G/A

RSID: reference SNP cluster ID, the ID numbers highlighted in bold refer to the downstream of duplication region;

POS: genomic location;

Distance: distance flanking the duplication region (chr1: 146305863-147992406 by OGM)

Reference sequence: GRCh37/hg19 reference genome;

Paternal hap1 and hap 2 represent high-risk and low-risk haplotype of the male respectively.

Areas marked with grey shading showed the haplotype analysis in the duplication region.
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4 Discussion

Traditionally, NGS-based PGT-A was applied for genome-wide
aneuploidy analysis with resolution of >5 Mb (Group EP-SP-AW
et al., 2020). And the PGT-M strategy based on linkage analysis was
widely used in monogenic disorders to distinguish high-risk and
low-risk haplotype of a prospective parent (Group et al., 2020). For

small CNVs, especially those <1Mb, conventional PGT-A strategy is
not available. Inspired by PGT-M strategy, linkage analysis based on
upstream and downstream informative SNPs of the target regions
could also be used for PGT analysis in couples with small CNVs,
once a CNV was recognized as pathogenic or likely pathogenic. For
PGT in microdeletions, linkage analysis could be conducted based
on informative SNPs flanking or within the deletion regions detected

FIGURE 2
Schematic representative of haplotype linkage analysis for the pedigree and embryos from two cycles (A, B). Male and female haplotypes were
highlighted in different colors. The haplotype of light blue frame with slashes refer to the high-risk haplotype of themale deduced by linkage analysis. The
reference SNP cluster ID numbers were listed on the left side. The ID numbers highlighted in dark blue and orange refer to the upstream and downstream
informative SNPs respectively.

TABLE 2 Detection results summary of the five biopsied blastocysts.

Biopsied
blastocysts

Grade of
blastocysts

CNV analysis and direct duplication
detection

SNP
Linkage
analysis

SNP Sanger sequencing
validation

E1 5BC dup (1)(q21.1q21.2)(~1.20 Mb) Affected accordance

E2 4BB Normal Unaffected accordance

E3 4BB dup (1)(q21.1q21.2)(~1.20 Mb) Affected accordance

E4 4BC dup (1)(q21.1q21.2)(~1.20 Mb)
del(4)(q28.3q35.2)(~53.00 Mb)

Affected accordance

E5 4BC −20,+21,-22 Unaffected accordance

CNV, copy number variation detected by MARSALA.
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by NGS or SNP array, together with high resolution PGT-A for
aneuploidy analysis (Hu et al., 2024).

The situation is more complicated for PGT in
microduplications, since SNP-based linkage analysis could only
be available when the duplications are precisely located in
chromosome. The molecular diagnosis for microduplication,
especially to decipher the orientation and location of the
duplicated segments, is usually challengeable using karyotype,
CMA or NGS platform due to their limited resolution, short
read length or other technical limitations. The long-read
sequencing technologies could generate long and contiguous
reads to cover longer genomic regions, which is potential for

direct haplotype phasing or precisely breakpoint detection
(Peng et al., 2023; Zhang et al., 2019; Thibodeau et al., 2020).
Long reads are superior to short reads regarding detection break
points of microdeletions/duplications to the kilobase level. Yet, the
detection accuracy and efficiency will be significantly decreased for
larger microdeletions/duplications. Another new method named
C-MoKa (chromosome conformation-based karyotyping) is
reported as a promising method for chromosomal abnormalities
detection, especially for complex and cryptic SVs (Bao et al., 2025).
Optical genomemapping (OGM) based on whole-genome imaging
and assembly, has recently been proved as a valuable approach for
chromosomal anomalies detection with high resolutions. Ultra-

FIGURE 3
Copy number variations results of the pedigree and embryos. The sketch maps are generated after compared with the hg19 reference genome
based on the MARSALA data. The black box highlights the duplication in chromosome 1 of E1, E3 and E4. The red box refers to different chromosomal
abnormalities in E4 and E5. The detailed CNVs results were presented in Table 2.

FIGURE 4
Detailedmicroduplication detection in targeted region. The sketchmaps highlight the copy number variations in chromosome 1q21.1q21.1 based on
direct microduplication detection. Male, the affected proband, embryo E1, E3 and E4 showed a copy number of 3 in the targeted region.
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high-molecular-weight DNA was labeled at specific sites with an
average distance about 3.6 kb and genome assembly was
performed, made it possible for OGM to detect small SVs and
unbalanced aberrations at sizes ranging from a few kilobases to
several megabases (Dremsek et al., 2021). Thus, OGM could be a
promising diagnostic approach for chromosome
microduplications, including detection of the duplication size,
orientation and location.

In this study, a workflow of PGT for microduplication was
depicted including molecular diagnosis by OGM, linkage analysis
and PGT-A by NGS. At first, OGM analysis was conducted for the
male 1q21.121.2 microduplication carrier (detected by CMA) before
the couple can be included in linkage-analysis-based PGT strategy.
Combined with CNV and SV calling by OGM, a 1.69 Mb of tandem
microduplication was found in 1q21.121.2 region. The results
further validated OGM as an efficient method for small CNVs
detection. Then, in consideration of the duplication size, a high
genomic resolution of next-generation sequencing was conducted
for all the samples to fully detect SNPs and small chromosomal
anomalies. This so-called MARSALA method with adequate and
flexible resolution, provides an economic and timesaving approach
in PGT applications for small CNVs. In this study, informative SNPs
were selected for linkage analysis and high resolution of PGT-A was
simultaneously conducted for all the embryos. Furthermore, to
validate the detection efficiency of MARSALA, a total of
5 informative SNPs were selected to perform Sanger sequencing
for validation. The PGT results in this case verified the accordance of
SNP-based linkage analysis with high-resolution PGT-A
for small CNVs.

It is worth mentioning that for this couple with advanced ages,
few embryos were obtained from each IVF cycle, made the chances
of obtaining normal embryos less likely. Only embryo E2 was
normal karyotype and absent of paternal 1q21.1q21.1 duplication,
and ready for transplantation. Embryo E1 and E3 both inherited the
paternal duplication while without other chromosomal
abnormalities. After genetic counselling, this couple decided to
freeze embryo E1 and E3 for later consideration since they are
with no willing for further IVF cycle due to advanced ages. Notably,
in PGT application, genetic counselling is essential for patients to be
informed of the probability for multiple IVF cycles or no suitable
embryos to transfer, especially for patients with advanced ages
(Murphy et al., 2019; Parikh et al., 2023). On the other hand, the
heterogeneities in phenotypes made small CNVs as a clinical
dilemma including diagnosis, variation interpretation and genetic
counselling. The development of PGT provides a feasible path for
patients with genetic deficiency to prevent the recurrence of the
disorder in the next-generation. And our strategy of molecular
diagnosis and PGT in this study, provided a successful clinical
practice and shed light for future applications of PGT in
microduplications.
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