![Man ultramarathon runner in the mountains he trains at sunset](https://d2csxpduxe849s.cloudfront.net/media/E32629C6-9347-4F84-81FEAEF7BFA342B3/0B4B1380-42EB-4FD5-9D7E2DBC603E79F8/webimage-C4875379-1478-416F-B03DF68FE3D8DBB5.png)
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Genet.
Sec. Genetics of Common and Rare Diseases
Volume 16 - 2025 | doi: 10.3389/fgene.2025.1519108
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
High altitude polycythemia (HAPC) is a disease with high morbidity and great harm in high altitude populations. It has been shown that Single Nucleotide Polymorphisms (SNPs) correlate with the genetic basis of adaptation to plateau hypoxia in Tibetan populations. The EPAS1 and PPARA genes are involved in hypoxia adaptation by encoding transcription factors in Tibetan populations at high altitude.The aim of this study was to investigate the association of EPAS1 and PPARA gene locus polymorphisms with genetic susceptibility to HAPC in the Chinese Tibetan population. We included 78 HAPC patients and 84 healthy controls, and genotyped the EPAS1 gene SNP loci (rs6735530, rs6756667, rs7583392, and rs12467821) and PPARA rs6520015 by using TaqMan polymerase chain reaction. Logistic regression was used to analyze the association between these SNPs and HAPC; interactions between SNPs were also predicted by multifactorial dimensionality reduction (MDR) analysis. We found that the PPARA rs6520015 polymorphism was not associated with the risk of HAPC in the Chinese Tibetan population; EPAS1 rs6735530, rs6756667, rs7583392, and rs12467821 increased the risk of HAPC in some models. Haplotype TCAGC decreases the risk of HAPC;Haplotype TTGAT increases the risk of HAPC; and EPAS1 rs7583392 is in complete linkage disequilibrium with rs12467821. The best prediction model was the EPAS1 rs6756667 unit point model, but the P value was greater than 0.05 in all three models, which was not statistically significant. In conclusion, the present findings suggest that among the Tibetan population in China, There is an association between EPAS1 rs6735530, rs6756667, rs7583392, and rs12467821 and the risk of HAPC, and that there is no significant correlation between PPARA rs6520015 and the risk of HAPC.
Keywords: EPAS1, PPARA, High altitude polycythemia, Single nucleotide polymorphisms, Tibetans
Received: 30 Oct 2024; Accepted: 13 Feb 2025.
Copyright: © 2025 Chen, Dong, Zeng, Xu, Zhang, Dan and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Guangming Wang, Dali University, Dali, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.