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Objective: To investigate the roles of oxidative stress-related differentially
expressed genes (OSRDEGs) in keloid formation and explore their potential
value in diagnosis and treatment.

Methods: Gene expression data from the GEO database, including
GSE145725 and GSE44270 as training sets and GSE7890 as a validation set,
were utilized. OSRDEGs were identified, followed by Weighted Gene Co-
expression Network Analysis (WGCNA), GO/KEGG enrichment analysis, and
Gene Set Enrichment Analysis (GSEA). Key genes were further screened
through protein-protein interaction (PPI) network analysis and receiver
operating characteristic (ROC) curve analysis. miRNA targets, transcription
factors (TF), and potential drug targets of these genes were predicted.
Immune cell infiltration analysis was performed to assess the association
between OSRDEGs and immune cells, which was validated using GSE7890.
Finally, the expression of key genes was experimentally validated using
quantitative PCR (qPCR), immunohistochemistry (IHC), and hematoxylin-eosin
(HE) staining.

Results: A total of 13 OSRDEGs were identified. WGCNA and functional
enrichment analyses revealed that these genes were primarily involved in
fibrosis and inflammatory processes in keloids, such as the MAPK signaling
pathway, lymphocyte and monocyte proliferation, and inflammatory pathways
involving IL-18 and IL-23. PPI network analysis, ROC analysis, and immune
infiltration results identified Endothelin-1 (EDN1) and Neurotrophin-3(NTF3) as
key genes with high sensitivity and specificity. These genes were positively and
negatively correlated with activated mast cells, respectively, suggesting their dual
regulatory roles in fibrosis and inflammation. External dataset validation, qPCR,
correlation analysis, HE staining, and IHC results demonstrated that EDN1 and
NTF3 were highly expressed in keloid tissues and were associated with excessive
collagen deposition and immune cell infiltration.

Conclusion: EDN1 and NTF3, as OSRDEGs, play critical roles in the pathogenesis
and progression of keloids. They may contribute to fibrosis and inflammation
through the regulation of oxidative stress, the MAPK signaling pathway, and mast
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cell activation. These findings highlight EDN1 and NTF3 as potential diagnostic
biomarkers and therapeutic targets, providing novel insights into the pathogenesis
and treatment strategies for keloids.
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keloid formation, oxidative stress, fibrosis, inflammation, immune response, MAPK,
EDN1, NTF3

1 Introduction

Keloid is a typical fibroproliferative skin disorder characterized
by excessive scar tissue formation that extends beyond the original
wound boundary, causing persistent itching, pain, and cosmetic
disfigurement, which severely impacts patients’ quality of life
(Ogawa, 2017). Pathologically, keloids are often associated with a
dual pathology of chronic inflammation and excessive fibrosis (Shih
et al., 2010). On the one hand, fibroblasts are persistently activated,
synthesizing and depositing extracellular matrix (ECM)
components such as collagen, resulting in significant thickening
of the dermis (Darby et al., 2014). On the other hand, immune cells
such as macrophages, mast cells, and T lymphocytes excessively
infiltrate the keloid tissue, releasing inflammatory cytokines that
exacerbate disease progression (Shih et al., 2010). However, there is
ongoing debate regarding whether fibrosis and inflammation are
primary pathological drivers of keloid formation or secondary
effects of upstream genetic or signaling disruptions (Jiang and
Rinkevich, 2020). Given the significant ethnic differences and
genetic predispositions in keloid formation, as well as the lack of
ideal animal models, elucidating its precise pathogenic mechanisms
remains challenging (Nakashima et al., 2010).

In recent years, OSRDEGs have been increasingly recognized for
their roles in various fibrosis-related diseases and skin pathologies
(Antar et al., 2023). For example, systemic sclerosis (SSc) is a systemic
fibrotic disease characterized by extensive fibrosis of the skin and
internal organs (Allanore et al., 2015). Studies have shown that
overexpression of OSRDEG NOX4, which encodes NADPH
oxidase responsible for reactive oxygen species (ROS) production,
plays a critical role in the pathogenesis of SSc (Hecker and Thannickal,
2011). Excessive ROS disrupts intracellular antioxidant balance,
causing direct damage to lipids, proteins, and DNA, ultimately
leading to cellular dysfunction (Forman et al., 2009). Furthermore,
ROS can activate the TGF-β signaling pathway and promote fibroblast
proliferation and collagen deposition through SMAD3 regulation
(Miyazono, 2000). Therefore, OSRDEGs exacerbate fibrosis in SSc
by both directly damaging cells via excessive ROS production and
activating fibrotic signaling pathways, leading to widespread tissue
fibrosis (Hecker et al., 2014). In idiopathic pulmonary fibrosis (IPF),
Armanios et al. demonstrated that mutations in TERC and TERT
genes lead to telomere shortening, triggering cellular senescence
(Armanios and Blackburn, 2012). Senescent cells with impaired
antioxidant defenses are more susceptible to oxidative stress-
induced damage (Kuilman et al., 2010). The combined effects of
telomere shortening and oxidative stress drive chronic inflammation
and fibrosis, resulting in excessive fibroblast proliferation, abnormal
ECM accumulation, and irreversible pulmonary fibrosis (Alder et al.,
2011). Additionally, excessive oxidative stress disrupts various stages
of wound healing, leading to chronic wounds (Schäfer and Werner,

2008). Oxidative stress elevates intracellular ROS levels, impairing
mitochondrial function and energy metabolism, and directly inhibits
fibroblast proliferation and migration (Kim and Choi, 2010). ROS can
also oxidize DNA and proteins, causing cell cycle arrest at the G1/S
phase, thereby delaying wound repair (Sundaresan et al., 2012).
Moreover, ROS further enhances inflammatory responses by
activating inflammation-related pathways, such as NF-κB,
ultimately impeding wound healing (Morgan and Liu, 2011).

OSRDEGs have been shown to be closely associated with fibrosis
and inflammation in these diseases, particularly through their ability
to regulate immune cell function and ECM deposition (Hecker et al.,
2014). Systemic fibrotic diseases and keloids share notable
pathological similarities, both characterized by persistent fibrosis
and chronic inflammation (Hinz, 2007). Therefore, we hypothesize
that OSRDEGs may also contribute to keloid formation through
similar mechanisms, potentially driven by oxidative stress. However,
the specific roles and molecular mechanisms of OSRDEGs in keloid
pathology remain poorly understood. This study aims to uncover the
critical roles of OSRDEGs in keloid pathogenesis through a
combination of bioinformatics analysis and experimental
validation. The specific objectives include: (1) identifying
OSRDEGs that are significantly differentially expressed in keloid
tissues; (2) investigating the key signaling pathways and molecular
mechanisms by which these genes regulate fibrosis and inflammatory
responses in keloids; and (3) evaluating the clinical utility of key
OSRDEGs as potential diagnostic biomarkers and therapeutic targets
for keloids. By integrating bioinformatics analysis with experimental
validation, this innovative research strategy avoids the limitations of
relying solely on a single approach, providing novel insights into the
regulatory mechanisms and clinical potential of OSRDEGs.

2 Materials and methods

2.1 Acquisition of data

Gene expression profiles from keloid patients were obtained
from the Gene Expression Omnibus (GEO) database (http://www.
ncbi.nlm.nih.gov/geo) using datasets GSE145725 and GSE44270,
both derived from Homo sapiens. GSE145725 includes microarray
data from skin and scar tissues, comprising 19 samples: 9 keloid
fibroblast samples (Keloid group) and 10 normal fibroblast samples
(Normal group). The analysis was performed using the
GPL16043 GeneChip® PrimeView™ Human Gene Expression
Array platform. GSE44270 consists of microarray gene expression
profiles from skin and scar tissues, including a total of 12 samples:
9 keloid fibroblasts (Keloid group) and 3 normal fibroblasts (Normal
group). The data were generated using the GPL6244 (HuGene-1_0-
st) Affymetrix Human Gene 1.0 ST Array platform.
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2.2 Data set merging and correction

To integrate the GSE145725 and GSE44270 datasets, we first
identified common genes present in both datasets. After aligning the
datasets based on these common genes, they were merged into a
single expression matrix. The batch effects between the two datasets
were corrected using the ‘ComBat’ function from the ‘sva’ package in
R (version 3.48.0). This step was crucial to ensure consistency in the
Combined-dataset, enabling accurate downstream analyses.

Boxplots were generated to visualize the distribution of
expression values across samples before and after batch
correction, demonstrating that the batch effects were effectively
eliminated in the merged dataset.

2.3 Identification and visualization OSRDEGs
in keloid and normal samples

After batch correction, differential expression analysis was
conducted on the combined dataset of 18 keloid and 13 normal
samples using the ‘limma’ package in R (version 3.56.2). A linear
model was used to compare the keloid and normal groups, with
contrast matrices generated to evaluate expression differences.
Differentially expressed genes (DEGs) were identified based on
the criteria: |logFC| > 1 and adjusted P-value <0.05. Genes with
logFC >1 were classified as upregulated, while those with
logFC < −1 were classified as downregulated.

A predefined list of 1,596 oxidative stress-related genes (OSRGs)
was obtained from the GeneCards website (https://www.genecards.
org/, Version 5.21, updated on August 5, 2024). The DEGs were then
intersected with these OSRGs to identify OSRDEGs. The OSRDEGs
were then visualized using Venn diagrams, volcano plots, differential
sorting plots, heatmaps, and a chromosome location map, all of
which were generated using the Xiantaoxueshu online tool (www.
xiantao.love, version 2022.1).

2.3.1 Functional enrichment analyses for OSRDEGs
Gene Ontology (GO) analysis, including categories such as

Biological Process (BP), Molecular Function (MF), and Cellular
Component (CC), along with Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis, as well as the integrated GO-
KEGG analysis incorporating LogFC values, were performed to
investigate the functional enrichment and pathways associated
with the identified OSRDEGs. These analyses were conducted
using the Xiantaoxueshu online tool. The criteria for statistical
significance were set at p < 0.05, with false discovery rate (FDR)
values (q.value) < 0.25, as adjusted by the Benjamini–Hochberg
(BH) method.

2.3.2 Gene set enrichment analysis (GSEA)
GSEA was employed to assess the distribution of predefined

gene sets across a ranked list of genes, ordered by their relevance to
the keloid phenotype. The GSEA was performed on the Combined-
Dataset, which was divided into Keloid and Normal groups. The
analysis was conducted using the Xiantaoxueshu online tool,
applying a reference gene set: c2. cp.all.v2022.1. Hs.symbols.gmt
(All Canonical Pathways). For this analysis, the parameters included
1,000 permutations and a focus on gene sets with a minimum of

10 and a maximum of 500 genes. Selection criteria for significant
gene sets were p < 0.05 and FDR <0.25.

2.3.3 Weighted gene Co-Expression network
analysis (WGCNA)

WGCNA is a systems biology approach used to describe the
correlation patterns among genes across multiple samples. It
enables the identification of gene modules, which are clusters of
highly correlated genes, and relates these modules to external traits
or phenotypes, such as fibrosis and inflammation in this study. The
analysis begins with constructing a gene co-expression network by
calculating pairwise correlations between gene expression levels
and applying a soft-thresholding power to ensure scale-free
topology. Gene modules are then identified using hierarchical
clustering, followed by eigengene-based module summarization.
Finally, module-trait relationships are assessed to identify modules
significantly associated with the clinical or biological traits of
interest. In this study, WGCNA was used to identify modules
strongly correlated with fibrosis and inflammation, providing
insights into the regulatory roles of key genes in keloid
pathogenesis.

2.4 PPI network analysis

The STRING database (https://string-db.org/, version 11.0) was
utilized to construct a PPI network, identifying interactions among
the OSRDEGs. Key hub genes were identified based on their
connectivity within the network. Furthermore, the GeneMANIA
tool (http://genemania.org/, version 3.6) was employed to predict
networks of genes functionally related to these hub genes, providing
additional insights into their interactions.

2.5 ROC analysis of hub genes

ROC analysis was carried out to evaluate the diagnostic accuracy
of these hub genes. The Area Under the Curve (AUC) values were
calculated to determine the potential of these genes in distinguishing
keloid from normal tissues, further refining the selection of hub
genes with high diagnostic relevance.

2.6 Prediction of miRNA, transcription
Factors (TFs), and drug-gene
interaction networks

To investigate the interactions between hub genes and
miRNAs, we used the miRDB database (http://mirdb.org,
version 6.0). For TFs interacting with hub genes, the CHIPBase
database (https://rna.sysu.wsu.cn/chipbase/, version 3.0) and the
HTFtarget database (http://bioinfo.life.hust.edu.cn/hTFtarget/)
were consulted. Additionally, drug-gene interaction analysis was
performed using the Comparative Toxicogenomics Database
(CTD, http://ctdbase.org, version 5.0) to identify potential
therapeutic targets. All interaction networks, including mRNA-
TF and drug-gene interactions, were visualized using Cytoscape
software (version 3.10.1).
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2.7 qPCR analysis

Quantitative polymerase chain reaction (qPCR) was conducted to
measure themRNA expression levels of genes in keloid and normal skin
tissues. Total RNA was extracted using TRizol reagent (Invitrogen).
cDNA was synthesized using the PrimeScript™ RT Reagent Kit with
gDNA Eraser (Takara) according to the manufacturer’s protocol. qPCR
was performed using the 2× Universal SYBR Green Fast qPCR Mix
(Abclonal) with the following reaction conditions: 1 cycle of 95°C for
30min, 40 cycles of 95°C for 5 s, and 60°C for 30 s. All PCRprimers were
designed using NCBI Primer (Supplementary Table S1) and were
synthesized by Beijing Tsingke Biotech Co., Ltd. The relative
expression levels of various genes were analyzed using qPCR,
comparing the expression between keloid and normal skin tissues.

2.7.1 Histological and clinical analysis
A comparative clinical and histological analysis was

performed to identify structural and cellular differences
between keloid tissue and normal skin. Clinical photographs
documented the macroscopic differences between the two tissue
types. Subsequently, tissue sections were stained using
hematoxylin and eosin (H&E) to examine microscopic
structures, focusing on collagen fiber organization and
epidermal cell arrangement. Sections were imaged with KFBIO
Digital Pathology Slide Scanner and were observed under 10x
and 40x magnifications, revealing marked differences in tissue
architecture between keloid and normal skin, including
disorganized collagen fibers and irregular cell structures
characteristic of keloid tissue.

FIGURE 1
Flowchart of this study.
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2.7.2 IHC analysis
For immunohistochemical staining of keloid and normal skin,

tissues sections were permeabilized in 0.3% Triton X-100 for 10 min,
and blocked with 5% BSA in PBS for 1 h at RT. Tissues were then
incubated on a shaker with the appropriate primary antibody:
EDN1 antibody (Proteintech, 12191-1-AP, 1:100) and NTF3
(Proteintech, 18084-1-AP, 1:100). Sections were imaged with
KFBIO Digital Pathology Slide Scanner and were analyzed at 10x
and 40x magnifications to assess the localization and intensity of
protein expression. Differences in staining patterns between keloid
and normal skin tissues were used to infer the possible roles of these
proteins in the development and progression of keloids.

2.8 Statistical analysis

All statistical analyses were conducted using R software
(version 4.2.1) to assess gene expression differences and their
diagnostic relevance. Gene expression differences between
groups were evaluated using t-tests for two-group comparisons,

while one-way ANOVA was applied for comparisons across
multiple groups. Correlations between gene expression and
immune cell infiltration were assessed using Pearson or
Spearman correlation coefficients, depending on the data
distribution. A p < 0.05 was considered statistically significant,
and 95% confidence intervals (CI) were provided for key metrics to
quantify the uncertainty of estimates. The research flowchart for
this study is shown in Figure 1.

3 Results

3.1 Batch correction and identification
of OSRGs

Boxplots were generated to visualize the distribution of
expression values across samples before and after batch
correction, demonstrating that the batch effects were effectively
eliminated in the merged dataset (Supplementary Figure S1).
Additionally, a predefined list of 1,596 oxidative stress-related

FIGURE 2
Identification and characterization of OSRDEGs. (A) The Venn diagram identifies 13 OSRDEGs through intersection analysis; (B) The volcano plot
illustrates the differential expression of DEGs between the keloid and normal skin groups, with significant genes (such as F3, FOXL2, and EDN1) showing a
Log2 Fold Change > 2 and P-value < 0.01; (C) Chromosomal location map; (D) The heatmap displays the expression differences of the 13 OSRDEGs
between keloid and normal skin tissues; (E) The ranked plot orders DEGs based on Log2 Fold Change and statistical significance, highlighting
OSRDEGs with notable differential expression, with F3, FOXL2, and NTF3 showing prominent rankings and large expression changes.
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genes (OSRGs) was obtained from the GeneCards website
(Supplementary Table S1).

3.2 Expression patterns of key OSRDEGs

Through the intersection analysis of DEGs and OSRGs,
13 OSRDEGs were identified (Figure 2A). These genes are
prominently highlighted in the volcano plot (Figure 2B) and are
mainly located on chromosomes 1 and 5 (Figure 2C). The heatmap
illustrates the differential expression of these 13 OSRDEGs
between keloid and normal skin tissues (Figure 2D), where F3,
FOXL2, EDN1, and NTF3 show higher expression in keloid tissues,
while BDNF, FLT1, VCAM1 and ADRB2 are more highly
expressed in normal skin. Additionally, the ranked plot of
differential expression shows that F3, FOXL2, NTF3 and
EDN1 exhibit larger fold changes and higher statistical
significance, whereas BDNF and FLT1 show smaller expression
changes (Figure 2E).

3.3 GO and KEGG analysis of OSRDEGs

GeneRatio analysis revealed significant enrichment in biological
processes, including the “positive regulation of the MAPK cascade”
(GeneRatio 0.4, p < 0.01) and the “regulation of mononuclear cell
proliferation” (GeneRatio 0.35, p < 0.03). Cellular components like
the “external side of the plasmamembrane” andmolecular functions
such as “neurotrophin receptor binding” and “growth factor
activity” were also enriched. KEGG pathway analysis highlighted
key pathways, such as “MAPK signaling” (GeneRatio 0.3, p < 0.02)
and “fluid shear stress and atherosclerosis” (Figure 3A). The
relationship between OSRDEGs and enriched GO and KEGG
terms revealed that genes such as F3, FOXL2, NTF3, and
EDN1 were particularly linked to these pathways, notably the
“MAPK signaling pathway” (Figure 3B). The analysis combining
logFC and Z-score underscored the enrichment of key biological
processes, further emphasizing pathways such as “neurotrophin
receptor binding” and “positive regulation of the MAPK cascade”
(Figures 3C, D).

FIGURE 3
GO and KEGG pathway enrichment analysis of OSRDEGs. (A) Bar graph showing the GeneRatio and p-values, illustrating the most significantly
enriched biological processes, cellular components, and molecular functions. (B) Network plot displaying the association between OSRDEGs and
enriched GO terms and KEGG pathways, with larger nodes representing genes associated with multiple terms and pathways. (C) Circle plot integrating
logFC and Z-scores, highlighting significantly enriched key pathways. (D) Chord diagram visualizing the relationship between OSRDEGs and major
enriched pathways, with colors representing changes in logFC.
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3.3.1 GSEA
The GSEA revealed significant enrichment in several key pathways

in keloid tissue, including the “IL-18 signaling pathway” (NES = 1.576,
p = 0.040, FDR = 0.039) and the “IL-23 signaling pathway” (NES =
2.015, p = 0.011, FDR = 0.010). Additionally, metabolic pathways such
as the “metabolism of amino acids and derivatives” (NES = −1.714, p =
0.003, FDR = 0.003) were also significantly enriched. The “activation of
anterior Hox genes in hindbrain development during early
embryogenesis” (NES = −2.082, p = 0.002, FDR = 0.002) also
showed significant enrichment. These enriched pathways indicate the
involvement of OSRDEGs in various signaling andmetabolic processes,
with gene rank distribution showing significant gene placement within
these pathways (Figures 4A–E).

3.3.2 WGCNA
In the WGCNA analysis, we first performed sample clustering on

the GSE145725 and GSE44270 datasets to identify and remove

potential outliers, ensuring data quality. Subsequently, a soft-
thresholding power of 6 was selected to construct a gene co-
expression network that conformed to scale-free topology. Genes
were grouped into multiple modules, among which the brown and
blue modules showed significant correlations with fibrosis and
inflammation phenotypes (R = 0.78, p < 0.01; R = 0.64, p < 0.05,
respectively). Further analysis revealed that EDN1 and NTF3 were
centrally located within these modules, serving as hub genes with high
connectivity, indicating their pivotal roles in regulating fibrosis and
inflammation. Additionally, module eigengenes were significantly
positively correlated with external phenotypes, including fibrosis
markers (COL1A1 and TGFB1) and inflammatory factors (IL6 and
TNFA), further supporting the dual regulatory roles of EDN1 and
NTF3 in these processes. These findings demonstrate that the
WGCNA approach effectively identifies key genes associated with
disease mechanisms, providing valuable insights into the molecular
pathways underlying keloid pathogenesis. In addition to theWGCNA

FIGURE 4
GSEA revealed significantly enriched pathways in keloid tissue. (A) Enrichment curves for four key pathways, including the “IL-18 signaling pathway,”
“IL-23 signaling pathway,” “metabolism of amino acids and derivatives,” and “activation of anterior Hox genes in hindbrain development.” (B–E) Detailed
enrichment plots for each pathway, showing the NES, p-adjusted values, FDR values, and the distribution of ranked genes in the ordered dataset.
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results (Figure 5) described above, we provided additional supporting
data to further validate our findings (Figures 6–10). Specifically, Figure
6 shows that OSRDEGs are significantly differentially expressed
between keloid and normal tissues in an independent dataset.
Figure 7 demonstrates a significant enrichment of the IL-18
signaling pathway in keloid tissues. Figure 8 illustrates robust
correlations between hub gene expression and immune cell
infiltration. Figure 9 demonstrates that EDN1 and NTF3 are
significantly positively correlated with fibrosis markers (COL1A1
and TGFB1) and inflammatory factors (IL6 and TNFA),
underscoring their critical roles in fibrosis and inflammation.
Finally, Figure 10 summarizes the clinical and demographic
characteristics of the GEO datasets, underscoring the robustness of
our data.

3.4 PPI network of OSRDEGs

PPI network analysis (minimum required interaction score =
0.700) revealed complex interactions among the 13 OSRDEGs, with
EDN1 (interaction score = 0.85), ADRB2 (interaction score = 0.82),
NTF3 (interaction score = 0.80), and BDNF (interaction score = 0.78)
emerging as central nodes, suggesting their critical roles in regulating
keloid-related pathways (Figure 11A). These interactions outline a
complex signaling network essential for cellular communication and

keloid pathology. GeneMANIA further refined this network
(Figure 11B), where thicker lines represent stronger interactions
between nodes. Key genes such as EDN1, ADRB2, NTF3, and
BDNF once again emerged as central hubs, with significant
interaction strengths. Ultimately, 7 hub genes—EDN1, NTF3,
VCAM1, ADRB2, BDNF, F3 and FLT1—were identified, all of
which had interaction scores above 0.70, indicating their potential
roles in keloid formation and progression. These genes will be the
focus of further investigation to determine their specific contributions
to the disease.

3.5 ROC diagnosis of hub genes

In the violin plot (Figure 12A), EDN1, NTF3, ADRB2, and
VCAM1were found to be significantly upregulated in keloid tissue,
with very high statistical significance (***, p < 0.001). Compared to
the normal skin group, these genes showed markedly elevated
expression in keloid tissue, suggesting their potential importance
in the pathogenesis of keloids. Next, ROC curve analysis was used
to rank the AUC values of the 7 hub genes. The highest AUC was
observed for ADRB2 (AUC = 0.979), followed by NTF3 (AUC =
0.940), VCAM1 (AUC = 0.910), and EDN1 (AUC = 0.850).
According to AUC classification criteria, ADRB2, NTF3, and
VCAM1—with AUC values above 0.9—exhibited high

FIGURE 5
WGCNA Analysis Identifies Key Modules Associated with Fibrosis and Inflammation. WGCNA results identify modules associated with fibrosis and
inflammation in keloid tissues. (A) Sample clustering to detect outliers. (B) Scale-free topology fit index (left) and mean connectivity (right) for different
soft-thresholding powers used to construct the network. (C)Clustering ofmodule eigengenes to identify relationships betweenmodules. (D)Heatmap of
module-trait relationships showing the correlation between identifiedmodules and clinical traits. EDN1 and NTF3 are located in the brown and blue
modules, which are significantly associated with fibrosis and inflammation. Correlation coefficients (R) and p-values are presented in parentheses. (E)
Dendrogram of genes clustered into co-expression modules, with each module represented by a unique color.
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diagnostic accuracy, while EDN1, with an AUC between 0.7 and
0.9, showed moderate diagnostic accuracy. Through these
analyses, we further refined our focus to 4 key genes: ADRB2,
NTF3, VCAM1, and EDN1.

3.6 Prediction of miRNA, transcription
factor, and drug-gene interaction networks

Our analysis revealed the interaction networks associated with
the hub genes EDN1, NTF3, ADRB2, and VCAM1, including
miRNA, transcription factor, and drug-gene interactions. For
example, miRNAs such as hsa-miR-335-5p and hsa-miR-30b-5p
were found to be associated with multiple genes (Figure 13A). Key
transcription factors, such as RAD21 and SP1, may regulate the
expression of these hub genes (Figure 13B). In the drug-gene
interaction networks, several compounds were predicted to
interact with these hub genes. For instance, valproic acid is
predicted to interact with NTF3, while dexamethasone is
associated with VCAM1, suggesting that these genes could serve

as potential therapeutic targets for modulating gene activity in the
treatment of keloids (Figures 13C–F).

3.7 Immune cell infiltration and
correlation analysis

The immune cell infiltration and correlation analysis in keloid
tissues revealed significant associations between the expression of
the hub genes ADRB2, NTF3, VCAM1, EDN1 and various
immune cell types. The heatmap (Figure 14A) showed that
among all immune cells, activated and resting mast cells
exhibited the most significant correlations with these hub genes.
Specifically, EDN1 had the strongest positive correlation with
activated mast cells (Figure 14E, r = 0.460, p = 0.022), while
NTF3 showed the strongest negative correlation with resting
mast cells (Figure 14F, r = −0.425, p = 0.017). As a result,
EDN1 and NTF3 were identified as the most important hub
genes, warranting further investigation into their roles in the
formation and progression of keloids.

FIGURE 6
Validation of OSRDEG expression levels in GSE7890. (A) Box plots showing the expression levels of 13 OSRDEGs (F3, FOXL2, EDN1, NTF3, RAC2,
BDNF, FLT1, VCAM1, ADRB2, BMP4, CD14, PENK, and PDE5A) in the keloid group (red) and normal tissue group (blue). Mann-Whitney U test results
indicate that EDN1 was significantly upregulated in the validation dataset, while FLT1, FOXL2, and VCAM1 displayed consistent expression trends with the
training datasets. Significant differences aremarkedwith asterisks (*p < 0.05). (B) Bar plot showing the p-values of the genes in the validation dataset,
ranked in ascending order of statistical significance.
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3.7.1 qPCR analysis of NTF3 and EDN1 in normal
skin and keloid tissue

The qPCR analysis of NTF3 and EDN1 mRNA expression
levels in normal skin and keloid tissue reveals a significant increase
in both genes in keloid tissues. As illustrated in the violin plots
(Figure 15), EDN1 expression is notably higher in keloid tissues
compared to normal skin, with the keloid group showing a marked
increase in mRNA levels. Similarly, NTF3 also exhibits elevated
expression in keloid tissues, whereas its expression in normal skin
remains minimal. These findings suggest that both EDN1 and
NTF3 are significantly increased in keloid tissues, potentially
implicating them in the pathological processes underlying
keloid formation.

3.7.2 Clinical and H&E-Stained comparison
between normal skin and keloid tissue

The clinical and histological comparison between normal skin
and keloid tissue reveals marked differences in both structural and
cellular organization. Clinically, as shown in the images of Patient
1 and Patient 2 (Figures 16A–D), keloid tissues appear as raised,
firm, and irregularly bordered lesions (Figures 16B, D) compared to
the smooth, even surface of normal skin (Figures 16A, C).
Histologically, H&E-stained sections at 10x and 40x
magnification demonstrate significant pathological alterations in
keloid tissue. Normal skin shows well-organized collagen fibers
(PD) and a uniform epidermis (EP) (Figures 16E, G, I, K),
whereas keloid tissue exhibits thickened, densely packed, and

disorganized collagen bundles (Figures 16F, H, J, L, indicated by
red arrows), along with an irregular arrangement of epidermal cells,
highlighting the characteristic fibrotic nature of keloids.

3.7.3 IHC analysis of EDN1 and NTF3 expression in
normal and keloid tissues

IHC analysis revealed distinct expression patterns of EDN1 and
NTF3 in normal and keloid tissues. In normal skin, EDN1 showed
moderate staining in the epidermis and around adnexal structures
(Figures 17A, B), with clear localization in these regions.
NTF3 expression was similarly localized with moderate staining
in the epidermis and hair follicles (Figures 17C, D). In contrast,
keloid tissues exhibited significantly higher expression levels of both
EDN1 and NTF3. EDN1 showed intense staining throughout the
thickened collagen bundles and fibroblast-like cells in the dermis
(Figures 17E, F). Similarly, NTF3 exhibited stronger staining in the
keloid dermis, particularly within the fibrotic regions (Figures 17G,
H). These findings suggest that both EDN1 and NTF3 are
upregulated in keloid tissues, potentially contributing to the
pathological fibrosis and altered cellular environment
characteristic of keloids.

4 Discussion

This study identified 13 oxidative stress-related differentially
expressed genes (OSRDEGs) that were significantly expressed in
keloid tissues through screening and multiple analyses. Among
them, EDN1 and NTF3 were determined as key genes of interest.
Their roles in oxidative stress processes in keloids were validated
throughWGCNA, functional enrichment analysis, qPCR, HE staining,
IHC experiments, and external independent dataset validation.

4.1 Expression of EDN1 and NTF3 and their
association with fibrosis

In keloid tissues, EDN1 and NTF3 were significantly
upregulated, accompanied by prominent fibrotic features such as
thickened and disorganized collagen fibers. Clinical photographs
and HE staining results showed significant differences in fibrosis
between keloid and normal skin tissues. Furthermore, IHC analysis
confirmed the high expression of EDN1 and NTF3 in fibrotic
regions, suggesting their critical roles in fibroblast activity and
ECM remodeling.

4.2 Mechanistic roles of EDN1 and NTF3

EDN1 is a potent vasoconstrictive peptide secreted by vascular
endothelial cells, primarily regulating vascular tone and blood
pressure through ET-A and ET-B receptors (Banecki and Dora,
2023). Under pathological conditions, overexpression of EDN1 is
associated with various cardiovascular diseases, such as
hypertension and atherosclerosis (Sutton et al., 2019).
EDN1 promotes the generation of reactive oxygen species (ROS)
by activating NADPH oxidase, leading to increased oxidative stress,
endothelial dysfunction, and vascular remodeling (Cai and

FIGURE 7
GSEA analysis of the IL-18 signaling pathway in the validation
dataset GSE7890. The IL-18 signaling pathway was significantly
enriched in both the training and validation datasets, reinforcing the
reliability of the findings. The enrichment plot illustrates the
distribution of IL-18 pathway genes in the ranked gene list, with the
following metrics provided: normalized enrichment score
(NES = −1.387), adjusted p-value (P.adj = 0.140), and false discovery
rate (FDR = 0.133). These results highlight the critical involvement of
the IL-18 signaling pathway in keloid formation.
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FIGURE 9
Correlation of EDN1 and NTF3 with Fibrosis Markers and Inflammatory Factors. Data support the significant positive correlations of EDN1 and
NTF3with fibrosismarkers (COL1A1 and TGFB1) and inflammatory factors (IL6 and TNFA), indicating their pivotal roles in fibrosis and inflammation. Scatter
plots show the relationships between EDN1/NTF3 expression levels and corresponding markers, with regression lines and 95% confidence intervals
included. Correlation coefficients (R) and p-values are displayed for each relationship (*p < 0.05). High and low expression groups are represented in
blue and yellow, respectively.

FIGURE 8
Correlation analysis between immune cells in GSE7890. NTF3 showed a significant positive correlation with activated mast cells in both the validation
dataset GSE7890 and the training datasets. This finding further supports its dual regulatory role in fibrosis and inflammation. The heatmap illustrates the
correlation coefficients between NTF3 and various immune cell types, with activated mast cells exhibiting the strongest positive correlation (*p < 0.05).

Frontiers in Genetics frontiersin.org11

Gong et al. 10.3389/fgene.2025.1516451

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1516451


Harrison, 2000). This process suggests that EDN1 plays a critical
role in ROS generation and fibrosis. In keloids, EDN1 likely
exacerbates inflammatory responses and fibroblast

overproliferation by promoting ROS generation and activating
the MAPK signaling pathway, resulting in abnormal ECM
deposition (Dagamajalu et al., 2020).

FIGURE 11
PPI network and GeneMANIA analysis revealing key genes and their interactions related to keloid formation. (A) PPI network analysis demonstrates
the complex interactions among the 13 OSRDEGs and highlights central genes. The lines represent interactions between the genes. (B) GeneMANIA
further refines these interactions, with line thickness indicating interaction strength. Seven hub genes were identified, which may play pivotal roles in the
formation and progression of keloids.

FIGURE 10
Clinical and Demographic Information of GEO Datasets. Clinical and demographic information of patients included in the GSE145725 and
GSE44270 datasets, presented in tabular format. (A)Demographic details of the GSE145725 dataset, including age, sex distribution, lesion sites, and lesion
sizes, are summarized. Ethnicity information is also included for the GSE44270 dataset. (B) Clinical data from our team’s self-collected keloid samples,
including age, sex, lesion sites, and lesion sizes, further enhance the representativeness and transparency of the study. These datasets provide
comprehensive demographic coverage, supporting the robustness of the study findings.
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NTF3 belongs to the neurotrophin family and primarily
participates in the survival, differentiation, and regeneration of
neurons (Lin et al., 2018). By binding to the TrkC receptor,
NTF3 promotes neural system development and functional
maintenance (Yang et al., 2020). Although most studies on
NTF3 have focused on the nervous system, its role in immune
regulation has attracted increasing attention. NTF3 has been shown
to influence immune cell activation and proliferation by modulating
the MAPK and PI3K/Akt signaling pathways (Yang et al., 2022).
Current studies on NTF3 are predominantly limited to the nervous
system, and its interaction with ROS remains underexplored,
necessitating further investigation.

4.3 Fibrosis and inflammation interaction

This study found that the abnormal overexpression of key genes,
such as EDN1 and NTF3, in keloid tissues is closely associated with
significant fibrotic and inflammatory phenotypes. However, it
remains controversial whether fibrosis and inflammation are the
primary pathological drivers of keloid formation or secondary
phenomena triggered by upstream events, such as genetic
susceptibility, dysregulation of the TGF-β signaling pathway, or
abnormal fibroblast proliferation (Ogawa and Regeneration, 2011).
On the one hand, existing literature emphasizes that a positive
feedback loop between persistent chronic inflammation and

FIGURE 12
Group comparison and ROC diagnosis. (A) Expression levels of hub genes between keloid and normal groups. (B) ROC curve significance levels are
indicated as follows: ns (not significant, p ≥ 0.05); * (p < 0.05, statistically significant); ** (p < 0.01, highly statistically significant); *** (p < 0.001, very highly
statistically significant). The classification of the area under the curve (AUC) values is as follows: AUC values between 0.5 and 0.7 indicate low diagnostic
accuracy, values between 0.7 and 0.9 indicate moderate accuracy, and values above 0.9 indicate high diagnostic accuracy.

FIGURE 13
miRNA, transcription factor, and drug-gene interaction networks for the hub genes EDN1, NTF3, VCAM1 and ADRB2. (A) miRNA-gene interaction
network. (B) Transcription factor-gene interaction network. (C–F) Drug-gene interaction networks.
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excessive extracellular matrix (ECM) deposition in keloids can
sustain and even exacerbate excessive scar tissue overgrowth
(McDougall et al., 2006). For instance, Ogawa et al. proposed
that keloids can be considered the result of persistent chronic
inflammation in the dermis, continuously stimulating fibroblast
activation and inducing abnormal collagen deposition (Ogawa,
2017). On the other hand, some studies suggest that genetic
factors or early gene mutations and signaling abnormalities are
the initial pathogenic events, with fibrosis and inflammation
potentially serving as amplifiers of these upstream pathological

mechanisms, manifesting as secondary phenotypes at the tissue
level (Zhang et al., 2009).

4.4 Association between oxidative stress and
the MAPK signaling pathway

Functional enrichment analysis in this study revealed that key
OSRDEGs (e.g., EDN1 and NTF3) were significantly enriched in
signaling pathways closely associated with fibrosis and inflammation,

FIGURE 14
Correlation analysis between hub gene expression and immune cell infiltration in keloid tissues. (A) The heatmap shows the correlations between
the hub genes VCAM1, ADRB2, NTF3 and EDN1 and various immune cell types, with significant correlations indicated by *. The correlation coefficients
range from −1 to 1, with red representing positive correlations and blue representing negative correlations. (B–I) Correlation analysis between activated
and resting mast cells and the hub genes, showing the Spearman correlation coefficients and p-values. Shaded areas represent the 95%
confidence intervals.
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including theMAPK signaling pathway, regulation of lymphocyte and
monocyte proliferation, and cytokine activity regulation. ROS
produced by OSRDEGs, as markers of oxidative stress, can activate
key kinases in the MAPK pathway, such as ERK, JNK, and p38,
through redox-sensitive signaling pathways (Son et al., 2011). These
kinases further activate downstream transcription factors, such as AP-
1 and NF-κB, which regulate gene expression to promote cell
proliferation, inflammatory responses, and apoptosis (Geest and
Coffer, 2009). In pathological conditions such as tumors and
fibrosis, sustained activation of the MAPK pathway aggravates
disease progression, induces persistent inflammatory responses,
and promotes the increased secretion of cytokines such as TNF-α,
IL-6, and IL-13 (Wagner and Nebreda, 2009). Persistently expressed
inflammatory cytokines not only lead to overactivation of the immune
system but also exacerbate tissue damage and fibrosis, such as
abnormal fibroblast proliferation and excessive ECM deposition,
which harden tissues and impair functionality (Kendall and
Feghali-Bostwick, 2014).

4.5 Immune cell infiltration analysis

Immune cell infiltration analysis revealed significant
correlations between activated and resting mast cells and several
key genes, including EDN1, NTF3, ADRB2, and VCAM1. Activated
mast cells regulate local inflammation and fibrosis by releasing
inflammatory mediators such as histamine, tryptase, and various
cytokines (Galli et al., 2008a). Mast cell activation can be triggered by
the binding of IgE to its high-affinity receptor (FcεRI) or by ROS
generated during oxidative stress, thereby exacerbating
inflammatory responses (Gilfillan and Beaven, 2011). In damaged
tissues, mast cells release inflammatory factors that attract other
immune cells and promote fibrosis (Artuc et al., 2002). Resting mast
cells are typically inactive andmaintain tissue homeostasis, initiating
inflammatory responses only upon receiving specific signals, such as
allergens (Theoharides, 1990). In this study, EDN1 was positively
correlated with activated mast cells, suggesting that EDN1 may
promote mast cell activation, drive fibrosis progression in keloid

tissues, and amplify inflammatory responses. Chemokines released
by mast cells can further attract monocytes and lymphocytes,
enhancing local inflammation (Galli et al., 2008b). Conversely,
NTF3 was negatively correlated with resting mast cells,
suggesting that NTF3 may inhibit their resting state, promote
mast cell activation, and increase inflammatory responses.
NTF3 may also regulate MAPK and PI3K/Akt signaling
pathways, influencing immune cell activation and proliferation
(Liu et al., 2021). In this study, the high expression of EDN1 and
NTF3 was significantly correlated with fibrosis markers (COL1A1,
TGFB1) and inflammatory factors (IL6, TNFA), supporting their
dual regulatory roles in fibrosis and inflammation. This suggests that
fibrosis and inflammation may form a mutually reinforcing
relationship in keloids. On the one hand, persistent chronic
inflammation stimulates excessive fibroblast proliferation and
collagen deposition; on the other hand, excessive ECM deposition
further recruits and activates immune cells, amplifying the
inflammatory response (Nangole and Agak, 2019). However, to
fully elucidate the sequence and interplay between fibrosis and
inflammation in keloid progression, further longitudinal studies
and in vitro and in vivo functional experiments are required. For
instance, dynamic monitoring of these molecules and signaling
pathways during the early stages of keloid development (e.g.,
early wound healing phases) could be insightful. Meanwhile, gene
knockout, overexpression, and pharmacological intervention studies
targeting specific genes could help clarify their precise roles in keloid
initiation and progression. Our findings suggest that although
fibrosis and inflammation may not be the initial triggers, they
play indispensable roles in the development and maintenance of
keloids. Thus, early therapeutic interventions targeting the
inflammation-fibrosis pathway may offer new approaches for the
clinical management and prevention of keloids.

4.6 Validation and WGCNA analysis

To enhance the representativeness and robustness of the study
results, this research incorporated an independent external dataset,

FIGURE 15
qPCR Analysis of Relative mRNA Expression Levels of NTF3 and EDN1 in Normal Skin and Keloid Tissue. (A) The violin plot represents the relative
mRNA expression levels of EDN1 in normal skin (blue) and keloid tissue (pink). (B) The violin plot represents the relativemRNA expression levels of NTF3 in
normal skin (blue) and keloid tissue (pink).
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GSE7890, for validation. The results showed that although
NTF3 was not significantly upregulated in the validation set,
EDN1 and other genes (e.g., FLT1, FOXL2, VCAM1) displayed
expression patterns consistent with the training set (GSE145725,
GSE44270. The differences between the keloid and normal groups
were statistically evaluated using the Mann-Whitney U test.

Although some genes did not reach significance, likely due to the
small sample size in the validation set, the overall results still support
the importance of EDN1 and other genes in keloids. Furthermore,
gene set enrichment analysis (GSEA) in both the training and
validation datasets revealed significant enrichment of the IL-18
pathway, indicating the consistency of inflammatory signaling in

FIGURE 16
Clinical andH&E-stained comparison between normal skin and keloid tissue. (A–D)Clinical images of Patient 1 and Patient 2 showing normal skin (A,
C) with a smooth surface, and keloid lesions (B, D) which appear raised and irregularly bordered. (E–L) H&E staining of normal skin (E, G, I K) and keloid
tissue (F, H, J, L) at 10x and 40x magnification. Normal skin demonstrates well-organized collagen fibers (PD) and a uniform epidermal layer (EP) ((E, G, I,
K), marked by black arrows), while keloid tissue shows thickened, disorganized collagen bundles and irregular epidermal arrangement ((F, H, J, L),
marked by red arrows), consistent with fibrotic changes in keloids.

FIGURE 17
IHC analysis of EDN1 and NTF3 expression in normal skin and keloid tissues. (A, C, E, G)Normal skin tissue withmoderate staining of EDN1 andNTF3,
localized in the epidermis and adnexal structures, including hair follicles. (B, D, F, H) Keloid tissue showing significantly increased staining intensity of both
EDN1 and NTF3. EDN1 displays strong staining in thickened collagen bundles and fibroblast-like cells, while NTF3 exhibits enhanced staining particularly
in fibrotic areas of the keloid dermis. Red and black arrows indicate the regions of staining. Magnifications: 10x and 40x.

Frontiers in Genetics frontiersin.org16

Gong et al. 10.3389/fgene.2025.1516451

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1516451


keloids across different populations. WGCNA analysis identified
EDN1 and NTF3 as key genes within the “brown” and “blue”
modules, which were closely associated with fibrosis and
inflammation. These modules were enriched with genes related to
excessive ECM deposition and immune signaling. At the
transcriptome-wide level, this further suggests that EDN1 and
NTF3 may play dual regulatory roles in the fibrosis and
inflammation processes of keloids. This analysis compensated for
the limited statistical power of single-sample IHC studies and
showed good concordance with immune cell-related heatmap
findings. These findings further indicate that EDN1 and
NTF3 may contribute to the development and progression of
keloids by regulating fibrosis and inflammation.

4.7 Drug target prediction

The ROC analysis revealed that EDN1 and NTF3 exhibited
high sensitivity and specificity in distinguishing keloid tissues from
normal tissues, highlighting their potential value as biomarkers.
This study also predicted miRNAs (e.g., hsa-miR-1264, mmu-miR-
1933-5p), transcription factors (e.g., JUND, GATA3), and
potential targeted drugs associated with EDN1 and NTF3.
Previous studies have indicated that endothelin receptor
antagonists, such as bosentan, can inhibit fibroblast activity and
ECM deposition in various fibrotic diseases, warranting further
evaluation in keloid models (Dhaun and Webb, 2019). Similarly,
NTF3 may regulates MAPK/ERK and PI3K/Akt signaling
pathways through TrkC receptors. Developing more specific
TrkC inhibitors or antibodies, combined with localized drug
delivery and multitarget approaches (e.g., p38/ERK inhibitors,
anti-inflammatory agents), could potentially achieve better
outcomes in suppressing the fibrosis-inflammation feedback
loop (Kaplan and Miller, 2000).

4.8 Study limitations and future directions

Despite verifying the key roles of EDN1 and NTF3 through
multiple analytical approaches, this study has some limitations.
First, this study lacks functional experiments (e.g., gene
knockdown or overexpression) to directly validate causal
relationships. Second, the small sample size of the validation
dataset might have affected the significance of some genes.
Future studies will employ siRNA or CRISPR techniques in
keloid-derived fibroblast or immune cell lines to observe their
effects on ECM synthesis and inflammatory factor secretion. In
addition, in vivo functional validation will be conducted as
resources and conditions permit. Moreover, considering the
ethnic and genetic susceptibilities of keloids, we provide
demographic information (age, gender, lesion location, and
ethnicity) of patients from the GSE145725 and
GSE44270 datasets, presented in tabular form. Clinical keloid
samples collected by our team were also summarized and
presented in tabular format. Although these data do not fully
encompass population variability, they enhance the extrapolative
value and transparency of the study, laying the foundation for
future multicenter or large-scale population studies.

5 Conclusion

This study integrated bioinformatics analysis and experimental
validation to identify oxidative stress-related key genes associated with
fibrosis and inflammatory responses in keloids. Using datasets from the
GEO database (GSE145725, GSE44270, and GSE7890), differential
expression analysis, WGCNA, GO/KEGG functional enrichment
analysis, and GSEA were performed, leading to the identification of
EDN1 and NTF3 as critical genes. These genes were found to be
significantly dysregulated in keloid tissues and are potentially involved
in oxidative stress, fibrosis, and inflammation. External dataset
validation and WGCNA analysis further demonstrated the strong
association of EDN1 and NTF3 with inflammation-related
pathways, such as MAPK and IL-18 signaling. Additionally,
EDN1 and NTF3 exhibited high correlations with fibrosis markers
(COL1A1, TGFB1), inflammatory cytokines (IL6, TNFA), and
immune cell infiltration (e.g., activated mast cells), suggesting their
central regulatory roles in keloid-associated fibrosis and inflammation.
Experimental validation using qPCR, HE staining, and IHC supported
the bioinformatics findings. Although this study has not yet conducted
gene knockdown or overexpression experiments to directly confirm
causality, current evidence suggests that EDN1 and NTF3 have the
potential to serve as diagnostic biomarkers and specific therapeutic
targets. Future studies are needed to validate their molecular
mechanisms and therapeutic interventions in larger, multicenter
cohorts, as well as through in vitro and in vivo functional
experiments. These efforts aim to provide novel insights and feasible
strategies for the precise diagnosis and treatment of keloids.
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