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Spatial transcriptomics has emerged as an invaluable tool, helping to reveal
molecular status within complex tissues. Nonetheless, these techniques have
a crucial challenge: the absence of single-cell resolution, resulting in the
observation of multiple cells in each spatial spot. While reference-based
deconvolution methods have aimed to solve the challenge, their effectiveness
is contingent upon the quality and availability of single-cell RNA (scRNA) datasets,
which may not always be accessible or comprehensive. In response to these
constraints, our study introduces STsisal, a reference-free deconvolutionmethod
meticulously crafted for the intricacies of spatial transcriptomics (ST) data. STsisal
leverages a novel approach that integrates marker gene selection, mixing ratio
decomposition, and cell type characteristic matrix analysis to discern distinct cell
types with precision and efficiency within complex tissues. The main idea of our
method is its adaptation of the SISAL algorithm, which expertly disentangles the
ratio matrix, facilitating the identification of simplices within the ST data. STsisal
offers a robust means to unveil the intricate composition of cell types in spatially
resolved transcriptomic data. To verify the efficacy of STsisal, we conducted
extensive simulations and applied the method to real data, comparing its
performance against existing techniques. Our findings highlight the superiority
of STsisal, underscoring its utility in capturing the cell composition within
complex tissues.
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1 Introduction

Spatial transcriptomics (ST) has revolutionized genomics, enabling a comprehensive
exploration of gene expression within intact tissue sections. It offers profound insights into
tissue architecture and its biological impact (Burgess, 2019). However, achieving single-cell
resolution remains challenging due to the larger diameter of mainstream ST technologies
compared to individual cells. The detected points usually represent mixtures of multiple cell
types (Asp et al., 2020). Consequently, decomposing cell-type mixtures into single-cell
resolution has become a critical problem in ST data analysis (Liao et al., 2021).

One natural approach to address this problem is leveraging single-cell RNA sequencing
(scRNA-seq) data to assist in deconvolution. Various decomposition methods based on
single-cell data have been developed, such as Tangram (Biancalani et al., 2021),
Cell2location (Kleshchevnikov et al., 2022), RCTD (Cable et al., 2022), and CARD (Ma
and Zhou, 2022). These methods employ diverse techniques, including deep generative
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models, regression algorithms, optimization techniques, non-
negative matrix factorization, statistical modeling, and variational
inference. By integrating scRNA-seq data with spatial information,
these methods can predict cell type composition and enhance the
resolution of spatial transcriptomic data.

The methods above, which utilize scRNA-seq as a reference, are
commonly referred to as reference-based. Typically, reference-based
deconvolution methods adopt a supervised learning framework,
representing each ST point as a combination of single cells in the
reference data and estimating the final ratio through approximation.
However, these methods heavily rely on the availability and quality of
scRNA-seq data and cell type annotations. Furthermore, systematic
technical differences between single-cell and ST technologies and
discrepancies in single-cell type annotations present additional
challenges to accurate deconvolution (Leek et al., 2010).
Consequently, there has been a growing interest in developing
reference-free methods that directly deconvolve ST data without
needing single-cell gene expression references. One such popular
reference-free method is STdeconvolve (Miller et al., 2022), which
builds on latent Dirichlet allocation (LDA). However, the
performance of STdeconvolve is highly dependent on the LDA
model and can be significantly affected by the quality of the ST data.
For instance, sparse ST data, a limited number of spatial spots, or a lack of
heterogeneity across spots can all reduce the accuracy of the method.

In this study, we propose STsisal, a novel reference-free
deconvolution method designed explicitly for ST data. STsisal
effectively decomposes the mixture of cell types within ST data
without relying on single-cell expression reference data. The method
encompasses selecting an appropriate number of cell types, the
identification of loci with specific expression patterns, and the
deconvolution of mixing ratios. Several methods, including the vertex
component analysis (VCA) (Nascimento and Dias, 2005), Alternating
VolumeMaximization (AVMAX) (Ambikapathi et al., 2010),Minimum
Volume Simplex Analysis (MVSA) (Li and Bioucas-Dias, 2008), and
simplex identification via split augmented Lagrangian (SISAL) (Bioucas-
Dias, 2009) can be employed for simplex corner identification. Extensive
research has demonstrated that SISAL is more robust under various
scenarios (Bioucas-Dias et al., 2012; Elkholy et al., 2020). In fact,
identifying vertices of a given simplex through geometric methods
can be viewed as an optimization problem with specific constraints,
while SISAL uses a soft constraint or regularizer, yielding solutions that
are resilient to outliers, noise, and suboptimal initialization. The cell type
proportion matrix is solved using the SISAL algorithm, which aids in
identifying the simplex formed by the STdata. Finally, STsisal assigns cell
types based on the cell type feature matrix and known markers.
Extensive simulations demonstrate that STsisal outperforms existing
methods, including STdeconvolve.Moreover, in five real ST data analysis
experiments, STsisal exhibits consistency with marker distributions in
tissue partitions and demonstrates advantages in identifying marker
genes and conducting region-based enrichment analyses.

2 Methods

2.1 STsisal overview

STsisal leverages the robust capabilities of SISAL, a linear
hyperspectral unmixing technique, to unveil the intricate cellular

compositions concealed within spatial transcriptomics (ST) data.
Since most existing spatial technologies have yet to attain single-cell
resolution, each observed spot usually contains multiple cells. To
tackle this issue, our goal is to infer the cell proportion matrix for
each spot using information hidden in the spatial expression matrix.

To formulate the problem mathematically, we introduce the
expression matrix denoted as Y ∈ RL×S, with L denotes the
number of genes, and S represents the number of pixels. Our
underlying assumption is that each pixel embodies a remarkable
fusion of K distinct cell types. Thus, we can formulate the
problem as Y � MH, where M ∈ RL×K represents L genes for
K cell types, and H ∈ RK×S implies the proportions of the K cell
types across S pixels. Furthermore, we impose the constraint that
each column ofH needs to sum up as one. This constraint ensures
that each column of H represents the proportion of K cell types
within a single pixel.

The workflow of STsisal is depicted in Figure 1, encompassing
four critical stages. Firstly, we determine the optimal number of cell
types K, by utilizing a data-driven method. Secondly, once we have
the estimated K, we apply a specialized cell type-specific gene
selection designed for ST data to identify features specific to
individual cell types. Specifically, in this step, we preprocess the
original ST data into a condensed form Y through initial gene
selection. The deconf algorithm is then employed to infer the
reference matrix M and proportion matrix H. Based on the Y
and H, we update the filtered gene list by using cross-cell type
differential analysis. This iterative process continues until the root
mean square error (RMSE) between the actual Y and the estimated
Y � M × H converges. Thirdly, the SISAL is applied to the final
reduced ST data to obtain the simplex corner and output the final
proportion matrix. Lastly, in scenarios where a reference panel is
accessible, we can employ a data-driven strategy to assign labels to
the estimated anonymous cell types. A detailed exposition of STsial
is provided in the subsequent sections.

2.2 Cell type number estimation

We propose a data-driven method for estimating the number of
cell types present using the Akaike information criterion (AIC) for
spatial transcriptomics data. This approach was also applied in
epigenomic deconvolution of breast tumors (Onuchic et al.,
2016), and we find it robust when analyzing spatial
transcriptomics (ST) data, as evidenced by our application to the
seqfish dataset in Section 3.2.5.

To identify the most suitable number of cell types K, we begin
with a deconvolution algorithm to estimate cell-type-specific gene
expression profiles, which we represent as M̂, along with the
corresponding proportion matrix, denoted as Ĥ. With M̂ and Ĥ,
we proceed to evaluate the accuracy of the deconvolution process.
This assessment involves calculating the sum of squared errors (SSR)
between the actual observations and the reconstructed data,
expressed as SSRk � (Y − M̂Ĥ)2. We then calculate the AIC of
different K to determine the optimal one. We choose theK with the
smallest AIC as the final number of cell types since the most
plausible K should balance the estimated model fit and number
of model complexity. For each cell type K, the AIC is calculated
using the following formula:
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AIC K( ) � L × S( )ln SSR K( )
L × S

( ) + 2p K( ) + 2p K( ) p K( ) + 1[ ]
L × S − p K( ) − 1

(1)
where p(K) � K(L + S) is the number of parameters need to be
estimated, and L × S is the number of observations in Y. The first
term of the Equation 1 reflects the accuracy of the model, while the
second and third terms act as penalties to discourage large increases
in the number of cell types, helping to prevent overfitting. This
balance between model complexity and accuracy is essential for
identifying biologically meaningful cell types. However, as K
increases, additional rare or subtle cell types may appear. These
could represent biologically irrelevant subpopulations or artifacts
introduced during the deconvolution process.

To determine the optimal K, it is recommended to calculate
AIC(K) across a selected range of K values and plot K against
AIC(K). This plot often reveals a “knee” point where further
increases in K provide diminishing improvements to the model
fit but add unnecessary complexity. After identifying a candidate K,
the inferred cell types should be evaluated for their biological
relevance by checking for known markers or functional

annotations. Cell types that occupy minimal proportions or lack
clear biological signatures may suggest an overestimation of K and
could be merged or excluded. If the selected K does not align with
existing biological knowledge or the characteristics of the tissue, the
range of K can be adjusted and reevaluated. This approach ensures
the identification of both predominant cell types and less common
groups that may hold biological significance.

2.3 Cell type-specific gene selection

The feature selection process plays a pivotal role in the
deconvolution process and significantly impacts the accuracy
of cell composition estimation. It is worth noting that marker
genes often exhibit overlapping characteristics across different
cell types. Consequently, employing cell type-specific markers
tends to yield superior results. In contrast to methods that choose
features with the highest variance, our approach emphasizes the
selection of the most informative markers. The algorithm
proposed in this study builds on prior research and
incorporates an iterative feature selection process.

FIGURE 1
Overview of STsisal: The deconvolution process of STsisal consists of two main steps: cell type-specific gene selection (orange box) and corner
identification (green box). The ST data first go through the cell type-specific gene selection step, and a feature selection procedure is applied iteratively
using the deconf algorithm. After the RMSE converges, corner identification is performed using the robust algorithm SISAL.
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To initiate the reference-free deconvolution process from the
original data matrix Y, we select an initial feature list based on the
most significant coefficient of variation. This preliminary feature
selection step expedites the estimation of cellular mixture
proportions. To enhance the precision of the deconvolution, we
utilize cross-cell type differential analysis to identify cell type-
specific features using the estimated proportions. These cell type-
specific features are then integrated into the successive iteration of
the reference-free deconvolution process. The details of this
algorithm are shown in Algorithm 1.

Algorithm 1. Feature Selection Algorithm for STsisal.
Selecting the proper reference-free deconvolution method,

tailored for spatial transcriptomics data, is significant in ensuring
the precision and reliability of results. To this end, we take
inspiration from the algorithm used before (Repsilber et al.,
2010), which offers valuable insights into the deconvolution
procedure. Algorithm 2 depicts the complete process in the
deconvolution step, where the iteration exit criteria were set to
either iteration number < 1,000 or ‖Y −MH‖F ≤ a. Following this
approach, we can select informative markers closer to the corners of
the simplex, as discussed in the subsequent deconvolution
step. Consequently, STsisal can effectively identify features that
exhibit significant differences between different cell types. In the
following, we retain a manageable number of genes (less than 1,000)
for subsequent deconvolution analyses.

Algorithm 2. Detailed process of deconf (·,·) in the
Algorithm 1.

2.4 Deconvolution

2.4.1 SISAL
The simplex identification via split augmented Lagrangian

(SISAL) (Bioucas-Dias, 2009) algorithm is widely used for

unsupervised hyperspectral linear unmixing. The method is
formulated as Equation 2:

Y � M × H (2)
with Y ∈ Rp×n denotes the observed matrix, M ∈ Rp×p denotes the
mixing matrix containing endmembers and H �
[h1, h2, . . . , hn] ∈ Rp×n represents the fraction matrix with each
element in hi is non-negative and sum to one. With the
assumption of the linear independent between each endmember
mi, we have the set y1, y2, . . . , yn in a (p-1)-dimensional simplex. To
solve the linear unmixing problem, the equivalent optimization is
solved by

M* � arg min
M

|det M( )|
s.t. QY ⪰ 0, 1TpQY � 1Tn

withQ � M−1. The problem has global optima when the matrix Q is
symmetric and positive-definite. However, in other cases, we can
only find sub-optimal solution by solving a sequence of non-smooth
convex sub-problems.

2.4.2 STsisal
The deconvolution process includes simplex corner

identification and proportion estimation. For convenience, we
denote the spatial transcriptomics data matrix subjected to
feature selection as Y in this context, and the problem can still
be formulated as:

Y � M × H (3)
Y ∈ RL×S, M ∈ RL×K, H ∈ RK×S.

In Equation 3, the variables yi,j ≥ 0 describe the observed gene
expression of the ith gene in the jth pixel. Similarly, mi,k ≥ 0
characterizes the gene expression of the ith gene in the kth cell
type, and hk,j ≥ 0 represents the proportion of the kth cell type in the
jth pixel. It is important to note that we assume that the number of
distinct cell types (K) is less than the total count of pixels (S) and
that the number of genes (L) is significantly greater than the number
of pixels. The relationship depicts this assumption: K< S≪ L. This
condition ensures the following rank relationship:

rank Y( ) � min rank M( ), rank H( )( ) � min K,K − 1( ) � K − 1.

(4)
To maintain the non-negativity of matrix Y, row normalization

is applied and we denote the normalized matrix as ~Y with
~yij � yij/∑S

s�1yis, for i � 1, 2, ., L and j � 1, 2, . . . , S. This
normalization ensures the sum of any row in the matrix ~Y equals
one (see Equation 4 for rank constraints). Then, we utilize the SISAL
(Simplex Identification via Split Augmented Lagrangian) algorithm
on matrix ~Y to identify the corners of the standard simplex.

By employing SISAL, we can derive the pseudo proportion
matrix Hp. However, it is worth noting that this matrix may not
necessarily adhere to the constraint of column sums equal to one. To
address this issue, we implement the following steps. Given that the
matrix Hp represents the corners of a simplex in a space with
dimensions K × S, our primary goal is to determine coefficients
α1, . . . , αK that provide the best possible fit to the
following equation:

Frontiers in Genetics frontiersin.org04

Fu et al. 10.3389/fgene.2025.1512435

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1512435


α1
..
.

αK

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ × Hp � c (5)

where c � (1, 1, . . . , 1, 1) denotes a vector of ones and matrix Hp is
denoted as:

Hp �
hp1,1 / hp1,S
..
.

1 ..
.

hpK,1 / hpK,S

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6)

Subsequently, we can calculate the proportion matrix H as:

H �
α1h

p
1,1 / α1h

p
1,S

..

.
1 ..

.

αKh
p
K,1 / αKh

p
K,S

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (7)

The matrixM corresponding to matrixH then can be calculated
using a rapid combinatorial non-negative least squares method. It is
crucial to emphasize that the Euclidean distance between every gene
and each corner is computed within the projected space following
corner identification. From each corner, we choose the top G genes
that are closest in proximity (see Equations 5–7 for the mathematical
formulation).

2.5 Cell-type label assignment using data-
driven approach

In this work, we introduce an advanced data-driven framework
to facilitate the annotation of cell-type labels within spatial
transcriptomics (ST) data. The main idea of the approach is to
utilize an external reference panel comprised of cell-type annotated
single-cell RNA sequencing (scRNA-seq) expression datasets. This
reference allows us to compare the gene expression patterns of cell
types in our deconvolution results with those in the
reference dataset.

Our methodological innovation is integrating posterior
probabilities derived from a Naive-Bayes classifier with Pearson
correlation coefficients. These coefficients assess the congruence
between the reference panel and the cell-type profiles estimated from
ST data. Specifically, the Naive-Bayes classifier is employed to
compute posterior probabilities by evaluating the likelihood of
the observed estimated profiles under each cell type label.
Concurrently, the Pearson correlation coefficient is utilized to
quantify the degree of similarity between the reference and the
estimated profiles.

To balance between differentiating diverse cell types and
recognizing their similarity to the reference, we introduce a novel
similarity scoring mechanism. This score, formulated as the mean of
the correlation coefficient and posterior probability, forms the
cornerstone of our cell-type prediction model. By amalgamating
the correlation metrics and confidence levels derived from the
classifier, our strategy significantly bolsters the precision of cell-
type label assignment.

Operationally, we develop a similarity score matrix wherein each
element signifies the composite similarity score pertinent to the
alignment of an estimated cell type with a reference cell type.

Employing an iterative selection process, we ascertain the
maximal score within this matrix, facilitating allocating the
column-associated predicted cell type to the row-corresponding
reference cell type. Cell types exhibiting incongruence with any
reference cell type or achieving a similarity score beneath a pre-
established threshold are categorized as unassigned. Through this
refined and systematic approach, we significantly enhance the
reliability and accuracy of cell-type label assignment in spatial
transcriptomics analysis.

2.6 Evaluation

To assess performance, we employ four metrics: RMSE (Root
Mean Square Error), JSD (Jensen-Shannon Divergence), PCC
(Pearson Correlation Coefficient), and MAE (Mean Absolute
Error). Employing multiple metrics allows for a more
comprehensive evaluation of the strengths and limitations of the
assessed deconvolution methods.

The MAE is calculated as follows:

MAE � ∑S
i�1∑K

j�1|P̂ij − Pij|
S × K

(8)

MAE is defined as the average absolute difference between the
estimated proportion matrix (P̂) and the actual proportion matrix
(P) (Equation 8). It is computed by summing the absolute
differences for each spot-cell pair and dividing by the total
number of spots (S) multiplied by the number of cell types (K).
By assessing the overall average bias, MAE provides a measure that
complements RMSE. Whereas RMSE may be affected by individual
wrongly deconvoluted spots, MAE considers the collective average
discrepancy between the estimated and actual proportions.

3 Results and discussion

3.1 Simulation study

3.1.1 Synthetic data generation
Our simulation study is built upon the utilization of single-cell

data. Within this approach, cell selection was conducted based on a
predetermined distribution extracted from a single-cell dataset. The
cumulative gene expression levels of the selected cells were then
amalgamated to replicate the expression profile linked with each
spatial spot. The single-cell dataset employed in our study originates
from the mouse nervous system (Zeisel et al., 2018), encompassing
18,263 genes and eight distinct cell types, of which six were
considered: Astrocytes, Ependymal, Immune, Neurons, Oligos,
and Vascular. The spatial transcriptomics data was collected from
260 spots within the mouse olfactory bulb, categorized into three
different layers.

In our simulations, we modeled each anatomical region to
contain a predominant cell type, reflective of typical biological
structures: neurons were the main cell type in layer 1, astrocytes
in layer 2, and oligodendrocytes in layer 3. To approximate the
complexity of actual biological tissues, the number of co-occurring
cell types in each region was determined by a uniform distribution
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U(2, 6). Proportions of cell types within these regions were assigned
based on random draws from a Dirichlet distribution with an equal
concentration parameter (α � 1.0) for all included cell types.

Furthermore, we introduced a hyperparameter termed the
heterogeneity rate to represent the proportion of spatial locations
that do not conform to the dominance of a single cell type—these are
the heterogeneous spots. For such spots, cell type proportions were
derived from a Dirichlet distribution (α � 1.0 across all cell types)
without a predefined dominant type. This rate was systematically
varied from 0 to 0.6, enabling an evaluation of STsisal’s performance
across a spectrum of heterogeneity scenarios.

3.1.2 Simulation result
We utilized simulated ST data from the MOB dataset to compare

the performance of STsisal with existing deconvolutionmethods such as
STdeconvolve (Miller et al., 2022), RCTD (Cable et al., 2022), and
CARD (Ma and Zhou, 2022). RCTD and CARD are reference-based
and require a single-cell transcriptomic reference for deconvolution. In
this study, the original single-cell expression data employed to generate
the spatial transcriptomics (ST) data were also utilized as a reference for

reference-based analytical methods. We considered three different
heterogeneity rates: 0, 0.3, and 0.6. Additionally, we performed
multiple simulation repetitions in different scenarios (default:
10 repetitions) to capture the impact of data variation on the
robustness of the methods. To address missing or dropout values,
we implement a two-step approach. Initially, missing values are filled
with zeros, followed by log-normalization to ensure dataset uniformity.
Subsequently, gene filtering is applied to enhance analysis robustness,
retaining only those genes detected in more than 5% but less than 100%
of pixels.

To evaluate the performance of these methods, we assessed four
dimensions: RMSE (Root Mean Square Error), Corr (Pearson
correlation coefficient), JSD (Jensen-Shannon Divergence), and
MAE (Mean Absolute Error). The results are presented in
Figure 2, which showcases the outcomes of the simulations. It is
evident from the results that the reference-based methods
outperform other approaches. This is expected as we provided an
ideal single-cell reference dataset for the analysis.

Specifically, STsisal outperforms STdeconvolve in terms of
various evaluation metrics. Our method exhibits lower values of

FIGURE 2
Evaluation of deconvolution performance using four different metrics, demonstrating the more robust ability of STsisal among reference-free
methods and its stability compared to reference-based methods. To assess the statistical significance of the observed differences, we conducted Wilcox
tests, with significance levels indicated as follows: ***: p<0.001, **: p<0.01, *: p<0.05.
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RMSE, JSD, and MAE, indicating higher accuracy in predicting cell
type proportions. Moreover, STsisal demonstrates a higher
correlation with cell type labels, providing further evidence of its
effectiveness in deconvolution tasks. Most of these results are
statistically significant. While the reference-free algorithm shows
slightly less robustness in the simulation experiment compared to
the reference-based algorithm, it is important to note that the
reference-based method relies on the availability of a perfect
reference scRNA-seq profile, which is rarely attainable in real-
world scenarios. This point is further supported by the real-
world experiments discussed in the following sections, as
reference-free methods can outperform reference-based methods
when there are no matched reference data.

3.2 Real data applications

We used several datasets to test the performance of reference-
based and reference-free methods. These datasets cover different
biological systems and experimental protocols. To help readers
understand the datasets used in this study, we provide a
summary table (Table 1) that lists key details, including the
number of genes, spatial locations or cells, data types, and the
sections where each dataset is discussed.

3.2.1 STsisal identify the structures of mouse
olfactory bulbs

In the previous section, we introduced the dataset of mouse
olfactory bulbs (MOB) for the simulation experiment. In this
section, we focused on analyzing actual spatial transcriptomics
(ST) data (Ståhl et al., 2016), with the single-cell RNA
sequencing (scRNA-seq) data (Tepe et al., 2018) from the same
tissue serving as a reference for comparison with reference-based
methods. There are five distinct cell types in the reference dataset,
including granule cells (GC, n = 8,614), Olfactory sensory neurons
(OSNs, n = 1,200), periglomerular cells (PGC, n = 1,693), mitral and
tufted cells (M-TC, n = 1,133) external plexiform layer interneuron

(EPL-IN, n = 161). Although EPL-IN has a limited amount, we still
maintained it in the reference and conducted experiments with all
five cell types. The MOB data consists of four distinct anatomical
layers, as depicted in Figure 3C: the granule cell layer (GCL), the
mitral cell layer (MCL), the glomerular layer (GL), and the nerve
layer (ONL). The H&E image of the data is shown in Figure 3B.
Notably, Figure 3A demonstrates that STsisal achieves the most
accurate recovery of the MOB structure, whereas the other three
methods tend to overlook the GL layer. While STdeconvolve can
also identify this boundary, it tends to overestimate the proportions
of rare cell types, such as the external plexiform layer interneurons
(EPL-IN), which only account for 1.26% of the cell population as
shown in Figure 3E. Moreover, the cell types inferred by STsisal
exhibit clear discrimination from one another, as shown in
Figure 3F. The visualization of STsisal’s aligned deconvolution
results, as depicted in Figure 3H, reveals an interesting aspect of
the analysis—due to the limited number of EPL-IN cells, they have
been co-aligned with GC cells. Despite this, the alignment between
cell type annotations and anatomical layer annotations is
remarkably accurate. Analysis of the MOB dataset indicates a
clear dominance of specific cell types within each olfactory layer.
Utilizing the Adjusted Rand Index (ARI) and purity metrics,
detailed in Figure 3G, we meticulously compared the
predominant cell types inferred by STsisal against layer
annotations based on H&E-stained images. This method allowed
us to quantify the degree of agreement between the dominant cell
types inferred by our method and the layers anatomically
characterized by H&E staining.

The performance of STsisal’s estimation can be further validated
by examining the cell-type composition and the expression patterns
of cell-type-specific genes across different layers. The analysis
operates under a crucial assumption: there exists a spatial
correlation between specific cell types and their corresponding
cell type-specific genes. For example, STsisal effectively classifies
the boundary between the GCL and ONL layers and identifies
corresponding spatially variable genes (SVGs) like Kitl, Penk,
S100a5, and Apold1, whose spatial distributions closely align

TABLE 1 Summary of datasets used in real data applications.

Dataset Protocol #Genes #Spatial locations/cells Data type Section

Mouse olfactory bulb
(Replicate 12)

Spatial
Transcriptomics

16,034 282 Spatial 3.2.1

GSE121891 10x Chromium 18,560 21,746 scRNA-seq

Human PDAC Spatial
Transcriptomics

25,753 428 Spatial 3.2.2

PDAC-A inDrop 19,736 1,926 scRNA-seq

PDAC-B inDrop 19,736 1,733 scRNA-seq

Breast cancer tissue Spatial
Transcriptomics

11,920 306 Spatial 3.2.3

GSM5354515 10x Chromium 11,920 3,024 scRNA-seq

Adult mouse brain Spatial
Transcriptomics

32,285 2,702 Spatial 3.2.4

seqFISH mouse cortex Spatial
Transcriptomics

9,684 72 Spatial 3.2.5
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with the dominant cell type distribution in each layer shown in
Figure 3D. Additionally, the proportion of each cell type,
deconvolved by STsisal, exhibits distinct spatial colocalization
patterns, facilitating clear classification of individual cell types.
Although the reference-free method may not perform as well as
reference-based methods in simulation experiments where a perfect
reference is available, the results presented in this study clearly
showcase the superior performance of STsisal in recovering the
structure and accurately classifying cell types within the mouse
olfactory bulbs dataset. Indeed, it is crucial to acknowledge the
potential limitations of reference-based methods when the quality of
the true reference data is not optimal. This recognition emphasizes
the significance of reference-free methods, which offer distinct

advantages in scenarios where obtaining a high-quality reference
is challenging or unattainable. By circumventing the reliance on
reference data, reference-free methods provide researchers with an
alternative and robust approach for achieving reliable deconvolution
results. STsisal, in particular, has demonstrated its effectiveness and
reliability in this study, making it a valuable technique for
researchers seeking accurate deconvolution results in
complex datasets.

3.2.2 Leveraging STsisal as a reference for selecting
matched references in reference-based methods

The second dataset we examined is derived from human
pancreatic ductal adenocarcinoma (PDAC) samples (Moncada

FIGURE 3
Visualization of results from actual MOB data. (A) Deconvolution results of actual Medial Olfactory Bulb dataset using STsisal, STdeconvolve, RCTD,
and CARD. The top panel displays the cell type composition in each pixel, while the bottom panel shows the dominant cell type in each pixel. (B, C)
Annotation of the MOB, including the H&E staining image of the MOB tissue slice (top) and the manual annotation by histologists (bottom). (D) Left:
Proportion of cell types V1, V2, V4, and V5 inferred by STsisal displayed on each pixel. Right: Expression levels of corresponding cell-type-specific
marker genes. (E) Cell type proportion in the scRNA reference data, where external plexiform layer interneurons (EPL-IN) only account for 1.26%. (F)
Correlations in cell-type proportion across spatial locations between pairs of cell types inferred by STsisal. (G) Comparative analysis of ARI and Purity
between STsisal and other methods. (H) Deconvolution alignment results of STsisal across five cell types.

Frontiers in Genetics frontiersin.org08

Fu et al. 10.3389/fgene.2025.1512435

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1512435


et al., 2020), the most common type of pancreatic cancer known for
its aggressiveness and poor prognosis. By analyzing the ST PDAC
dataset, researchers aim to gain deeper insights into the spatial
heterogeneity of gene expression within PDAC tumors, providing
valuable information about the tumor microenvironment, cell
interactions, and potential therapeutic targets.

Histologists annotated the data into multiple tissue regions,
including cancer, duct epithelium, pancreatic, and stroma, based
on H&E staining images (Figure 4B). We compared four different
methods: STsisal, STdeconvolve, RCTD, and CARD. For the
reference-based methods, we used two reference datasets of
scRNA-seq data. One dataset included 20 cell types from the

same sample, while the other consisted of pancreatic single-cell
data from another sample, encompassing 13 cell types. Figure 4A
displays the deconvolution results of the four methods under two
settings. It can be observed that STsisal accurately distinguishes
cancerous regions from non-cancerous regions and separates
pancreatic regions from stromal regions. In contrast, reference-
based methods perform better when the reference data is
matched, but their accuracy significantly decreases when the
reference data is mismatched. On the other hand, reference-free
methods are not affected by reference data and exhibit robustness
across different numbers of cell types. When assigning varying
numbers of cell types, the decomposition results of STsisal

FIGURE 4
Analysis of the PDAC data. (A) The deconvolution results of STsisal, STdeconvolve, RCTD, and CARD using different scRNA reference data. Scatter
pie plots illustrate the predicted cell-type composition by these four methods. (B) Annotation of the PDAC sample, including the H&E staining image of
the PDAC tissue slice (top) and themanual annotation by histologists (bottom). (C)Comparisons of the distribution of p-values obtained from the analysis
of variance (ANOVA) conducted on the markers identified by STsisal in the spatial transcriptomics (ST) data to assist in selecting appropriate
reference data for reference-based methods. (D) The scatter pie plots display the spatial distribution of cell types, inferred by STsisal, with each spatial
location showing the proportion of each cell type. Additionally, the bottom panel of the plot depicts the expression levels of correspondingmarker genes
specific to each cell type. (E) The plot depicts the Akaike Information Criterion (AIC) calculated by STsisal for varying numbers of cell types.

Frontiers in Genetics frontiersin.org09

Fu et al. 10.3389/fgene.2025.1512435

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1512435


consistently align with manually annotated regions. Figure 4E shows
a line graph for selecting the optimal number of cell types using
STsisal. Notably, the AIC value is minimized when the number of
cell types is set to 24, which is around the number of cell types in the
matched reference data. This observation suggests that the model
achieves an optimal fit according to the AIC criterion, highlighting
the accuracy and effectiveness of STsisal in estimating the number of
cell types. Figure 4C presents the p-values obtained from the analysis
of variance (ANOVA) conducted on the markers identified by
STsisal in the ST data. By comparing the differences in these
markers across different scRNA reference datasets, we observed
that the markers identified by STsisal exhibited greater statistical
significance in thematched reference dataset. This finding highlights
the potential of STsisal to assist reference-based methods in selecting
a more suitable scRNA reference dataset. Figure 4D displays the
spatial heatmaps of V4, V8, V11, and V15, along with the expression
patterns of their corresponding marker genes. Based on histological
images, V4 and V8 are associated with cancer, V11 is associated with
duct epithelium, and V15 is associated with the pancreas.

Studies have indicated that TM4SF1 is frequently overexpressed
in PDAC tumors compared to normal pancreatic tissue (Singhal
et al., 2019; Zheng et al., 2015). This overexpression is associated
with various malignant characteristics and poor prognosis in PDAC
patients. TM4SF1 is involved in promoting tumor growth, invasion,
and metastasis, contributing to the aggressiveness of PDAC. One
important aspect of TM4SF1’s role in PDAC is its involvement in
epithelial-mesenchymal transition (EMT). EMT is a biological
process where epithelial cells lose their characteristics and acquire
a mesenchymal-like phenotype, enabling them to migrate and
invade surrounding tissues. TM4SF1 has been shown to induce
EMT in PDAC cells, enhancing their invasiveness and metastatic
potential. Moreover, TM4SF1 influences multiple signaling
pathways associated with cancer progression. It can activate
pathways such as PI3K/Akt, Wnt/β-catenin, and Notch, known
to regulate cell survival, proliferation, and migration. By modulating
these pathways, TM4SF1 promotes PDAC cell survival, enhances
their invasion into nearby tissues, and supports the formation of
distant metastases. High expression of TM4SF1 is also associated
with reduced sensitivity of PDAC cells to certain chemotherapy
drugs, limiting the effectiveness of treatment strategies. APOL1 is
involved in promoting cell proliferation, migration, invasion, and
metastasis in PDAC, affecting the invasive behavior of cancer cells
(Sedlakova et al., 2014). APOL1 is believed to exert its effects by
modulating cell survival, apoptosis, and autophagy-related
pathways. Additionally, APOL1 is associated with certain genetic
variations that increase the risk of developing PDAC. It is
hypothesized that these variations disrupt cellular processes and
signaling pathways involved in PDAC progression.

Compared to normal duct epithelial cells, elevated levels of
TFF3 are observed in PDAC tissues. This abnormal expression
suggests that TFF3 may be involved in the development and
progression of ductal epithelial cancer. TFF3 is involved in
promoting cell proliferation, migration, invasion, and metastasis
in ductal epithelial cancer. It has been shown to stimulate cell growth
and activate survival pathways while inhibiting apoptosis.
Additionally, TFF3 can enhance the resistance of cancer cells to
chemotherapy drugs, further promoting disease progression. These
effects are believed to be mediated through the activation of various

signaling pathways, including MAPK and PI3K/AKT pathways
(Cheng et al., 2022).

SLC38A10 is a transporter protein that regulates the transport of
amino acids across cell membranes, playing a crucial role in cellular
metabolism (Cheng et al., 2022). Compared to normal pancreatic
tissue, elevated expression of SLC38A10 is observed in PDAC
tissues. This abnormal upregulation suggests that SLC38A10 may
be involved in the development and progression of PDAC.
Researchers have found that increased expression of
SLC38A10 promotes the uptake of essential amino acids,
providing fuel for the metabolic demands of cancer cells. This
enhanced amino acid transport facilitates the growth and
proliferation of PDAC cells, contributing to tumor progression.
Targeting SLC38A10 holds therapeutic significance for PDAC
treatment. Inhibiting SLC38A10 expression or activity has been
found to decrease the growth and viability of PDAC cells, indicating
its potential as a novel therapeutic target for PDAC.

3.2.3 Discrimination and interpretation of distinct
regions in breast cancer sample using STsisal

We conducted an analysis of the 10X Visium dataset obtained
from cancerous breast tissue, comprising 306 spots and
11,920 genes. Our study tested the effectiveness of various
methods, namely STsisal, STdeconvolve, RCTD, and CARD.
Additionally, we employed a reference-based approach using
single-cell data consisting of 3,024 cells and eight cell types as
the reference dataset.

Figure 5A showcases a histological image of the region under
examination and the human-annotated classified regions
(Andersson et al., 2021). Subsequently, Figure 5B presents the
deconvolution results obtained from each method. Notably, our
method’s deconvolution results align more closely with the human-
annotated regions, particularly in distinguishing the regions
associated with invasive cancer. In contrast, the results obtained
from the reference-based methods were less satisfactory, likely due
to limitations and biases in the quality of the single-cell reference
data. Importantly, the reference-based methods failed to identify
distinct regions in their deconvolution results. The robust ability of
our method to precisely annotate and interpret cancer samples can
greatly enhance our understanding of the underlying biology.

To further explore the differences in cell type proportions across
various regions, we categorized the spots into different sets based on
their respective manually annotated regions (excluding
undetermined regions). Subsequently, we conducted pairwise
Wilcoxon Rank Sum tests to evaluate differences in the regions
where STsisal decomposed each cell type. Figure 5C depicts the
boxplot of the test results, including the corresponding p-values.
These results reveal significant variations in the distribution of
predicted cell type proportions among different regions, thus
validating the rationality of STsisal decomposition. Furthermore,
Figure 5D presents the decomposed cell types and their
corresponding marker genes. When comparing the heat maps of
the ratio and marker gene expression patterns, we consistently
observed that the matching marker gene expression patterns
identified by STsisal remained in alignment, as depicted
in Figure 5E.

Moreover, we performed functional enrichment analysis on the
50 marker genes associated with cell type 5, as identified by STsisal.
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The top terms resulting from this analysis are presented in Table 2.
Upon comparing tissue images, we hypothesize that cell type V5 is
related to invasive cancer. Notably, the identified important terms
align with breast cancer, further substantiating the accuracy of our
reverse transcription findings. Breast cancer is a complex disease
characterized by dysregulated cellular processes and signaling
pathways. The term “Response to growth hormone” refers to the

cellular response triggered by the presence of growth hormone,
which significantly impacts tumor growth and proliferation in breast
cancer (Subramani et al., 2017). Gaining a comprehensive
understanding of the regulation of this pathway holds promising
prospects for targeted interventions. Moreover, studies have shown
that breast cancer survivors are at an increased risk of cardiovascular
complications following chemotherapy (Liu et al., 2023). Notably,

FIGURE 5
Analysis of the breast cancer data. (A) H&E staining image of the breast cancer tissue slice. (B) Manual annotation by histologists. (C) The spatial
scatter pie plot displays inferred cell-type composition using STsisal, Stdeconvolve, RCTD, and CARD. (D) Comparison of cell type proportions among
three distinct manual regions. (E) The scatter pie plots of the proportion of V2, V4, V5, V6 and the corresponding marker gene expression level.

TABLE 2 Top GO terms of marker genes found in V5.

GOBPID Adjusted P-value Term

GO:0060416 0.01188 Response to growth hormone

GO:0003231 0.01260 Cardiac ventricle development

GO:0050909 0.02640 Sensory perception of taste

GO:1901888 0.02640 Regulation of cell junction assembly

GO:2000811 0.02640 Negative regulation of anoikis

GO:1990000 0.02640 Amyloid fibril formation

GO:0001655 0.02640 Urogenital system development

GO:0045109 0.02640 Intermediate filament organization

GO:0050892 0.02640 Intestinal absorption

GO:0051497 0.02640 Negative regulation of stress fiber assembly
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prior to treatment, breast cancer patients often exhibit relative left
ventricular hypertrophy (Maayah et al., 2020), which is closely
associated with the pathway “Cardiac ventricle development.”
Another important term, “Regulation of cell junction assembly,”
is critical in maintaining cell-cell adhesion and tissue integrity.
Dysregulation of this process may contribute to the invasive
properties of breast cancer cells (Bazzoun et al., 2013). “Negative
regulation of anoikis” refers to inhibiting programmed cell death
due to the loss of cell-matrix interactions. This phenomenon is
closely associated with increased survival and metastatic potential in
breast cancer cells (Tajbakhsh et al., 2019). “Intermediate filament
organization” pertains to the structural arrangement of intermediate
filaments within cells, impacting cell motility, invasion, and
metastasis in breast cancer (Sharma et al., 2019). Additionally,
“Regulation of lipopolysaccharide-mediated signaling pathways”
involves the control of immune responses triggered by
lipopolysaccharides. Dysregulation of this pathway may influence
inflammatory and immune evasion mechanisms in breast cancer
(Wu et al., 2021), highlighting its potential as a therapeutic target.

3.2.4 STsisal demonstrates applicability to higher-
resolution ST dataset

We next utilized Next-generation sequencing (NGS)-based data,
such as 10X Visium, which provides the whole transcriptomics and
achieves a resolution range from 50 μm2 to 10 μm2. To explore the
performance of STsisal on higher resolution data, we analyzed the

10X Visium spatial transcriptomics data of mouse coronal brain
sections, which included 32,285 genes and 2,702 spots. We
performed deconvolution with K � 20 cell types. Figure 6A
displays the results of deconvolution, while Figure 6B shows the
Allen mouse brain atlas image (Lein et al., 2007). The comparison
between the two figures reveals a high consistency between our
deconvolution results and annotated cell types. The result indicates
the successful identification of brain structures and accurate
inference of the proportions of different cell types in the dataset
at high resolution. Figure 6C visualizes the spatial distribution of
three cell types (V5, V6, V18), which are mapped to brain fiber
tracts, thalamus (TH), cerebral cortex (CTX), and pyramidal layer.

We also presented expression distribution maps of marker genes
specifically identified for each cell type. Identifying marker genes
further enhances our understanding of the molecular characteristics
and functional roles of different cell types in the brain. Fiber tracts,
also known as white matter tracts, are bundles of axons in the central
nervous system that establish connections between different brain
regions (Yagmurlu et al., 2016). These tracts facilitate information
transmission and enable coordinated functions across various brain
areas (Friederici, 2015). The relationship between fiber tracts and
myelin oligodendrocyte glycoprotein (MOG) lies in MOG’s role in
maintaining the integrity and stability of myelin (Buss and Schwab,
2003). Myelin is a fatty substance produced by specialized cells called
oligodendrocytes. It plays a critical role in insulating and protecting
axons and promoting the efficient transmission of electrical signals

FIGURE 6
Analysis of 10X Visiummouse coronal brain data. (A) The spatial scatter pie plot displays inferred cell-type composition using STsisal. (B) Allenmouse
brain atlas image with tissue type. (C) The scatter plot of the proportion of V5, V5, V18 and the corresponding marker gene expression level.
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along the fibers (Lopez et al., 2011). Alterations in MOG expression
or function can disrupt myelin stability and integrity. Abnormalities
in MOG can lead to interruptions in myelin sheath formation,
impairing signal transmission and altering communication between
brain regions (Quarles et al., 2006).

The thalamus (TH) is a crucial structure in the brain, acting as a
relay station for sensory and motor signals. It participates in various
functions like perception, attention, and motor control (Ward,
2013). Protein tyrosine phosphatases (PTPs) have been found to
regulate neuronal growth, differentiation, and plasticity (Zhao et al.,
2022). They modulate signaling pathways associated with synaptic
transmission, neuronal survival, and synaptic plasticity. PTPs have
been demonstrated to regulate the development and maturation of
thalamocortical connections, which are connections between the
thalamus and the cerebral cortex (Bandtlow and Zimmermann,
2000). Synaptoporin is a protein primarily expressed in the brain,
particularly within synapses—the junctions where neurons
communicate. Synaptoporin is associated with synaptic
remodeling and reorganization, especially in response to sensory
input or learning experiences (Greengard et al., 1993). It participates
in the dynamic changes that occur during processes like long-term
potentiation (LTP) and long-term depression (LTD), which are
mechanisms underlying synaptic plasticity and memory
formation (Oguro-Ando et al., 2021). The connection between
the cerebral cortex, particularly the pyramidal layer, and
synaptoporin lies in synaptoporin’s regulatory role in synaptic
transmission and plasticity in pyramidal neuron synapses.

3.2.5 STsisal identifies cell type number on
seqFISH data

We analyzed the seqFISH mouse cortex dataset, which
consists of 524 cells corresponding to 13 cell types (Eng et al.,
2019). After applying the grid-based processing described in the
reference, the simulated data comprised 72 points involving
9,684 genes (Li et al., 2022). We tested two reference-free
deconvolution methods, namely STsisal and STdeconvolve. We
randomly sampled 3,000/6,000/9,000 gene expressions as test
data for the grid-based processed data. Figure 7A displays the
results of both methods in selecting the optimal number of cell
types K for different gene dimensions. The first row shows the
AIC values of K ranging from 5 to 15. The red line in the second
row represents perplexity change (Burnham et al., 2011).
Comparing these two figures, we observed that STsisal
performed better in selecting K, with AIC values closer to the
true value of 13. Figure 7B illustrates the transcriptional profiles
of STsisal and the ground truth composition of the data in
Figure 7A using a pie chart. To ensure a fair comparison, we
randomly selected ten sets of different data for each gene
dimension. We calculated the correlation between the results
of both methods and the ground truth. Figure 7C presents the box
plots describing the results of the two methods. STsisal
demonstrated higher deconvolution accuracy. Furthermore, we
showcased the expression distribution of marker genes identified
by STsisal in their respective regions. By comparing the
deconvolution results of STsisal, we determined that
V6 corresponded to ExcitatoryL5 and L6. Figure 7D displays
the actual distribution of ExcitatoryL5 and L6, the estimated
distribution of V6 by STsisal, and the expression distribution of

marker genes corresponding to V6 (Kim et al., 2015). Nptx1 is
selectively expressed in subsets of excitatory neurons, including
neurons in layers 5 and 6 of the cerebral cortex. Nptx1 is a protein
primarily expressed in the brain, participating in various immune
and inflammatory responses (Deban et al., 2009). Nptx1 is
involved in synaptic plasticity in the brain, such as long-term
potentiation (LTP) and long-term depression (LTD),
contributing to the regulation of the balance between
excitatory and inhibitory synaptic inputs (Morimoto and
Nakajima, 2019).

4 Discussion

In this study, we introduced STsisal, a novel reference-free
deconvolution framework designed to address the challenge of
resolving cell-type mixtures within spatial transcriptomics (ST)
spots. By leveraging the SISAL algorithm—a well-established
hyperspectral unmixing method—STsisal substantially
advances the resolution of ST data toward single-cell
precision. Our extensive evaluations on both simulated and
real-world datasets, including high-resolution platforms such
as 10X Visium and seqFISH+, reveal that STsisal outperforms
existing reference-free methods and achieves performance on par
with reference-based approaches in scenarios where well-
matched single-cell RNA sequencing (scRNA-seq) references
are unavailable.

A key strength of STsisal lies in its cohesive pipeline, which
integrates (1) optimal estimation of the number of cell types, (2)
selection of cell-type-specific features, (3) geometric analysis for cell-
type proportion estimation, and (4) cell-type label assignment. This
design contrasts with methods reliant on probabilistic latent models
(e.g., latent Dirichlet allocation), thereby offering greater robustness
against noise and variability. The application of SISAL’s geometric
principles, coupled with a targeted feature selection strategy, ensures
reproducibility across diverse experimental contexts and confers
resilience in detecting subtle cellular heterogeneities.

Despite its advantages, STsisal is constrained by the SISAL
algorithm, specifically the requirement that the number of genes
exceed the number of spots to preserve the geometric stability of the
underlying simplex. While feature selection can address this
limitation by reducing the dimensionality of the gene space, it
entails higher computational costs and a risk of information loss.
These issues become especially important for advanced ultra-high-
resolution ST technologies, such as Visium HD and Stereo-seq,
which generate tens of thousands of spots. Similar constraints also
affect STdeconvolve, underscoring the urgent need for new reference
free methods that can handle the rapidly growing scale of ST data
without compromising performance.

In conclusion, STsisal provides a robust and effective solution
for deconvoluting ST data without reliance on scRNA-seq
references. By revealing cell-type compositions and underlying
tissue architecture, it offers valuable insights into complex
biological systems. While advancements to address computational
demands in ultra-high-resolution ST datasets remain necessary, the
framework represents a significant step forward in reference-free
spatial transcriptomics analysis. Future extensions might focus on
optimizing computational strategies for large-scale data,
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incorporating prior biological knowledge, and enabling multimodal
integrative analyses. Collectively, these refinements have the
potential to broaden the applicability of STsisal, further enriching
our understanding of tissue organization and function across diverse
experimental settings.
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