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Background: Clear cell renal cell carcinoma (ccRCC) is the most prevalent
subtype of renal cell carcinoma, and immune checkpoint regulator-based
immunotherapy has emerged as an effective treatment for advanced stages of
the disease. However, the expression patterns, prognostic significance, and
diagnostic value of immune checkpoint-related genes (ICRGs) in ccRCC
remain underexplored. This study utilized large-scale ccRCC datasets from
The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and the
International Cancer Genome Consortium (ICGC) to analyze ICRGs and develop
a prognostic and diagnostic model, which was validated using quantitative PCR in
clinical samples from ccRCC patients.

Methods: RNA-seq data and clinical information were retrieved from TCGA,
ICGC, and GEO databases. Differentially expressed genes (DEGs) were identified,
and immune checkpoint-related genes (DICRGs) were selected by intersecting
DEGs with ICRGs, followed by validation in independent datasets. Univariate and
multivariate Cox regression analyses were used to develop the prognostic model.
Protein expression of key genes was validated through immunohistochemistry
(IHC) using data from the Human Protein Atlas (HPA). qRT-PCR confirmed gene
expression levels in ccRCC and normal kidney tissues. Diagnostic models were
constructed using machine learning, and functional enrichment and immune
infiltration analyses were performed.

Results: Fourteen DICRGs were identified, with four (EGFR, TRIB3, ZAP70, and
CD4) showing prognostic significance in Cox analyses. IHC revealed high
expression of these genes in ccRCC tissues, and qRT-PCR confirmed
increased expression of EGFR, TRIB3, and CD4, while ZAP70 expression
showed no significant change. A prognostic risk score was developed based
on gene expression levels. Functional analysis identified enriched pathways
related to organic anion transport and metabolism, while immune infiltration
analysis revealed associations between ZAP70, CD4, and risk scores.
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Conclusion: This study establishes a prognostic model for ccRCC based on four
ICRGs, providing valuable insights into the molecular mechanisms underlying
prognosis and diagnosis in ccRCC.
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1 Introduction

Renal cell carcinoma (RCC) has emerged as one of the most
prevalent genitourinary tumors, ranking second only to prostate and
bladder cancers in incidence, and stands as the deadliest malignancy
affecting the urinary system (Xia et al., 2022). Clear cell renal cell
carcinoma (ccRCC) represents the predominant pathologic subtype,
comprising 70%–85% of renal cancer cases, with a notably high
occurrence (Chen et al., 2019). Owing to the subtle clinical
manifestations of early-stage renal cancer, metastasis is detected
in approximately 25% of patients upon diagnosis, and over 20% of
patients experience distant metastasis following radical surgery for
renal cancer (Akhtar et al., 2019; Linehan and Ricketts, 2019),
leading to an unfavorable prognosis. Furthermore, ccRCC
exhibits insensitivity to conventional radiotherapy and
chemotherapy, is predisposed to drug resistance, and lacks
dependable prognostic biomarkers, resulting in disease
progression within a two-year timeframe for most tumors
(Motzer et al., 2015). Despite extensive research into cancer
development mechanisms, the etiology and carcinogenesis of
RCC remain elusive. Hence, further investigation into novel and
efficacious prognostic biomarkers is imperative to enhance the
prognosis of ccRCC patients.

Immunotherapy has garnered attention in renal cancer since
2015, when the use of the immune checkpoint inhibitor Nivolumab
was confirmed for advanced renal cancer (Motzer et al., 2022; Lee
et al., 2022). In recent years, immunotherapy has made significant
strides in treating various tumors (Liu et al., 2022). It has been
demonstrated that immune checkpoint inhibitor therapy promotes
active host immune responses through diverse mechanisms,
including gene mutation, epithelial-mesenchymal transition, and
metabolism (Marei et al., 2023). Presently, several guidelines have
endorsed targeted combination immunotherapy or dual
immunotherapy for advanced kidney cancer (Gebrael et al., 2023;
Rini et al., 2019; Rustum et al., 2023). According to the International
Metastatic Renal Cell Carcinoma Database Consortium (IMDC)
risk stratification, all patients with metastatic ccRCC requiring first-
line systemic therapy should receive immune checkpoint inhibitor
(ICI) therapy in combination with a vascular endothelial growth
factor receptor tyrosine kinase inhibitor (VEGFR) or two immune
checkpoint inhibitors (ICIs) for patients with intermediate-risk or
high-risk disease (Ahmadie et al., 2022). Currently, immune
checkpoint inhibitor therapy primarily targets the immune escape
mechanism of tumor cells, but few studies have systematically
analyzed the expression pattern of immune checkpoint-related
genes (ICRGs) in ccRCC.

In this study, we developed a robust prognostic model for ccRCC
patients using transcriptional data from TCGA and other public
databases, focusing on immune checkpoint-related genes (ICRGs).

The model’s validity and reliability were confirmed across numerous
independent external datasets. Additionally, we conducted qRT-
PCR experiments to validate the expression levels of four identified
DICRGs in each group, highlighting their potential as prognostic
biomarkers and therapeutic targets. This study not only offers a
foundation and new reference for ccRCC treatment but also
provides insights into the molecular mechanisms underlying
ccRCC prognosis. The prognosis-related DICRGs identified
herein lay a theoretical groundwork for enhancing diagnosis and
treatment strategies for ccRCC patients.

2 Materials and methods

2.1 Sources of information

RNA sequences and clinical data from 530 ccRCC patients and
72 normal kidney tissues were acquired from the Tumor Genome
Atlas (https://portal.gdc.cancer.gov). Additionally, ninety-one
RNA-SEQ datasets containing survival data for ccRCC patients
were obtained from the International Cancer Genome
Consortium (ICGC) database (https://dcc.icgc.org) for external
validation. The GSE53757 and GSE15641 datasets were retrieved
from the Gene Expression Overview database (https://www.ncbi.
nlm.nih.gov/geo). The GSE53757 dataset (GPL570 [HG-U133_
Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array)
comprised 72 normal samples and 72 ccRCC samples, while the
GSE15641 dataset (GPL96 [HG-U133A] Affymetrix Human
Genome U133A array) included 23 normal and 32 ccRCC
samples. Differential gene analysis was conducted using the
GSE53757 dataset, while the performance of the diagnostic model
and the expression of risk model genes were validated using the
GSE15641 dataset. Subsequently, 282 immune checkpoint-related
genes (ICRGs) were identified from the literature (Zhao et al., 2021).

2.2 Screening of differential ICRGs (DICRGs)

Differentially expressed genes (DEGs) between ccRCC and
normal groups in TCGA, as well as ccRCC and normal groups
in GSE53757, were identified based on P - value < 0.05 and |log2FC|
>1 criteria utilizing the R language package “limma” (version 3.42.2)
(Ritchie et al., 2015). Heatmaps were generated using the pheatmap
package (version 1.0.12), while box plots were created using the
ggplot2 package (version 3.3.2) (Ito and Murphy, 2013) In this
study, the method section employs theWilcoxon rank - sum test (P -
value <0.05) to compare differences among different groups and
evaluate the significance of differences in gene expression levels or
other variables when creating boxplots.
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2.3 Construction and evaluation of
predictive models

The expression data of DICRGs were obtained from the ccRCC
sample expression data in TCGA. This data was then integrated
with clinical information to derive the clinical expression profiles
of 526 ccRCC samples, excluding those with missing survival data.
Subsequently, in order to evaluate the generalization ability of the
model, the 526 samples were divided into a training cohort and a
test cohort at a ratio of 6:4 (training cohort = 316, test cohort =
210). In the training cohort, a univariate Cox algorithm was
employed to identify prognostically relevant DICRGs with
significance level p < 0.2 (Ye et al., 2021). Following this, a
multivariate Cox analysis was conducted using the step
function. The Cox model formula utilized was:[ h(t/X) = h_0(t)
exp (β_1 X_1 + β_2 X_2 + . . .. . . + β_p X_p) ] where (h_0(t))
represents the baseline risk function at time (t) when all variables
are zero, (X_1, X_2, . . . , X_p) denote the influencing factor
variables, and (β_1, β_2, . . . , β_p) refer to the regression
coefficients. Patients were then scored based on the risk
coefficients and expression values derived from the multivariate
Cox analysis. The surv_cutpoint function within the survival
package was utilized to determine the optimal cutoff value for
the continuous independent variable of the survival profile (train:
0.85; test:1.42; ICGC:1.18). Based on this cutoff, patients were
categorized into high-risk and low-risk groups. Survival analyses
were conducted using the Survival package (version 3.2-7) (N and
Lee, 2019). Additionally, the SurvivalROC package (version 1.0.3)
(Robin et al., 2011) was employed to calculate the area under the
curve (AUC) values of the ROC curves, serving as a measure of the
predictive model’s accuracy. Finally, the prognostic model
underwent validation using both a test cohort and an external
validation cohort.

2.4 Bioinformatic validation of expression
levels of prognosis-related DICRGs

In order to verify the expression level of prognosis-related
DICRGs. First, the expression levels of the four prognosis-related
DICRGs were validated using the Wilcoxon test method in the
GSE15641 dataset. Then, the protein expression levels of DICRGs in
both ccRCC and adjacent normal tissues were confirmed through
immunohistochemical staining. Immunohistochemistry (IHC)
results were acquired from the Human Protein Atlas database
(HPA) available at https://www.proteinatlas.org/.

2.5 Real-time quantitative polymerase chain
reaction (qRT-PCR)

2.5.1 Sample collection
Ten pairs of cancerous and paracancerous tissues were obtained

from ccRCC patients undergoing nephrectomy at Yunnan Cancer
Hospital in Kunming, China. All patients were diagnosed with clear
cell renal cell carcinoma based on postoperative pathology. The
study protocol was approved by the Ethics Committee of Yunnan
Cancer Hospital (Approval No. SLKYLX2022258).

2.5.2 Total RNA extraction
Ten pairs of tissue samples were divided into two groups: 10 samples

constituted the normal group, while the remaining 10 samples formed
the experimental group. For each sample, 50mg of tissue was taken, and
1 mL of TRIzol reagent was added. After complete homogenization, the
mixture was left on ice for 10 min to ensure cell lysis. Subsequently,
300 uL of chloroform was added, vigorously shaken for 30 s, and left at
room temperature for 10min to allow for phase separation. Themixture
was then centrifuged at 12,000 g for 15 min at 4°C, resulting in the
separation of liquid into three layers, with the RNA retained in the upper
colorless aqueous phase. The upper aqueous phase was carefully
transferred to another EP tube, and an equal volume of ice-cold
isopropanol was added. After inversion and mixing, the mixture was
allowed to stand for 10 min and then centrifuged at 12,000 g, 4°C for
10 min, yielding a white RNA precipitate at the bottom of the tube. The
supernatant was discarded by gently tilting the tube, and the mouth of
the tube was dried using absorbent paper. To the precipitate, 1 mL of
75% ethanol was added, followed by gentle inversion to facilitate
precipitation floating. After a 2-min rest, centrifugation at 7,500 g,
4°C for 5 min was performed to further settle the precipitate, repeating
this step twice. The supernatant was then discarded, and the centrifuge
tube was inverted on absorbent paper. Careful aspiration of the
remaining liquid with a 10ul tip was carried out, followed by natural
drying for 20 min or blow drying in an ultra-clean bench to remove
ethanol and water residue, rendering the RNA precipitate transparent.
Subsequently, add 20–50 μL of RNase-free water to the dried RNA
precipitate and let it stand for 15 min to ensure complete dissolution of
the RNA. Take 1 μL for concentration detection with NanoDrop,
recording the RNA purity/concentration to determine the sample
amount for the subsequent reverse transcription step. Subsequently,
the remaining RNA should be either reverse transcribed immediately or
frozen and stored in the refrigerator at −80°C.

2.5.3 RNA detection
Utilize 1 μL of RNA for detection using NanoPhotometer N50,

with the results detailed in Supplementary Table S1.

2.5.4 mRNA reverse transcription
The SureScript First-strand cDNA Synthesis Kit from Xavier

was employed as follows: extract the components of the reverse
transcription kit, allow them to melt at room temperature, briefly
centrifuge, place on ice, and then 4 μL of Reaction Buffer and 1 μL of
Primer were added. After centrifugation, an additional 4 μL of
Reaction Buffer, 1 μL of Primer, 1 μL of SweScript RT I Enzyme
Mix, 5 μg of RNA, and 9 μL of Nuclease-Free Water were added
while on ice The process of reverse transcription was then carried
out on a standard PCR instrument.

2.5.5 On-line assay
The aforementioned reverse transcription product, cDNA, was

diluted 10-fold with RNase/DNase-free ddH2O. Subsequently, 3 μL
of cDNA, 5 μL of Universal Blue SYBR Green qPCR Master Mix, 1 μL
of Forward primer, and 1 μL of Reverse primer were added for the
qPCR reaction. Following a brief centrifugation, 40 cycles of the reaction
were executed in a CFX96 Real-Time Quantitative Fluorescent PCR
Instrument to generate amplification andmelt curves, and to determine
the Ct values. The amplification process included an initial pre-
denaturation step at 95°C for 1 min, followed by 40 cycles of
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denaturation at 95°C for 20 s, annealing at 55°C for 20 s, and extension
at 72°C for 30 s. The relative gene expression was calculated using the
2−ΔΔCT method. The primer sequences were detailed in Supplementary
Table S2 and were supplied by Prime Biology (Peking, China).

2.6 Correlation analysis between prognostic
models and clinical characteristics

The correlation between clinicopathological factors and risk
models was examined in the TCGA training cohort. Various
variables such as age (≤65 or >65 years), sex (female or male),

stage (stage I, II, III, or IV), pathologic T (T1, T2, T3, or T4),
pathologic N (N0 or N1), pathologic M (M0 or M1), and grading
(G2, G3, or G4) were used to categorize the training cohort into
different groups. The findings of the correlation analysis were
presented through box plots.

2.7 Analysis of independent prognostic value
of prognostic models

Independent prognostic analyses of clinicopathologic factors
were conducted, and risk models were developed using univariate

FIGURE 1
Data Processing and Screening of ICRGs with their Expression Data in ccRCC. (A) Venn diagram illustrating 1375 common DEGs, comprising
624 upregulated genes and 751 downregulated genes. (B) Venn diagram depicting DEGs and ICRGs, showing 13 upregulated genes and 1 downregulated
gene. (C, D) Heat map illustrating 14 differentially expressed ICRGs in ccRCC compared with normal tissue in TCGA-KIRC and GSE53757. Red nodes
denote significantly upregulated genes with log2FC > 1and p < 0.05, while blue nodes represent significantly downregulated genes with
log2FC < −1 and p < 0.05. (E, F) Box plot displaying the expression of 14 differentially expressed ICRGs in ccRCC compared with normal tissue in TCGA-
KIRC and GSE53757.
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and multivariate Cox analyses. Subsequently, column line plots were
created and visualized utilizing the rms R package (Qiu et al., 2022)
based on 149 samples from the TCGA training cohort in ccRCC
patients. Overall survival (OS) is often the primary observation
index of choice in phase III clinical trials and has important clinical
significance. Based on this, the index used in survival analysis in this
study was OS. Furthermore, the model’s performance was evaluated
using calibration curve analysis and ROC curves.

2.8 Correlation analysis between risk scores
and prognosis-related DICRGs

To better understand the relationship between risk model genes
and risk scores, a correlation analysis was conducted using the
Pearson, Spearman and Bayes methods, and scatter plots illustrating
the correlation as well as histograms depicting the data distribution
are created utilizing the R package “ggplot2 (3.2.1)” (Wickham,
2016). Subsequently, the expression levels of prognosis-related
DICRGs were compared between the high and low-risk groups
by Wilcox. test (P - value <0.05).

2.9 Analysis of prognosis-related DICRGs

Using the TCGA and GSE53757 datasets, the expression levels of
prognosis-related DICRGs in ccRCC and normal groups were
determined using the Wilcox. test. Following the identification of
prognostically relevant DICRGs, logistic regression (LR) and support
vector machine (SVM) machine learning algorithms were employed to
develop diagnostic models in both the TCGA and GSE15641 datasets.
These models were subsequently validated in the GSE15641 dataset.
Finally, the diagnostic models’ efficacy was assessed using ROC curves.

2.10 Identification and functional
enrichment analysis of risk-related DEGs

Within the training cohort, comprising 184 high-risk samples
and 132 low-risk samples, risk-related DEGs were identified using
the limma package (Ritchie et al., 2015) with criteria of P -
value <0.05 and |log2FC|>1. Volcano plots and heat maps were
utilized to visualize the results. Functional enrichment analysis,
including GO annotation and KEGG pathway analysis, was
conducted using the R package “clusterProfiler” (Wu et al.,
2021). The enrichment outcomes were presented visually using
the ggplot2 package (Wickham, 2016).

2.11 Analysis of immune infiltration and
immunophenotyping in high-risk and low-
risk populations

The proportion of 22 immune cell types per ccRCC sample in
both high-risk and low-risk groups was determined by estimating
the relative abundance of RNA transcripts using the cell type
identification algorithm Cibersorte (version 1.03) (Chen et al.,
2018). Corresponding statistical values were computed, and
samples with P - value <0.05 were selected for subsequent
analysis. A heatmap illustrating the scores of the 22 immune cell
types was generated based on their respective scores. Violin plots
were created using the ggplot2 package. The immune phenotype
score (IPS) of ccRCC patients was extracted from the TCGA
database, and differences in IPS between the high-risk and low-
risk groups were assessed. Additionally, correlation analysis was
performed using Spearman’s correlation coefficient, and heatmaps
were generated using the ggplot2 package (version 3.3.3).

2.12 Pharmacovigilance analysis

Risk scores were calculated for the NCI60 cell line in the
CellMiner database (60 cell lines), and patients with ccRCC were
categorized into high-risk and low-risk groups using themedian as the
cut-off point. Correlation analysis of federal drug risk scores U.S. Food
and Drug Administration (FDA)-approved drugs used in 60 cell lines,
IC50 was performed using Spearman, |cor|>0.4, P - value <0.05.

3 Results

3.1 Identification of DICRGs

Differential analysis was conducted on extensive RNA sequencing
data from TCGA (comprising 530 ccRCC and 72 control samples) and
the GSE53757 dataset (with a Tumor: Normal ratio of 72:72). A total of
1,375 DEGs were identified between the ccRCC and Normal groups,
comprising 624 upregulated genes and 751 downregulated genes in the
ccRCC group (Figure 1A). Differential gene selection criteria included |
log2fold change|> 1 and P - value <0.05 Subsequently, 14 DICRGs were
identified by intersecting DEGs and ICRGs. Among these 14 DICRGs,
the expression of 13 genes was upregulated, while 1 gene was
downregulated (Figure 1B). Visualization of the expression patterns
of the 14 DICRGs in the TCGA and GSE53757 datasets was achieved
through heatmaps and box plots (Figures 1C–F).

3.2 Construction and evaluation of ICRGs
prediction model

Four DICRGs (EGFR, TRIB3, ZAP70, CD4) prognostically
relevant were identified through univariate and multivariate Cox
analyses (P - value <0.2) (Table 1; Table 2). Among these, EGFR and
CD4 exhibited a protective role in renal cell carcinoma, whereas
TRIB3 and ZAP70 were identified as risk factors (P - value <0.05)
(Figure 2A). Patients were stratified into high-risk and low-risk
groups based on the optimal cutoff values (training cohort = 0.85;

TABLE 1 Results from univariate Cox analysis assessing the differential
expression of ICRGs.

Gene symbol HR HR.95L HR.95H Pvalue

EGFR 0.725673 0.587673 0.896077 0.002887

TRIB3 1.238573 1.073012 1.429679 0.003472

ZAP70 1.234896 0.944792 1.614078 0.122517

CD4 0.865118 0.703033 1.064573 0.171058
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test cohort = 1.42; ICGC = 1.18) (Supplementary Tables S3-S5), and
risk curves along with heatmaps were generated (Figure 2E).
Survival analysis indicated a higher survival rate among the low-
risk group in the training cohort (Figure 2H). The ROC curve
analysis results for the training cohort demonstrated superior
predictive performance of the model, with AUC values exceeding
0.643 at 1, 3, and 5 years (Figure 2B). Subsequently, we evaluated the
predictive performance of the model using the test cohort and the
external validation cohort. The findings were consistent with those
of the training cohort, as evidenced by the risk profile, heatmap, and
survival curves displayed for the test cohort (Figures 2F, I). The
AUCs for 1-, 3-, and 5-year survival in the test cohort were 0.665,
0.642, and 0.651, respectively (Figure 2C). Similarly, in the external
validation cohort, the results were comparable (Figures 2G, J). The
AUC values for the 1-, 3-, and 5-year ROC curves in the external
validation cohort were all above 0.599 (Figure 2D).

3.3 Expression validation of prognosis-
related DICRGs

In the GSE15641 dataset, the expression levels of the four
prognosis-related DICRGs exhibited significant differences between
the ccRCC and normal groups, aligning with the expression trends
observed in the TCGA dataset (Figure 3A).Within the HPA database,
researchers conducted detailed examinations of each protein’s
expression across 64 cell lines, 48 human normal tissues, and
20 tumor tissues, utilizing highly specific antibodies alongside
immunodetection techniques such as immunoblotting,
immunofluorescence, and immunohistochemistry. We conducted a
search within the database to retrieve the immunohistochemical
results for the four prognostic model genes in ccRCC tissues,
presenting the expression patterns in both normal and ccRCC
tissues(Figures 3B–E). The immunohistochemical findings revealed
elevated expression levels of EGFR, TRIB3, ZAP70, andCD4 in ccRCC
tissues, consistent with the observations from the TCGA database.

3.4 Wet bench qRT-PCR for detecting the
expression of prognosis-related DICRGs

To further validate the expression changes of the differentially
expressed immune checkpoint-related genes in clinical samples, and
to enhance the reliability and accuracy of the research findings, we
performed qPCR analysis of the expression differences of EGFR,
TRIB3, CD4, and ZAP70 in 10 pairs of ccRCC tumor tissues and their
adjacent normal tissues. The results showed that, compared to normal
kidney tissues, EGFR, TRIB3, and CD4 were significantly upregulated

in ccRCC tumor tissues (p< 0.05), while ZAP70 showed no significant
difference (p = 0.9744), suggesting that it may not directly participate
in the pathological process of ccRCC. Although these findings provide
new insights into the molecular mechanisms of ccRCC, the small
sample size (n = 10) and the limitations of qPCR technology require
further functional experimental validation. The high expression of
genes like EGFR may have a pro-cancer effect and serve as potential
biomarkers for ccRCC molecular subtyping and targeted therapy, but
larger-scale clinical validation is still needed. (Table 3; Figures 4A–D).

3.5 Subgroup analysis of prognostic model
and independent prognostic value

Significant (P - value <0.05) disparities in grading, pathologic T,
pathologic M, and stage were detected by comparing the proportions of
high-risk and low-risk patients across different subgroups
(Supplementary Table S6). The Wilcox test revealed that the risk
scores among different subgroups were notably significant (P -
value <0.01) for stages G2-G4, T1-T3, and I-IV (Supplementary
Figures S1A, B). Moreover, both univariate and multivariate Cox
regression analyses demonstrated that the risk score independently
influenced the prognosis of ccRCC patients (Supplementary Figure
S1C). Column line plots, based on the four prognostically relevant
DICRGs, were constructed to forecast patients’ overall survival at 1, 3,
and 5 years (Figure 5A). The calibration curves’ slopes at 1, 3, and
5 years approximated 1, indicating a high compatibility between the
predictions and actual outcomes (Figure 5B). Additionally, the area
under the curves (AUCs) of 0.676, 0.666, and 0.669 were achieved at 1,
3, and 5 years, respectively, suggesting that the risk model exhibited
significant prognostic value for ccRCC patients (Figure 5C).

3.6 Correlation analysis between risk scores
and prognosis-related DICRGs

A significant disparity in the expression levels of prognosis-related
DICRGs was observed between the high-risk and low-risk groups.
Specifically, the expression of TRIB3 and ZAP70was markedly higher
in the high-risk group compared to the low-risk group, whereas EGFR
and CD4 exhibited significantly higher expression levels in the low-
risk group than in the high-risk group (Figure 6A). Correlation
analysis further revealed a positive correlation between TRIB3,
ZAP70, and risk scores, while EGFR and CD4 showed a negative
correlation (Figures 6B–E; Supplementary Figure S2). These findings
indicate that TRIB3 and ZAP70may have a protective role in renal cell
carcinoma, whereas EGFR and CD4 could be considered as
risk factors.

TABLE 2 Results from multivariate Cox analysis evaluating the differential expression of ICRGs.

Gene symbol Coef HR HR.95L HR.95H Pvalue

EGFR −0.28246 0.753926 0.605501 0.938734 0.011564

TRIB3 0.207769 1.230929 1.068747 1.417723 0.003948

ZAP70 0.33824 1.402477 1.019827 1.928703 0.037458

CD4 −0.25407 0.775637 0.601378 1.00039 0.050352
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3.7 Construction and evaluation of
diagnostic models

FollowingANOVAanalysis, all four prognostically relevantDICRGs
within the TCGA and GSE53757 datasets exhibited significant
upregulation in the ccRCC group (Figures 7A, B). The ROC curve
results indicated that the AUC values of the four prognostically relevant
DICRGs within the TCGA and GSE15641 datasets exceeded 0.85,

demonstrating their robust diagnostic capability (Figures 7C, D).
Subsequently, two machine learning algorithms, LR and SVM, were
employed to develop the diagnostic models. The AUC values of these
diagnostic models surpassed 0.9, indicating their effectiveness in
accurately diagnosing ccRCC (Figure 7E). The validation outcomes
within the GSE15641 dataset corroborated the performance of the
diagnostic models, with the ROC curves demonstrating AUC values
above 0.9 for both diagnostic models (Figure 7F).

FIGURE 2
Evaluation and validation of prognostic risk models constructed for four DICRGs in the training set, test set, and ICGC set. (A) Forest plot displaying
multivariate Cox regression analysis of four prognostically relevant differential ICRGs. The area under the curve (AUC) of time-dependent ROC curves
confirms the reliability and accuracy of the risk score in the (B) training set, (C) testing set, and (D) ICGC set. The distribution of the risk score and survival
status in the (E) training set, (F) testing set, and (G) ICGC set indicates that higher risk scores correspond tomore deceased patients. Heatmaps depict
the expression profiles of the four prognostically relevant differential ICRGs between high-risk and low-risk groups in the (E) training set, (F) testing set,
and (G) ICGC set. Survival curves illustrate outcomes for high-risk and low-risk groups in the (H) training set, (I) testing set, and (J) ICGC set.
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3.8 Screening and functional enrichment
analysis of risk-related genes

A total of 20 risk-associated genes were identified in both the high-
risk and low-risk groups, comprising 2 upregulated genes and
18 downregulated genes (Figures 8A, B). The differentially expressed

genes (DEGs) were predominantly enriched in terms related to organic
anion transport, anion transmembrane transport, and vascular processes
within the circulatory system, as illustrated in Figure 8C and detailed in
Supplementary Table S7. Moreover, the results of KEGG enrichment
analysis revealed significant associations with themetabolism of ascorbic
acid and glyoxylate, as well as the inter-conversion of pentose and

FIGURE 3
Validation of prognostic models derived from four immune checkpoint-related genes. (A) Box plot depicting the expression levels of the four
prognostic model genes in the GSE15641 validation set, comparing Normal and Tumor groups. (B–E) Immunohistochemical results for the four
prognostic model genes in ccRCC tissue. This part of the results is sourced from the HPA database (https://www.proteinatlas.org/). (B) Left: CD4
expression in normal kidney tissue is undetectable in glomerular cells and low in renal tubules. Right: CD4 shows moderate expression in renal
cancer cells, with over seventy-five percent expression. (C) Left: EGFR expression in normal kidney tissue is moderate in glomerular cells and renal
tubules. Right: EGFR is highly expressed in renal cancer cells, with over 75% expression. (D) Left: TRIB3 expression in normal kidney tissue is low in
glomerular cells and renal tubules, with less than 25% expression. Right: TRIB3 exhibits moderate expression in renal cancer cells, with 25%–75%
expression. (E) Left: ZAP70 expression in normal kidney tissue is low in glomerular cells and renal tubules, with less than 25% expression. Right: ZAP70
shows high expression in renal cancer cells, with over 75% expression.
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glucuronide pathways, suggesting potential functional roles of the DEGs
(Figure 8D; Supplementary Table S8).

3.9 Immune infiltration and
immunophenotyping (IPS) public
dataset analysis

The heatmap in Figure 9A displays the proportion of immune
cells in each sample. Ten immune cell types exhibited significant
differences (P - value <0.05) between the high-risk and low-risk
groups, including CD8 T cells, resting memory CD4 T cells, T

follicular helper cells, regulatory T cells (Tregs), NK cells,
monocytes, M0 macrophages, M2 macrophages, resting mast
cells, and neutrophils (Figure 9B). IPS was notably higher in the
high-risk group compared to the low-risk group, as demonstrated in
Figure 9C. Correlation analysis revealed that ZAP70 exhibited a
positive correlation with CD8 T cells and a negative correlation with
M2 macrophages, while CD4 showed a positive correlation with
regulatory T cells (Tregs) and a negative correlation with resting
memory CD4 T cells. Additionally, risk scores displayed a positive
correlation with M0 macrophages and T follicular helper cells, and a
negative correlation with M2 macrophages (Figure 9D).

3.10 Correlation analysis between drug risk
score and IC50

The correlation analysis of cell-related risk scores and
IC50 revealed significant associations with 24 drugs (arsenic
trioxide, asparaginase, batrachotoxin, bendamustine, carmustine,
loratadine, chlorambucil, cyclophosphamide, dasatinib,
dexamethasone Decadron, dimethylaminobenzylamine, felitinib,
fludarabine, fluphenazine, hydroxyurea, ifosfamide, imefamide,
imethadone, inofosfene, nelarabine, oxaliplatin, pipecolonium

TABLE 3 Results from qPCR highlighting the differential expression of
ICRGs between tumor tissues and normal tissues.

Gene symbol Normal Tumor P - value

CD4 1.0582 ± 0.0718 1.9585 ± 0.8098 0.0029

EGFR 1.0200 ± 0.0552 2.0016 ± 0.6293 0.0001

TRIB3 1.0202 ± 0.0563 1.5192 ± 0.6329 0.0234

ZAP70 1.0187 ± 0.0530 1.0305 ± 1.1487 0.9744

FIGURE 4
(A–D) Quantitative PCR (qPCR) results showcasing the expression levels of four prognostic-related DICRGs in both ccRCC tissues and normal
tissues. (n = 10).
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bromide, PX-316, uracil mustard, and XK-469). These drugs
exhibited significant correlations with the prognostic model ((|cor
|> 0.4 and P - value <0.05), as illustrated in Figure 10.

4 Discussion

Renal cancer, originating from renal tubular epithelial cells (Rini
et al., 2009). As cancer cells proliferate, they form tumors that can
gradually spread to other parts of the body. According to statistics
from 2021, over 76,000 people were diagnosed with kidney cancer,
resulting in more than 13,780 deaths attributed to the disease (Siegel
et al., 2021). Among renal cell carcinomas, clear cell renal cell
carcinoma (ccRCC) is the most common type, accounting for
approximately 70%–85% of diagnosed cases (Cohen and

McGovern, 2005). Globally, approximately 431,000 new cases of
renal cancer and 179,000 new deaths were projected for 2020, with
incidence and mortality rates on the rise annually (Sung et al., 2021;
Bukavina et al., 2022). Studies have shown that immunotherapy
using immune checkpoint modulators is a promising treatment for
RCC (Raghubar et al., 2023). Currently, there are no validated
prognostic or predictive biomarkers for immunotherapy response
in ccRCC patients available for clinical use (Rosellini et al., 2023).
Although previous studies have identified several immune
checkpoints, including CTLA4, LAG3, and PDCD1LG2 (Liao
et al., 2021), few have explored the expression patterns of
immune checkpoint-related genes (ICRGs) in ccRCC and their
prognostic significance.

This study developed a prognostic model that includes four
genes: EGFR, TRIB3, ZAP70, and CD4. Mutations in the EGFR gene

FIGURE 5
Analysis of independent prognostic value of risk models. (A) Nomograms for predicting patient OS based on four prognostic-related DICRGs. (B)
Calibration curve for the nomograms. A slope closer to 1 indicates more accurate prediction. (C) ROC curve for patients with significant
clinicopathologic features.
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lead to the abnormal activation of the epidermal growth factor
receptor, resulting in continuous cell proliferation and inhibition of
apoptosis, which in turn promotes tumorigenesis (Voldborg et al.,
1997). Tribble Homolog 3 (TRIB3) is a pseudokinase that regulates
various intracellular signaling pathways (Wu et al., 2022). Notably,
both EGFR and TRIB3 are involved in the MAPK pathway, which
plays a pivotal role in cancer development. Their aberrant

expression may influence the occurrence and progression of clear
cell renal cell carcinoma (ccRCC) through this pathway (Wang et al.,
2021; He et al., 2021; Santarpia et al., 2012; Rah et al., 2022; Hong
et al., 2019). Univariate Cox analysis in this study indicated that
EGFR is a low-risk gene for ccRCC (HR = 0.73), suggesting that,
during ccRCC progression, the epidermal growth factor receptor
may serve functions beyond its tyrosine kinase activity. In contrast,

FIGURE 6
Results from correlation analysis of risk scores with four prognostic model genes. (A) Box plot showing expression levels of four risk model genes in
high and low-risk groups (Wilcox.test, low risk: n = 131; high risk: n = 184). (B–E)Correlation analysis between risk model genes and riskmodel by pearson
method and scatter plot.
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TRIB3 is a high-risk gene (HR = 1.24). Research has shown that
TRIB3 promotes RCC progression by upregulating the lipid droplet-
associated protein PLIN2. Silencing TRIB3 expression in RCC cells
significantly reduces lipid droplet (LD) accumulation and enhances
apoptosis related to endoplasmic reticulum (ER) stress, thereby
inhibiting tumor growth and metastasis (Li et al., 2024). In
conclusion, the specific mechanisms of EGFR and TRIB3 in
ccRCC remain to be fully elucidated.

ZAP70 plays a role in lymphocyte activation and is essential for
T-cell receptor (TCR) signaling, while CD4 is a widely expressed
receptor on T-cell surfaces that also participates in the TCR
signaling pathway. Both are critical for T-cell development and
function (Richardson et al., 2021; Yu et al., 2022; Siu, 2002; Schultz

et al., 2022; Gaud et al., 2018). Studies have suggested that ZAP70 is a
potential therapeutic target in the tumor microenvironment (TME)
and may influence the prognosis of prostate cancer and bladder
cancer (Sun et al., 2021; Kang et al., 2021). CD4+ T cells play a crucial
role in antitumor immunity by modulating tumor cell lysis and the
tumor microenvironment (Melssen and Slingluff, 2017). In patients
with renal cell carcinoma (RCC), CD4 expression is significantly
elevated and closely linked to prognosis (Nishida et al., 2020). qRT-
PCR results revealed that CD4 expression was markedly upregulated
in the disease group, consistent with previous studies. In contrast,
ZAP70 expression did not show a significant statistical difference,
which may be attributed to the limited sample size and the fact that
the samples were exclusively from Asian populations. However, data

FIGURE 7
Assessment of the diagnostic value of risk model genes. (A) Box-and-line plot showed the expression levels of four prognostic model genes in the
normal and tumour groups in the validation set GSE15641. (B) Box line plots demonstrated the expression levels of four prognostic model genes in the
normal and tumour groups in the dataset TCGA-KIRC. (C) Area under the curve (AUC) values of the ROC curves of the four prognosticmodel genes in the
dataset TCGA-KIRC. (D) Area under the curve (AUC) values of the ROC curves of the four prognostic model genes in the validation set GSE15641. (E)
ROC curves were used for assessing and validating the validity of tumour diagnosis (TCGA-KIRC). (F) ROC curves were used for assessing and validating
the validity of tumour diagnosis (GSE15641).
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on protein expression levels from the HPA database indicate that
ZAP70 expression is higher in cancer tissues than in normal kidney
tissues. Therefore, further research with a larger sample size is
necessary to explore the potential relationship between ZAP70
and ccRCC in greater depth.

Diagnostic models are now widely utilized in cancer research
(Tang et al., 2021; Guo et al., 2023). The model demonstrates
remarkable potential for the early diagnosis and prognostic
assessment of cellular carcinoma. Its clinical applications
extend beyond diagnosis, providing personalized treatment
guidance for patients. When combined with physicians’
professional judgment, the model is expected to become a vital
tool in the diagnostic and treatment processes for renal cancer,

enhancing treatment outcomes and improving patients’ quality
of life (Guo et al., 2023). In this study, the area under the curve
(AUC) for the four prognostic model genes exceeded 0.8, and the
overall model’s AUC was greater than 0.65, confirming that the
model we developed demonstrates strong diagnostic accuracy
and holds significant clinical implications. Wang et al. (Wang
et al., 2023) constructed a prognostic model for lung
adenocarcinoma using LASSO, which yielded an AUC around
0.6. Similarly, Zhang et al. (Zhang et al., 2021) developed a
prognostic model for colorectal cancer using both univariate
and multivariate Cox regression, with an AUC also around
0.6. In contrast, our study incorporated stepwise regression
analysis in multivariate Cox regression and adjusted the

FIGURE 8
Identification of risk-related DEGs and results from GO and KEGG analyses. (A) Volcano plot depicting differential gene expression in the High-risk
and Low-risk groups. (B) Heatmap illustrating 20 risk-related DEGs. (C, D) Results from GO annotation and KEGG functional enrichment analyses of the
20 differential genes in the high-risk and low-risk groups.
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multivariate model, thereby enhancing the model’s robustness
and improving its predictive performance.

ccRCC patients were subsequently stratified into two subgroups
based on four prognostically relevant Immune Checkpoint-Related
Genes (ICRGs). Our comparative analysis between these subgroups
identified 20 differentially expressed genes, such as SAA1. These
genes were primarily associated with organic anion transport, ion
transmembrane transport, vascular processes in the circulatory
system, ascorbic acid and glucuronic acid metabolism, and
interconversion of pentose and glucuronic acid. Xu et al.
demonstrated that SAA1 may serve as a novel marker for
predicting the prognosis of ccRCC patients and may also be
expressed in the tumor microenvironment (TME) through mast

cell resting and PDL1 expression. SAA1 holds potential as both a
therapeutic target and an indicator for immune and targeted
therapies in ccRCC treatment (Xu et al., 2023). Wei et al.
reported that SLC-related genes (e.g., genes such as SLC5A1,
SLC3A1, etc.) are correlated with predicting prognosis in ccRCC,
indicating their role in the immune environment, and suggesting
SLC-related genes as promising therapeutic targets (Bao et al., 2023;
Wang and Zou, 2020). Lai et al. demonstrated that ccRCC patients
with high SCGN expression may have a better prognosis. Their
results revealed that the percentage of SCGN high-expression in
primary foci of patients with metastatic renal cell carcinoma was
significantly lower than that of patients with limited renal cell
carcinoma (Lai et al., 2023). In a study by Gremel et al. (Gremel

FIGURE 9
Immune infiltration and immunophenoscore of ccRCC. (A)Heatmap depicting the scores of 22 immune cell types in high-risk and low-risk groups.
(B) Violin plot showing the abundance of 22 immune cell infiltrates in the high-risk and low-risk groups.(C) Box plot illustrating IPS expression in high-risk
and low-risk groups. (D) Heatmap displaying correlations between risk model genes, risk score, differential immune cells, and IPS.
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et al., 2017) ccRCC patients with CUBN-positive tumors had a
significantly better prognosis than patients with CUBN-negative
tumors, irrespective of T-stage, Fuhrman grade, and lymph node
status. Some investigators have proposed that KL serves as a valuable
immune-related prognostic factor for ccRCC, with its
downregulation in ccRCC tissues indicating disease progression
and shorter overall survival (Pan KH. et al., 2023).

There is evidence that immune cells within the tumor
microenvironment play a crucial role in renal carcinogenesis and
in the resistance to immune checkpoint inhibitors (Lai et al., 2021;
Pan Y. et al., 2023). In this study, we investigated the infiltration of
immune cells in high- and low-risk groups. The results identified ten
types of immune cells that exhibited significant differences between
these groups. Furthermore, correlation analysis revealed a
significant positive correlation between CD8 and ZAP70, as well
as a significant negative correlation between risk scores and
M2 macrophages. Additionally, it has been suggested that
CD8 T cells enhance cancer cell membrane permeability and
promote cell death (Raskov et al., 2021), and their high
infiltration has been associated with improved tumor therapy
outcomes (Nalio Ramos et al., 2022; Jiang et al., 2020). However,
in renal carcinoma, high levels of CD8 T cell infiltration are
correlated with poor prognosis (Qi et al., 2020), which aligns
with the findings of this study. This suggests that CD8 T cells
may have a specific role in the progression of renal cell carcinoma.
James et al. (James and Vale, 2012) elucidated that ZAP70 is critical
for T-cell receptor signaling, speculating that it may synergistically
influence the progression of renal cell carcinoma. Previous studies

have demonstrated that high permeability memory quiescent
CD4 T cells and M2 macrophages are associated with better
outcomes (Zhang et al., 2019). In contrast, M0 macrophages have
been linked to poor prognosis (Pan et al., 2020; Tao et al., 2021), and
the infiltration patterns of these immune cells in renal cell carcinoma
align with the findings presented here. M2 macrophages were highly
infiltrative in the low-risk group and showed a significant negative
correlation with the risk score, which contrasts with the MOST
results. The polarized state of macrophages may be associated with
regulatory T cells (Tregs), potentially leading to tumor immune
escape by hindering the function of CD4 T helper cells and the
production of tumor-specific CD8 cytotoxic T lymphocytes (CTLs)
(Li et al., 2020). Tregs can also diminish the efficacy of immune
checkpoint inhibitors (ICIs). Targeting CD8+ T cells shows promise
in enhancing anti-tumor immune responses, while modulating the
function of regulatory T cells (Tregs) can mitigate their suppressive
effects on the immune response. This dual approach may effectively
reverse tumor immune escape and enhance the clinical efficacy of
immunotherapy. The impact of the tumor immune
microenvironment on renal cell carcinoma arises from the
interactions of multiple immune cells and necessitates a
comprehensive analysis.

Finally, we analysed the correlations between risk scores and
center of inhibition values were analyzed for FDA-approved drugs
across 60 cell lines. The results indicated that 24 drugs were
significantly associated with the risk model (|cor| > 0.4 and p <
0.05), suggesting that high-risk individuals may exhibit increased
sensitivity to these drugs. However, it is important to note that there

FIGURE 10
Correlation analysis between chemotherapy efficacy and risk scores in ccRCC patients.
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are currently no established recommendations for chemotherapy in
advanced ccRCC. Nonetheless, we may explore this area in
the future.

In this study, we constructed a prognostic model for ccRCC
patients based on immune-related genes (ICRGs: EGFR, TRIB3,
ZAP70, CD4) using transcriptomic data from the TCGA and other
databases. This model has the potential to serve as a biomarker for
exploring the molecular mechanisms associated with ccRCC
prognosis. Additionally, it may facilitate early lesion identification,
subtype classification, and adjunctive non-invasive screening, offering
insights for future therapeutic strategies for ccRCC. However, this
study has several limitations. First, since the model validation in this
study primarily relies on public databases and has not been tested on
independent, private datasets, the generalizability of the findings may
be somewhat limited. In future research, we aim to increase the sample
size and conduct more comprehensive validation to improve the
statistical power and broader applicability of the results. Second,
although this study has identified several genes, their biological
functions in renal cancer cell lines have yet to be fully explored.
We plan to expand research in this area moving forward. In addition,
although we have conducted qRT-PCR experiments for experimental
validation, the limited sample size has been a constraint. Furthermore,
some studies have indicated that GAPDH expression may be elevated
in cancer samples (Mori et al., 2008). Therefore, in future studies, we
plan to not only increase the sample size but also explore more stable
reference genes, such as β-actin or 18S rRNA, to evaluate the
expression differences of prognosis-related DICRGs between
normal and disease samples. Our future goal is to strengthen the
model’s predictive and interpretative capacity by incorporating
additional clinical parameters, conducting meta-analyses to
integrate multiple datasets, and incorporating clinical variables. We
also intend to carry out histological analysis using our own data,
alongside immunohistochemistry, cell-based experiments, gene
editing, and other assays, to further validate and explore the
functional roles of prognostic genes, thereby deepening our
understanding of their underlying mechanisms. In summary, we
have developed a promising prognostic model for ccRCC patients
based on ICRGs using transcriptomic data from the TCGA database.
This preliminary study offers new insights into the treatment of
ccRCC and the investigation of molecular mechanisms associated
with its prognosis. However, the findings and conclusions of this study
warrant further exploration of potential mechanisms and molecular
validation.
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