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Background: Lung adenocarcinoma (LUAD) patients have high heterogeneity.
The significance and clinical value of M2 macrophage-related genes in LUAD
require further exploration. We aimed to construct a prognostic signature to
predict the immunotherapy efficacy and prognosis in LUAD.

Methods: GSE26939 and GSE19188 chips were downloaded from the Gene
Expression Omnibus (GEO). Weighted gene co-expression network analysis
(WGCNA) and least absolute shrinkage and selection operator (LASSO) analysis
were used to screen M2 macrophage-related prognostic genes. A signature
based on M2macrophage-related prognostic genes was established and used to
predict the prognosis and immunotherapy efficacy in LUAD.

Results: Twenty-two M2 macrophage-related genes associated with the
prognosis of LUAD were confirmed using WGCNA, and then two molecular
subtypes were identified with significantly different survival, gene expressions,
and clinic characteristics were classified. LASSO analysis identified nine
M2 macrophage-related prognostic genes to establish a risk signature,
classifying patients into low- and high-risk groups. Data indicated that low-
risk patients had better survival. Moreover, the signature was an independent
prognostic factor for LUAD and a potential biomarker for patients receiving
immunotherapy. Single-cell transcriptome analysis may provide important
information on molecular subtypes and heterogeneity.

Conclusion: Risk signature based on M2macrophage-related genes is a valuable
tool for predicting prognosis and immunotherapy response in patients
with LUAD.
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1 Introduction

Lung adenocarcinoma (LUAD) is the primary subtype of non-
small cell lung cancer (NSCLC), and accounts for more than 50% of
all NSCLC cases. The 5-year survival for patients with advanced
LUAD is lower than 20% (Asamura et al., 2023). In recent years, the
emergence of immune checkpoint inhibitors (ICIs) and targeted
drugs has completely changed the outcomes of advanced LUAD (Liu
et al., 2023; The Lancet, 2024). However, treatment
unresponsiveness and drug resistance are common, especially in
immunotherapy (Mogavero et al., 2023). The poor curative effects
largely stem from the complicated molecular features caused by the
high heterogeneity of LUAD. Therefore, the exploration of
meaningful “signatures” to predict the prognosis and assist the
management of LUAD is urgently needed.

Many clinical andmolecular factors influence the efficacy of ICIs
(Thummalapalli et al., 2023). Thus, exploration of cellular and
molecular mechanisms, thus assisting in achieving durable
responses to ICIs is essential. Tumor microenvironment (TME),
including tumor cells, immune cells, stromal cells, and extracellular
matrix (ECM), as well as driver genes and other genes, are involved
in the treatment response and prognosis in a variety of cancers
(Binnewies et al., 2018). At present, attention is focused on the
clinical significance of T cells in TME. KEYNOTE-028 trail revealed
that the T-cell-inflamed gene-expression profile (TcellinfGEP) could
predict response to pembrolizumab in 20 tumor types (Ott et al.,
2019), which was also demonstrated in advanced NSCLC in
KEYNOTE-494/KeyImPaCT trail (Gutierrez et al., 2023). Of
note, other immune cells, like cancer-associated fibroblast (CAF)
and tumor-associated macrophages (TAM), were also reported to be
closely associated with the development of NSCLC (Cords et al.,
2024; Zhang et al., 2023). However, the values of TAM in LUAD are
still unclear in clinical practice since TAM was supposed to be a
double-edged sword in the TME.

Macrophages can be polarized into M1 and M2 types under
different microenvironments and stimulators (Funes et al., 2018).
The function of TAM is similar to M2-like macrophages in cancers
(Sarode et al., 2020; Sumitomo et al., 2019; Xu et al., 2020).
M2 TAMs can promote cancer proliferation, invasion, migration,
angiogenesis, and multidrug resistance. More importantly, TAMs
can inhibit the activation and aggregation of immune cells by
secreting cytokines and chemokines, establishing suppressive
TME. Therefore, in-depth research on the role of
M2 macrophage in LUAD and the construction of a prognostic
signature associated with M2 macrophage are necessary.

In this study, we sought to screen an M2 macrophage-related
signature and to predict the prognosis and immunotherapy efficacy
of LUAD patients. We found that an M2 macrophage-related
signature based on characteristic genes was a novel biomarker in
the management of LUAD.

2 Materials and methods

2.1 Data resource

The GSE26939, GSE31210, GSE19188, and GSE135222 were
downloaded from the GEO database (https://ncbi.nlm.nih.gov/geo/).

The immune-related profiles of LUAD were downloaded from the
InnateDB database (https://www.innatedb.ca/) and Immort database
(https://www.immport.org). Immunotherapy cohorts IMvigor210 and
GSE93157 were included for analysis of immune therapy response
(Bhattacharya et al., 2018; Breuer et al., 2013).

2.2 Acquisition of M2 macrophage-
related genes

We analyzed immune-related genes using the Weighted Gene
Co-expression Network Analysis (WGCNA), and then
constructed the network by one-step method to obtain the
module genes that were most related to M2 macrophage. The
module genes that were most related to M2 macrophages were
identified as M2 macrophage-related hub genes. Then, univariate
Cox regression analysis was carried out to confirm
M2 macrophage-related prognostic genes. Prognostic genes
with p < 0.05 were finally enrolled.

2.3 Functional enrichment

Using the “clusterprofiler” package, Gene Ontology (GO)
analysis was performed on prognostic feature genes, categorizing
GO functions into three parts: Cellular Component (CC), Molecular
Function (MF), and Biological Process (BP). Additionally, the Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analysis
was conducted, with significance set at p < 0.05 for enrichment.

2.4 Genotyping based on
characteristic genes

The “ConsensusClusterPlus” package was used to conduct
consistency cluster analysis. The overall slope of the curve shows
the smallest decline when K is 2, leading to the classification of
patients in GSE26939 into two molecular subtypes. Then,
differentially expressed genes (DEG) between two subtypes were
confirmed by the “limma” package. Those genes with adj.p <
0.05 and |logFC| > 1.5 were regarded as DEGs.

2.5 Construction of M2macrophage-related
prognostic signature

We developed a risk model based on M2 macrophage-related
genes using the machine learning algorithm known as least absolute
shrinkage and selection operator (LASSO) regression. The risk score
model was constructed by the following formula:

Risk score � ∑Coefi *Expr i

“Expr”was the expression value of signature genes in the model, and
“Coef” was the regression coefficient. Then, patients were divided
into high- and low-risk groups according to the optimal cutoff of
risk score of all LAUD samples. Kaplan-Meier survival curves and
area under curve (AUC) were used to verify the performance of the
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signature. Univariate and multivariate Cox were used to verify the
performance of the prognostic signature.

2.6 Analyses of clinical characteristics,
immune cells, and immunotherapy

To further explore the role of the risk signature in the immune
microenvironment. Based on the core algorithm of CIBERSORT
(CIBERSORT.R script analysis), we utilized the markers of
22 immune cell types provided by the CIBERSORTx website
(https://cibersortx.stanford.edu/) to compute the immune
infiltration between high- and low-risk groups. Moreover,
ImmuneScore, StromalScore, and EstimateScore were analyzed by
the “ESTIMATE” package.

2.7 Single-cell transcriptome
database analysis

The single-cell transcriptome profile (GSE131907)
downloaded from the Gene Expression Omnibus (GEO)
database, including 15 lung cancer samples, was selected for
subsequent analyses.

Firstly, quality control of single-cell profiles was done by Seurat
(v4.1.0). The quality control standards were as follows: (1) Each gene
was detected in more than 3 cells. (2) Features of each cell were
between 500 and 6,000, with 1,000–20,000 counts. (3) The
percentage of mitochondrial genes and erythrocytes gene
expression was less than 20%. We use the “NormalizeData”
function for normalization and the “FindVariableFeatures”
function for identifying hypervariable genes, which were with
0.1–3 average expression value and more than 0.5 dispersion.
Batch correction between samples was performed by the
“harmony” package. Principal component analysis (PCA) was
used for dimensionality reduction, and the first 50 principal
components were selected for downstream analysis. The
t-distributed stochastic neighbor embedding (tSNE) algorithm
was used for visualization.

The top 50 principal components with 0.2 resolution were used
to identify subpopulations of tumor cells. The “FindAllMarkers”
function was used to identify feature genes, and each model
contained 10 genes. Cellscore was calculated by the
“AddModuleScore” algorithm. The malignant epithelial cells were
divided into high- and low-groups according to the middle value of
Cellscore. The “Monocle2” package was used to analyze the single
trajectory.

2.8 Statistical analyses

All the above statistical analysis was computed by R software
(version 4.2.1, https://www.r-project.org/). P-value < 0.05 (two-
sided) was used as the statistically significant threshold. The
survival difference between the two groups was analyzed by
Kaplan‒Meier analysis. Other statistical methods and
algorithms used in this article are described in the
corresponding steps.

3 Results

3.1 Screening of macrophage subtypes
in LUAD

The workflow of the study is shown in Figure 1. Immune cells
were divided into three different clusters, and we evaluated the
correlation of various immune cells using correlation analysis
(Figure 2A). Macrophages are a significant constituent part of
TME. To confirm the relationships between macrophages and
survival in patients with LUAD, patients were divided into high-
and low-macrophage groups based on macrophage infiltration level.
Survival analysis suggests that patients in the high M2 group have a
worse prognosis, while those in the high M1 group have a better
prognosis (Figure 2B). Therefore, the M2 macrophage was chosen
for further exploration.

3.2 Screening of M2 macrophage-related
hub genes

Then, WGCNA was used to identify M2 macrophage-related
genes in LUAD. Using the InnateDB and Immort databases,
1836 immune-related genes were obtained from the
GSE26939 database (Figure 2C). Seven modules were identified
by WGCNA, and the brown module was significantly associated
withM2macrophage (Figure 2D). Thus, 108 hub genes in the brown
module were selected for further analysis (Figure 2E;
Supplementary Table S1).

3.3 Screening for M2 macrophage-related
prognostic genes

To address the critical genes involved in the biological function
of M2 macrophage, univariate Cox regression analysis was
conducted. Twenty-two genes among 108 hub genes associated
with the prognosis of LUAD were confirmed by univariate
analysis. Except for BMP1 (bone morphogenetic protein 1), the
remaining 21 genes were considered favorable factors in LUAD
(Figure 3A). GO (Gene Ontology) analyses showed that the above
22 prognostic genes were significantly enriched in the activation of
the immune response, immune response−activating signaling
pathway, immune receptor activity, etc (Figures 3B–D). Similarly,
Immune-related pathways, like B cell and T cell receptor signaling
pathways, were significantly enriched in KEGG (Kyoto
Encyclopedia of Genes and Genomes) analyses (Figure 3E).

3.4 Molecular subtypes of LUAD

As we know, LUAD is full of heterogeneity. To better identify the
different populations, patients with LUAD were classified into two
molecular subtypes in the GSE26939 database by consistent cluster
analysis (Figures 4A, B). There was a significant difference in
survival outcomes between the two clusters (p = 0.0025)
(Figure 4C), with different gene expressions, clinic characteristics,
and profile of subtype correctness (Figures 4D, E).
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Then, differentially expressed genes (DEGs) between these two
clusters were analyzed. There were 772 DEGs identified, with
75 down-regulated DEGs and 697 up-regulated DEGs. GO and
KEGG analysis revealed that activation of immune response and
interaction of cytokine-cytokine receptors were significantly
enriched (Figures 5A–D). The top 5 inhibition and activation

pathways were also shown by Gene Set Enrichment Analysis
(GSEA) (Figures 5E, F).

Interestingly, immune cells, including M2 macrophage, resting
CD4memory T cells, regulatory T cells, activated NK cells, and mast
cells, were lower in cluster 2, indicating a favorable prognosis
(Figures 5G, H).

FIGURE 1
Complete workflow of our research. “n” denotes sample size. “p < 0.05” denotes the statistically significant threshold.
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3.5 Construction of an M2 macrophage-
related prognostic signature

To explore a simple and reliable therapy strategy, a risk
prognostic model was constructed based on the
22 M2 macrophage-related prognostic genes. Nine genes were
confirmed by LASSO regression analysis in GSE26939 (Figures
6A, B). The coefficient of each gene in the model is shown in
Figure 6C. We divided the patients into high-risk and low-risk
groups based on the median risk score (Figure 6D). Patients with
LUAD in the low-risk group had longer overall survival (OS) than in
the high-risk group (p < 0.0001) (Figure 6E). ROC curves were
plotted to estimate the performance of the risk model. The AUC
value of ROC curves at 1, 3, and 5 years was 0.787, 0.699, and 0.776,
respectively, indicating this signature scoring system had a good
predictive performance (Figure 6F). The univariate and multivariate
analyses showed that the signature based on risk score was an
independent prognostic factor in LUAD (Figures 6G, H). Moreover,
the verification gene sets (GSE31210 and GSE68165) further

demonstrated that the patients with the low-risk had superior
survival than the high-risk group (Figures 6I, J).

Further subgroup analysis suggested that the low-risk group
aged over 60 years old and stage Ⅰ-Ⅱ had longer survival than the
high-risk group, regardless of sex in GSE26939 (Figures 7A–F). No
significant survival differences were found regarding tumor stage
Ⅲ-Ⅳ, age of ≤60.

3.6 Relationships between risk signature and
immunotherapy response

Since infiltrating immune cells varies in the different molecular
subtypes and risk score groups, we wonder if the signature was
associated with immunotherapy response. Our data revealed that the
high-risk group had lower stromal score and immune score, but
higher Tumor Purity, indicating patients with low-risk group had
better effects of immunotherapy (Figure 7G). Then, the
GSE93157 database, including NSCLC patients receiving PD1-

FIGURE 2
Screening of macrophage subtypes in LUAD. (A) Network diagram of infiltrating immune cells in lung adenocarcinoma samples. (B) Comparison of
survival between high or low M0, M1, and M2 macrophage in GSE26939 (upper column) and GSE19188 databases (lower column). (C) Hierarchical
clustering tree view by weighted gene co-expression network analysis. (D) Heat map of module phenotypic correlation. (E) Internal gene scatter map in
brown module.
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targeting antibodies pembrolizumab or nivolumab, and the
IMvigor210 database, including metastatic urothelial carcinoma
patients receiving PD-L1-targeting antibodies atezolizumab were
used. The results showed that the patients with low risk had better
immunotherapy efficacy compared to the high-risk group (Figures
7H, K).While the risk was not associated with the response rate (CR/
PR) and nonresponse rate (SD/PD) (Figures 7I, J, L–M). Taken
together, our data suggest that the signature was a potential
biomarker for NSCLC patients receiving immunotherapy.

3.7 Single-cell transcriptome
database analysis

Fifteen primary lung cancer samples in the single-cell
transcriptome profiles (GSE131907) were selected for analysis.
After quality control, 27,578 genes within 51,935 cells were
obtained. PCA (principle component analysis) results showed
significant batch effects among samples (Figures 8A, B). After
using Harmony to remove batch effects between samples (Figures
8C, D), UMAP (Uniform Manifold Approximation and Projection)
showed seven major cell types, composed of B lymphocytes,
endothelial cells, epithelial cells, fibroblasts, MAST cells, myeloid
cells, and T/NK cells (Figure 8E). The proportion of cells in each
sample was heterogeneous (Figure 8F).

In this study, four different lung cancer subtypes were identified
were defined: sftpa1+mal, c15orf48+mal, cxcr4+mal, and top2a +

mal, according to the high expression genes of each subtype (Figures
9A, B). Based on FindAllMarkers, the top 5 characteristic genes of
each subtype were identified (Figure 9C). Sftpa1+mal over-
expressed sftpa1, sftpa2, sftpc, and other genes, and these genes
were significantly enriched in biological processes such as MHC
complex assembly, antigen treatment, and presentation by GO and
KEEP analysis (Supplementary Figure S1). C15orf48+mal highly
expressed c15orf48, IGFBP3, S100A4, and other genes, which were
significantly enriched in the regulation of cell morphogenesis, cell-
matrix adhesion, and other biological processes (Supplementary
Figure S2). Cxcr4+mal highly expressed SRGN, CXCR4, CD52, and
other genes, which were significantly enriched in the regulation of
T cell activation, T cell receptor signaling pathway, and lymphocyte
differentiation (Supplementary Figure S3). Top2a + mal highly
expressed cell cycle marker TOP2A, significantly enriched in the
cell cycle, nucleus division, and DNA replication, suggesting that the
tumor was in an active cell proliferation state
(Supplementary Figure S4).

To further distinguish lung cancer lineages at the single-cell
level, lung cancer was divided into high- and low-cell groups
according to cell scores (Figure 9D). Our data revealed that
subtypes of sftpa1+mal and cxcr4+mal had higher cell scores,
suggesting those two subtypes had more malignant character
(Figure 9E). According to cell scores, malignant epithelial cells
were divided into high- and low-cell groups (Figures 9F, G). In
addition, DEGs of the high- and low-cell groups indicated that
DEGs were significantly enriched in tumor immune-related

FIGURE 3
Screening of M2 macrophage-related hub genes. (A) Univariate Cox analysis of 22 prognostic genes in lung adenocarcinoma. (B–E) Pathways
enriched by Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses based on 22 prognostic genes. Biological
process (BP), molecular function (MF), and cellular component.
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processes, such as regulation of peptidase activity, humoral immune
response, assembly of MHC class Ⅱ protein complexes, antigen
processing, and presentation (Supplementary Figure S5).

Then developmental trajectories were constructed, and three
differentiation states were obtained (Figures 10A–C). The
developmental trajectory of subtypes in state 1 to state 3 was
relatively uniform. In the state 1 to state 2 developmental
trajectories, the c15orf48+mal subtype was in the early or middle
stage of cell differentiation, and the sftpa1+mal subtype was in the
late stage of cell differentiation (Figure 10D). In these two
developmental trajectories, the cell scores and the high-cell
groups were increased, suggesting the malignant degree is rising
(Figures 10E, F).

4 Discussion

Over the years, immunotherapy has significantly improved
survival in LUAD without driver genes. PD-L1 expression is a
currently recognized and strongly recommended tumor marker
(Dora et al., 2023; Doroshow et al., 2021; Sanchez-Magraner

et al., 2023), however, it is an imperfect biomarker. Other
biomarkers, such as neoantigens, genetic, epigenetic signatures,
microbiome composition, and factors in TME, are also used to
predict immunotherapy response and prognosis in LUAD (Mino-
Kenudson et al., 2022). ICIs aim to enhance the anti-tumor effect by
activating effector T cells in TME, which involves immune escape
and tumor progression by immunosuppressive cells and molecules
(Binnewies et al., 2018; Cristescu et al., 2018). However, biomarkers
are lacking to predict the efficacy of ICIs in clinical practice in TME.
Macrophages are the most common immune cells in TME. Our
study demonstrated that M2 macrophages were an unfavorable
factor for patients with LUAD, and the signature based on
M2 macrophages was a promising biomarker to predict the
survival and immunotherapy response in LUAD. Single-cell
transcriptome analysis is a useful tool to predict molecular
heterogeneity and give a highlight to a more precise classification
of lung cancer.

Other macrophage-related prognostic models to guide the
management of LUAD were also reported (Li et al., 2023; Xiang
et al., 2024; Zhu et al., 2022). Li et al. constructed a macrophage-
related index for predicting prognosis and immunotherapy response

FIGURE 4
Molecular subtypes based on M2 macrophage-related prognostic genes. (A) Matrix heat map when k = 2. (B) Consistent cumulative distribution
function (CDF) diagram, which shows the cumulative distribution function when k takes different values. (C) Survival curve between subtypes in
GSE26939. (D) Heat map of correlation between subtypes and clinical features. (E) Profile of subtype correctness.
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based on 22 genes using 10 machine-learning algorithms (Li et al.,
2023). Xiang et al. built a novel gene signature of 12 differentially
expressed genes and identified TRIM28 as a potential biomarker for
treatmenting LUAD (Xiang et al., 2024). In contrast to those studies,
we used less macrophage-related genes and had higher AUC values
of ROC curves at 1 and 5 years. Besides, we also provide single-cell
transcriptome analysis to address the molecular subtypes and
heterogeneity in LUAD, which could be helpful in risk
stratification. Of note, the genes were diverse between these three
studies, as the database and research methods were different.
Moreover, key genes in the tumor microenvironment affecting
the development and immunotherapy efficacy of LUAD need
further validation.

M1/M2 polarization is dynamic to adapt tumor progression
(Yang and Zhang, 2017). Emerging reports have shown a positive
correlation between macrophage density and poor survival
(Festekdjian and Bonavida, 2024). Consistent with the reports,
we found that patients with high-M2 macrophage had worse
prognosis compared to those patients with low-M2 macrophage.
The underlying mechanisms lie in that cancer cells can secrete
cytokines, such as IL10, IL12, IL 6, and TNF, facilitating M2-like
polarization, then exerting immunosuppressive effects, and
finally accelerating cancer progression (Sarode et al., 2020). In
lung cancer, transforming growth factor beta (TGF-β), IL-10,
cytokines, and chemokines released by M2 macrophages can
promote tumor growth and infiltration (Wang et al., 2019;

FIGURE 5
Pathways enrichment and immune cells between molecular subtypes. (A–D) The top 20 pathways enriched by Gene Ontology (GO) analysis and
Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis based on differentially expressed genes (DEGs) between molecular subtypes. Biological
process (BP), molecular function (MF), and cellular component. (E) The top 5 inhibition and activation (F) pathways enriched by Gene Set Enrichment
Analysis (GSEA). (G, H) Different expression of immune cells between molecular subtypes.

Frontiers in Genetics frontiersin.org08

Li et al. 10.3389/fgene.2025.1519677

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1519677


Yang et al., 2019). In addition, M2 macrophages (CD163+) could
promote angiogenesis by releasing angiogenic growth factors
such as vascular endothelial growth factor A (VEGF-A) and
VEGF-C in NSCLC (Hwang et al., 2020). However, LUAD has
great heterogeneity, especially in patients with different driver
genes, which may affect the roles of macrophages. Therefore,
more research is needed to explore the potential mechanisms and
clinical implications.

Nine macrophage-related prognostic genes (TLR10, PSTPIP1,
FYN, IL22RA2, LY9, CD79B, BMP1, TNFRSF13C, ICOS) were
screened for construction of prognostic signature in LUAD.
Nishikawa S et al. found phosphorylated FYN expression was
associated with poor relapse-free survival and overall survival in
patients with LUAD after lung resection (Nishikawa et al., 2019). In
line with FYN, LUAD patients with high expression of TNFRSF13C

(BAFFR) had worse survival (Dimitrakopoulos et al., 2019).
Rochigneux P reported that inducible T-cell co-stimulator
(ICOS)+ CD4+ T cells were closely associated with better survival
for patients receiving pembrolizumab in NSCLC (Rochigneux et al.,
2022). Moreover, Wu G et al. suggested that ICOS was closely
correlated with poor outcomes in multiple cancers, especially
LUAD, and was a good biomarker of OS in LUAD (Wu et al.,
2022). Our data suggested that BMP1 plays the opposite role
compared to the other eight genes in the prognostic signature. X
Wu reported that downregulation of BMP1 leads to suppression of
TGFβ and matrix metalloproteinases 2 (MMP2) and MMP9, and
finally decreased tumor invasion in NSCLC (Wu et al., 2014). In
addition, different BMP1 isoforms may impact NSCLC disease
progression (Donovan et al., 2023), however, insights into the
mechanisms remain unclear.

FIGURE 6
Using lasso regression analysis to construct the risk signature. (A) Lasso coefficient distribution of 22 M2macrophage-related prognostic genes. (B)
Tuning parameter (λ) selection cross-validation error curve. Vertical lines were drawn at the optimal values. (C) Regression coefficient corresponding to
the 9 M2macrophage-related prognostic genes screened. A larger absolute value of the coefficient represents a higher correlation. (D) Survival status of
patients with high- and low-risk scores. (E) Survival curves for LUADs with high- and low-risk scores. (F) Receiver operating characteristic (ROC)
curves for 1-, 3- and 5-year overall survival in LUAD cohort. (G) Univariate and multivariate (H) analyses of clinical features and risk signature. (I, J)
Validation of the risk signature in the database of GSE31210 and GSE68165 with high- or low-risk scores.
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The association between DEGs and M2 macrophages is worthy
of attention and research because some of these macrophage-related
prognostic genes were significantly related to immune response. IL-
22RA2 was closely associated with macrophage effector mechanisms
in experimental neuroinflammation (Beyeen et al., 2010). ICOS-
mediated ICOS ligand triggering modulates the activity of human

M1 and M2 cells, eliciting an overall anti-inflammatory effect
(Gigliotti et al., 2023). Interestingly, the cytoskeletal adaptor
PSTPIP1 controls extracellular matrix degradation and filopodia
formation in macrophages, suggesting a potential target for
therapeutic strategy in autoinflammatory disease (Ishiguro et al.,
2020). The CD79b-directed antibody drug conjugate (ADC)

FIGURE 7
Relationships between risk score and clinical features and immune response. (A–F) Survival difference between age, sex, and clinical stage of the
high- or low-risk score groups. (G) Correlation analysis between risk score and stromal score, immune score, and tumor Purity. (H, K) Kaplan–Meier
curves of overall survival time of the high- and low-risk score groups in the metastatic non-small cell lung cancer (NSCLC) sample and in the metastatic
urothelial carcinoma (mUC) sample. (I, L) Correlations of response (complete response/partial response) and nonresponse (stable disease/
progressive disease) to immunotherapy in different risk score groups. (J, M) Relative percent of response and nonresponse to immunotherapy in the
high- or low-risk score groups in the metastatic NSCLC sample and the mUC sample. Not significant.
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FIGURE 8
Microenvironment cell landscape. (A) ElbowPlot of principal component analysis (PCA). (B) PCA of 15 lung cancer samples. (C) Sample cell
distribution before de-batch effect. (D) Sample cell distribution after de-batch effect. (E) t-Distributed Stochastic Neighbor Embedding (tSNE) distribution
of different cell types. (F) Percentage of cell types.

FIGURE 9
Identification of tumor cell subsets. (A) Distribution of each cell subgroup. (B) t-Distributed Stochastic Neighbor Embedding (tSNE) map of highly
expressed genes. (C) Bubble map of the top 5 characteristic gene expressions in each subgroup. (D) tSNE map of cellscore. (E) Violin distribution map of
different cell subsets of cellscore. (F) tSNE map of high or low cellgroup. (G) The proportion of high or low cellgroup in different subgroups.
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polatuzumab vedotin targets macrophages in follicular lymphoma
(Gordon et al., 2023). Altogether, more basic research and
translational clinical studies are needed to confirm the above studies.

ICIs have demonstrated improved OS compared with
chemotherapy in non-oncogene-addicted metastatic NSCLC
(Hendriks et al., 2023), while immunotherapy biomarkers are
lacking. Our study revealed that the signature based on
M2 macrophage-related prognostic genes was a potential biomarker
for NSCLC patients receiving immunotherapy. Our study found that
patients with high risk tended to have a “cold” tumor phenotype, with a
lower proportion of activated T cells and a higher proportion of
M2 macrophage, indicating poor response to immunotherapy. Thus,
integral evaluation of Tumor microenvironment, including
M2 macrophage and PD-L1, is essential before immunotherapy in
lung cancer. Of note, Mechanical studies are also necessary.
M2 macrophages could release immunosuppressive cytokines in
tumors to weaken the function of T cells, leading to an
immunosuppressive TME (Bui and Bonavida, 2024). However, the
relationships between the efficacy of ICIs and different subtypes of
M2macrophages were unclear. Yamaguchi, Y et al. reported that PD-L1
blockade could restore CAR T cell activity through IFN-gamma-
regulation of CD163+ M2 macrophages, suggesting the potential
value of the combination of CAR T cells and ICIs in solid tumors
to enhance therapeutic efficacy (Yamaguchi et al., 2022). Besides, the
interaction and mechanism between PD-L1 expression and
M2 macrophages are worthy of further study, which could provide
a promising strategy in cancer immunotherapy (Zhao et al., 2024).
More importantly, the signature needs to be confirmed in multicenter
clinical trials.

Single-cell sequencing analysis is being more and more used in
exploring the heterogeneity of tumor cells in TME. Lung cancer is a
solid tumor originating from malignant epithelial cells. So, we
constructed a prognostic model, aiming to analyze the model at

the single-cell level. The malignant epithelial cells were divided into
high- and low-cell groups based on the model score, and the pseudo
temporal analysis showed that the cell subgroups with high scores
were located at the end of the differentiation trajectory. The higher
degree of the epithelial malignancy cells in the late stage of
differentiation, the worse the prognosis of the LUAD patient may
be, which coincides with the model score. Besides, our data found
that subtypes of sftpa1+mal and cxcr4+mal in LUAD were with
worse biological behavior. Of note, the result was different in other
studies. Sorin M et al. reported that TAMwas the most common cell
in LUAD patients, accounting for 34.1% of immune cells, and
CD163+ TAM (M2-like) was the most invasive structure (Sorin
et al., 2023). Thus, basic, and translational research were wanted in
the future.

This study has some limitations worth mentioning. Firstly, in
vivo, and in vitro validation were lacking to explore the underlying
mechanisms of immune efficacy affected by M2macrophage-related
prognostic genes in LUAD. And the key gene involved in regulating
the immunotherapy response should also be addressed. Secondly,
relationships between driving genes (EGFR and ALK) and
M2 macrophage-associated immune response in LUAD were not
further analyzed. Last, the clinical significance of different lung
cancer subtypes of single cell sequencing in managing
immunotherapy remains explored.

5 Conclusion

In summary, M2macrophages were significantly associated with
worse survival in LUAD. A risk signature based onM2macrophage-
related genes was a promising independent prognostic factor for
patients with LUAD. More importantly, the signature was a
potential biomarker for NSCLC patients receiving

FIGURE 10
Trajectory analysis of malignant epithelial cells. (A) Trajectory distribution of state. (B) Trajectory distribution of cellscore. (C) Violin distribution of
cellscore in different states. (D) Trajectory distribution of subsets. (E) Trajectory distribution of cellgroup. (F) Proportion of cellgroup in different state.
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immunotherapy. Single-cell transcriptome analysis was a valuable
tool for defining molecular subtypes and malignant degree. In the
further, the necessity for more extensive translational research on
M2 macrophage or M2 macrophage-related genes was needed to
enable individual therapies for patients with LUAD.
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