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Breast cancer (BC) continues to pose a global health threat and presents
challenges for treatment due to its high heterogeneity. Recent advancements
in the understanding of mitochondrial permeability transition (MPT) and the
regulatory roles of long non-coding RNAs (lncRNAs) offer potential insights
for the stratification and personalized treatment of BC. Although the
association between MPT and lncRNAs has not been widely studied, a few
research studies have indicated a regulatory impact of lncRNAs on MPT,
further deepening the understanding of the tumor. To identify reliable
biomarkers associated with MPT for managing BC, bulk RNA-seq data of
MPT-related lncRNAs acquired from The Cancer Genome Atlas (TCGA) and
the Genotype-Tissue Expression (GTEx) project were utilized to assess BC
patients. A scoring system, termed the MPT-related score (MPTRscore), was
developed using LASSO-Cox regression on data from 1,029 BC patients from
TCGA-BRCA. Meanwhile, the superior prognostic accuracy of the MPTRscore
was demonstrated by comparing it with biomarkers, including PAM50 subtyping
for standardization. Subsequently, a clinical prediction model was created by
incorporating the MPTRscore and clinical variables. This analysis revealed two
distinct MPTRscore groups characterized by different biomolecular processes,
tumor microenvironment (TME) patterns, and clinical outcomes. The MPTRscore
was further investigated through unsupervised consensus clustering of TCGA-
BRCA based on MPTRscore-related prognostic genes. Additionally, the
MPTRscore was identified as an independent prognostic factor for BC and
showed guiding utility in immunotherapy and chemotherapy response.
Specifically, patients with a low MPTRscore exhibited better prognosis and
treatment responses compared to those with a high MPTRscore. Significantly,
the relevance of clustering results and MPTRscore was found to be mediated by
lncRNA transcript RP11-573D15.8-018. In conclusion, MPTRscore-related
clusters were identified in BC, and an integrative score was developed as a
biomarker for predicting BC prognosis and therapeutic response. Additionally,
molecular interactions underlying the relationship between MPTRscore-related
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clusters and MPTRscore were uncovered, proving insights for BC stratification.
These findings may aid in prognosis determination and therapeutic decision-
making for BC patients.
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permeability transition

1 Introduction

Breast cancer (BC) was the most commonly diagnosed cancer
worldwide in 2020 and remains a major public health concern due to
its high prevalence and mortality rate. BC affects millions globally,
with over 2.3 million new cases recorded annually, leading to
significant morbidity and mortality (Sung et al., 2021). Despite
advancements in treatment, accurately predicting the prognosis
of BC remains difficult due to its heterogeneous nature: BC can
be categorized into five principal molecular subtypes using
PAM50 technology (Xia et al., 2023).

The mitochondrial permeability transition (MPT) involves the
formation of a highly conductive pore within the inner
mitochondrial membrane, which is induced by excessive Ca2+

and reactive oxygen species (ROS). This transition leads to
notable changes in both the structure and function of
mitochondria, affecting various enzyme activities that control
mitochondrial respiration and ATP synthesis (Bauer and
Murphy, 2020). MPT is characterized by the blunt increase in
permeability of the mitochondrial membranes, and it can be
critical to miscellaneous cellular physiological processes, such as
the control of mitophagy and the invigoration of apoptosis or
necrosis. The MPT can be controlled by the mitochondrial
permeability transition pore (mPTP), a complex located at the
inner and outer mitochondrial membranes (Bonora et al., 2022).
Interestingly, MPT is related to cancer prognosis and has been
considered an available target for cancer treatment (Dalla Via
et al., 2014).

Long non-coding RNAs (lncRNAs) are RNA molecules longer
than 200 nucleotides that do not encode proteins (Bhan et al., 2017).
lncRNAs play various significant roles in regulating transcriptional
and post-transcriptional modifications. They are closely associated
with regulated cell death, which is strongly related to cancer
prognosis: lncRNAs have been shown to affect apoptosis,
autophagy, and necrosis (Rossi and Antonangeli, 2014; Liu et al.,
2018; Wang et al., 2016). Certain lncRNAs have been identified to
function by altering gene expression through binding to the 3′-
untranslated regions (3′-UTRs) of mRNAs, acting as enhancers, or
interacting with transcription factors and miRNAs to modulate gene
networks related to cancer (Yang et al., 2022). In BC, lncRNAs have
gained attention for their potential as biomarkers for diagnosis and
prognosis (Zhu et al., 2021). The lncRNA HOX transcript antisense
intergenic RNA (HOTAIR) has been found to interact with the
polycomb repressive complex 2 (PRC2), influencing epigenetic
modifications and affecting gene expression patterns involved in
BC progression (Mozdarani et al., 2020).

LncRNAs’ association with MPT has not been widely studied.
However, several studies have revealed a subtle regulatory role of
lncRNAs on MPT. For instance, a recent research study found that

the lncRNA OIP5-AS1 demonstrated an anti-mitochondrial-
apoptosis function in HL-1 cells by suppressing the opening of
the mPTP (Niu et al., 2024). Additionally, a few studies have
successfully identified MPT-related lncRNAs (MPTRLs) using
bioinformatics tools (Huang et al., 2023). There have been no
studies linking BC to MPT-driven necrosis. This study aims to
identify the elusive connection between MPT-driven necrosis-
related RNA and BC by building a prognostic model and
analyzing the drug sensitivity of treatments currently given to BC
based on the model constructed.

To find possible biomarkers for BC stratification related to
MPTRLs, in this study, a stable 7-MPTRL-based risk score was
constructed via LASSO-Cox regression. Furthermore, we identified
high and low MPT-related score (MPTRscore) groups with
differences in molecular processes, tumor microenvironment
(TME) patterns, and prognosis. Then, a clinical prediction model
integrating the MPTRscore and other clinical parameters was built
for the prognosis prediction of BC patients. Moreover, a potential
prospect of the MPTRscore for chemotherapeutic and
immunotherapeutic sensitivity prediction was demonstrated.
Based on the MPTRscore, two MPTRscore-related clusters were
identified. Furthermore, the lncRNA transcript RP11-573D15.8-
018 was found to be the key linkage between MPTRscore-related
clusters and MPTRscore by constructing an lncRNA–RNA
interaction network.

2 Materials and methods

We integrated multi-omics data analysis, machine learning, and
experimental validation to systematically identify BC-associated
MPTRLs and construct a prognostic risk model. First,
transcriptomic data from The Cancer Genome Atlas (TCGA)-
BRCA and Genotype-Tissue Expression (GTEx) cohorts were
processed. Differential expression and correlation analyses were
performed on the data to pinpoint MPTRLs linked to BC
pathogenesis, followed by the development of a risk score model
predictive of patient survival. Furthermore, a nomogram was
constructed incorporating the risk score, age, and T and N stages
to predict prognosis. Its performance was assessed through
statistical analysis. Pathway enrichment, tumor immune cell
analyses, and pharmacogenomic profiling were performed on the
low- and high-risk groups. PAM50 classification subtypes were also
analyzed to unravel the relationship between MPTRscore and
PAM50 classification subtypes. MPTRscore-related prognostic
genes were selected using differential expression analysis and
univariate Cox regression, with patients divided into two clusters
using unsupervised clustering. Pharmacogenomic profiling, single-
cell resolution clustering, and the construction of an lncRNA–RNA
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interaction network were further conducted based on the clustering
groups. Ultimately, RT-qPCR and RNA knockdown experiments
were performed to validate key lncRNAs.

2.1 Acquisition of BC-associated MPT-
related lncRNAs

To extract the BC-associated MPT-related lncRNAs, it is
necessary to prepare gene expression profiles of breast cancer
samples and genes related to MPT. The BC transcriptome
sequencing data were downloaded in logTPM from TCGA-BRCA
of the TCGA database using the R package “TCGAbiolinks” along
with the attached clinical information (Colaprico et al., 2015). In
addition, integrated transcriptome sequencing data of BC and
normal breast samples from TCGA and GTEx databases, coupled
with clinical information in counts, was downloaded from UCSC
Xena (https://xena.ucsc.edu/); the batch effect between the two
databases had already been eliminated, followed by the extraction
of data from primary BC patients (Goldman et al., 2020). The
conversion relationship between the gene symbol and gene ID of
lncRNAs can be acquired in supplementary data. When multiple
probes were matched to the same gene symbol, the expression level
of that gene was taken as the mean value. In order to alleviate
statistical error, data of BC patients without overall survival (OS)
values or with OS values smaller than 30 days were deleted. With the
attached survival data, 1,129 patients were selected and separated
into the train and test risk groups arbitrarily using the caret R
package, with a 4:1 ratio (Kuhn, 2008).

2.2 Identification of BC-associated MPTRLs

To further identify BC-associated MPTRLs, the relationship
between the expression of MPT-related genes and a set of
lncRNAs in breast cancer samples was first calculated. Only
those lncRNAs that both significantly correlated with MPT-
related genes and were differentially expressed between tumor
and adjacent normal tissues were considered. Differentially
expressed lncRNAs were identified through differential gene
expression (DEG) analysis of transcriptome sequencing data
downloaded from TCGA and GTEx. DEG analysis is a technique
used to identify genes expressed at significantly different levels
between tumor and normal samples. Differential lncRNA
expression analysis was conducted using specific criteria: a false
discovery rate (FDR) of less than 0.001 and a log fold change (logFC)
of at least 0.585. Based on these thresholds, 323 differentially
expressed lncRNAs were identified. A volcano plot was generated
to illustrate the differences in lncRNA expression between tumor
tissues and adjacent normal tissues. The gene set associated with
MPT, comprising 39 genes, was sourced from a recent study, which
can also be downloaded from supplementary data (Liu et al., 2023).
Correlation analysis was conducted to assess the relationship
between 39 MPT-related genes and the differentially expressed
lncRNAs identified. Subsequently, 1,478 lncRNAs exhibited
Pearson correlation coefficients greater than 0.3 and a
significance level of p < 0.01, with MPT-related genes classified
as MPTRLs. A correlation coefficient >0.3 and a p-value threshold

were applied to ensure statistical significance and biological
relevance, thus reducing noise and improving the robustness of
the selection process.

2.3 Establishment of the risk model

After acquiring MPTRLs, a risk model was developed by
quantifying and integrating the expression levels of multiple
MPTRLs. First, we performed univariate Cox regression for each
MPTRL to evaluate its individual association with OS, using a
significance threshold of p < 0.05. The univariate Cox regression
allowed us to perform regression between the expression levels of
lncRNAs and overall survival outcomes and screen for lncRNAs that
were expressed to be significantly associated with survival outcomes.
Next, to reduce potential multicollinearity and avoid overfitting, we
applied LASSO regression with 10-fold cross-validation to the
significant lncRNAs from the univariate analysis. The LASSO
method automatically selected the most predictive lncRNA
features by carrying out regression between the expression levels
of lncRNAs and survival outcomes, shrinking the coefficients of less
informative lncRNAs to 0. The lncRNAs with non-zero coefficients
were incorporated into a multivariate Cox regression model, which
works similarly to a univariate Cox regression model but considers
covariates such as age and TNM staging to exclude potential
confounders. The optimal lambda value used to train the model,
namely, the regularization parameter in the regression function, was
determined through cross-validation. The final risk score model was
based on the coefficients obtained from this comprehensive
multivariate analysis, as shown in the following formula:

risk score � ∑
n

k�1
coef lncRNAi( ) * expr lncRNAi( ).

In this formula, coef(lncRNA) represents the multivariate Cox
regression coefficient, expr(lncRNA) represents the expression level
of lncRNA, and n represents the total number of lncRNAs to be
added up. The risk scores of the samples were calculated, and the
tumor samples were divided into high- and low-risk groups based on
the median.

2.4 Substantiation of the risk model:
concordance index and receiver operating
characteristic

To assess the prediction ability of the risk model constructed,
concordance index (C-index) and receiver operating characteristic
(ROC) curves were used to evaluate the predictive accuracy of the
risk model and multiple factors over time. The ROC curve visualizes
a classifier’s prediction performance by plotting the true positive rate
(TPR) against the false positive rate (FPR); the area under the curve
(AUC) quantifies performance, with a higher AUC indicating better
model accuracy. The ROC curves were plotted using the timeROC R
package (Blanche et al., 2013). Similarly, the C-index measures the
discriminatory power of a model. It calculates the proportion of all
possible pairs of observations where the predicted order matches the
actual outcome. A C-index of 1 indicates perfect prediction, while
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0.5 suggests random prediction. The C-index was calculated using
the R package rms (Harrell, 2022).

2.5 Construction of a nomogram, calibration
curves, and decisive curve analysis

Multiple means were taken to further visualize the prediction
ability of the risk model. A nomogram that incorporates the
MPTRscore, age, and T and N stage to forecast the 1-year, 3-year,
and 5-year OS using the rms package in R, which is a graphical tool
that represents a statistical model allowing users to calculate
probabilities or outcomes based on various input variables through
a series of scales and lines, was constructed (Harrell, 2022).
Additionally, calibration curves and decision curve analysis (DCA)
capable of evaluating the predictive accuracy of the nomogram were
produced. Calibration curves assess the agreement between predicted
probabilities and observed outcomes. They plot predicted probability
against the actual frequency of events, helping evaluate how well a
model’s predictions align with reality using the rms R package
(Harrell, 2022). In addition, DCA curves evaluate the clinical
utility of a model by plotting the net benefit across different
threshold probabilities using the rmda R package (Brown, 2018).
They help compare models by assessing their effectiveness in
decision-making.

2.6 Pathway enrichment analyses

Gene set variation analysis (GSVA) is a method used to estimate
variations in gene set activity across samples. It transforms gene
expression data into pathway-level scores, which facilitate the
identification of biologically relevant changes, enhance the
understanding of complex biological processes, and assess the
impact of gene sets on phenotypic variations. On the other hand,
gene set enrichment analysis (GSEA) identifies gene set enrichment
by comparing ranked gene lists between groups. Using C2:KEGG
gene sets, the SangerBox platform was utilized to perform GSEA to
identify pathways significantly enriched between low- and high-risk
groups (Shen et al., 2022). Pathways were considered significantly
enriched based on a threshold of p < 0.05 and a |NES| greater than
1.5. Additionally, GSVA was directly applied to MPTRL using the
platform LncSEA 2.0 (https://bio.liclab.net/LncSEA/index.php) with
the dataset Experimental_Validated_Function, which includes
pathological functions of lncRNAs validated through experiments
(Chen et al., 2020).

2.7 Investigation of the TME and immune
checkpoints

The expression levels of immune checkpoints and abundances of
tumor-infiltrating immune cells can also be calculated from the gene
expression profile. Based on the results of GSEA, the immune
environmental milieu across different risk groups was examined.
The immune infiltration statuses among BC patients were analyzed
using CIBERSORT (Newman et al., 2015). The discrepancies in
infiltrating immune cells were evaluated using the Wilcoxon signed-

rank test and the ggpubr, reshape2, and ggplot2 R packages, with
findings presented in a bar chart (Kassambara, 2023; Wickham, 2007;
Wickham, 2016). Additionally, comparisons of TME scores and
immune checkpoint activations between low- and high-risk groups
were conducted using the ggpubr R package (Kassambara, 2023).

2.8 Therapeutic response prediction of
the MPTRscore

The R package pRRophetic was employed to assess the response to
chemotherapy, measured by the half-maximal inhibitory concentration
(IC50) for each BC patient, based on data from the Genomics of Drug
Sensitivity in Cancer (GDSC) (https://www.cancerrxgene.org/)
(Geeleher et al., 2014). In addition, immunotherapeutic responses
between the high and low MPTRscore groups were predicted using
SubMap on the GenePattern (https://www.genepattern.org/) platform
(Reich et al., 2006).

2.9 Identification of
PAM50 classification subtypes

PAM50 is a 50-gene signature used to classify breast cancer into
intrinsic subtypes, such as luminal A, luminal B, HER2, and basal-like
subtypes. It serves as a gold-standard biomarker for BC, aiding in
prognosis prediction and personalized treatment decisions based on
tumor molecular characteristics. PAM50 classification subtypes were
identified in the TCGA-BRCA cohort based on gene expression data
using the R package genefu (Gendoo et al., 2016). The stratification of
PAM50 subtypes enabled further analysis of the relationship between
the MPTRscore and PAM50 classification subtypes.

2.10 Patient clustering and further analyses

Unsupervised consensus clustering is an automatic grouping
method that aggregates results from multiple clustering algorithms
to form a consensus. This approach enhances clustering stability and
accuracy by identifying patterns consistent across different
algorithms, providing a robust clustering solution. On the other
hand, t-distributed stochastic neighbor embedding (t-SNE) and
principal component analysis (PCA) are dimensionality reduction
techniques that visualize high-dimensional data by mapping
similarities into a lower-dimensional space to highlight clusters
and patterns within the data. For the investigation of
stratification in BC patients, potential molecular subtypes were
identified using the ConsensusClusterPlus R package, with
parameters set as follows: “distance” to Pearson, “clusterAlg” to
pam, and “seed” to 123, based on the expression of five MPTRscore-
related prognostic genes (Wilkerson and Hayes, 2010). The
prognostic genes analyzed were selected by performing
differential expression analysis with a threshold of p < 0.001 and
logFC>0.585, along with univariate Cox regression analysis with a
threshold of p < 0.05. In addition, the Rtsne R package was employed
to conduct t-SNE analyses of immune function, while drug
sensitivity analyses were conducted using the GSVA and
pRRophetic R packages (Geeleher et al., 2014).
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2.11 Single-cell analysis of expression
distribution of MPTRscore-related
prognostic genes in different cells in BC

Single-cell analysis investigates the unique molecular
characteristics of individual cells, enabling a detailed exploration
of gene expression and cellular heterogeneity. To characterize the
gene expression patterns of MPTRscore-related clusters, the
expression distribution of MPTRscore-related prognostic genes in
different cells in BC was investigated on the platform ACLBI
(https://www.aclbi.com/static/index.html#/) (Home for
Reasearchers, 2025). The BRCA_GSE176078 single-cell data in
the .h5 format and annotation results from TISCH were first
downloaded, processed, and analyzed using R software
MAESTRO and Seurat (Wang et al., 2020; Butler et al., 2018).
Subsequently, cells were re-clustered using the t-SNE method.
Finally, expression distributions of MPTRscore-related prognostic
genes in different cells were analyzed.

2.12 Construction of an lncRNA–RNA
interaction network linking MPTRLs and
MPTRscore-related prognostic genes

To explore the molecular mechanism of the MPTRscore and the
relationship between clusters and risk groups, an lncRNA–RNA
interaction network was established. First, the co-expression
network of MPTRLs and MPTRscore-related prognostic genes
was constructed. It was built through Pearson correlation analysis
between eight MPTRLs and five MPTRscore-related prognostic
genes based on a threshold of p < 0.05 and |R| greater than 0.3.
Furthermore, the RNA–RNA interactions between the selected
RNAs were predicted based on the base-pairing principle and
interaction energy with a threshold of −16 kcal/mol through the
platforms LncRRIsearch (https://rtools.cbrc.jp/LncRRIsearch/index.
cgi?t4=&hist=&em=em15) and ENCORI (https://rnasysu.com/
encori/) (Fukunaga et al., 2019; Li et al., 2014; Zhou et al., 2025;
Shannon et al., 2003).

2.13 Cell lines

Human normal mammary epithelial cells (MCF-10A) and
breast cancer cells (SK-BR-3, MCF-7, HCC1806, BT549, MDA-
MB-231, and Taxol-resistant MDA-MB-231) were purchased
from the American Type Culture Collection (ATCC). The
abovementioned cells were cultured in DMEM or RPMI
1640 medium (Gibco, CA, United States) supplemented
with 10% FBS in a standard humidified incubator at 37°C
with 5% CO2.

2.14 Quantitative real-time polymerase
chain reaction

Reverse transcription-quantitative polymerase chain reaction
(RT-qPCR) is a technique used to measure RNA expression
levels by converting RNA to cDNA. According to the

manufacturer’s instructions, total RNAs were extracted from cells
using TRNzol Universal Reagent (TIANGEN, Beijing, China), and
complementary DNA synthesis was performed using a
PrimeScript™ RT Reagent Kit with gDNA Eraser (TaKaRa,
Kyoto, Japan). The expressions of RhoGDI2 and GAPDH were
assessed using TB Green® Premix Ex Taq™ II (TaKaRa, Kyoto,
Japan). The relative expression of lncRNAs was analyzed using
2−ΔΔCT. The specific primer sequences used for target genes and
reference genes (β-ACTIN) are listed in Table 1.

2.15 siRNA transfection

The small interfering ribonucleic acid (siRNA) targeting the
lncRNA transcript RP11-573D15.8 and control siRNA were bought
from GenePharma (Shanghai, China). Following the manufacturer’s
instructions, cells were transfected with GP-transfect-Mate
(GenePharma, Shanghai, China). The transfected cells were
collected for further studies after 48–72 h. The sequences of si-
RP11-573D15.8 and si-NC were provided as follows:

siRP11-573D15.8 #1 sense strand: 5′-GGAUUCUAAGUGACA
GAUACU-3′

antisense strand: 5′-UAUCUGUCACUUAGAAUCCAA-3′
siRP11-573D15.8 #2 sense strand: 5′-GCUGGGUUAUCCAAA

CAUAUU-3′
antisense strand: 5′-UAUGUUUGGAUAACCCAGCAG-3′

TABLE 1 Sequence of all primers.

Gene Sequence

C9orf163 Forward primer CCCCATCTGCTTCTTCCCAG

Reverse primer CTCTGCATCCCCCTCTTTGG

PSORS1C3 Forward primer GACAGGCCTCGGAAGTCAAA

Reverse primer CACTGGGAGATGAGGTGCTG

P11-23D24.2 Forward primer CTACAGGCTTGGTCAGGATTTG

Reverse primer TGTAGGGGTACTCAGGACTTTG

P11-519C12.1 Forward primer CCCCTAAGGCTCATACATGGA

Reverse primer TTCACACAGCATCCCTCTCA

P11-761I4.5 Forward primer TGCTTCCATTCTCCCTGCTC

Reverse primer ATGGCCCATCTCTTCCTTGC

P5-1039K5.17 Forward primer TAAAAGTGTGGCCCCAGATCC

Reverse primer CCAAACTGACGAACATCCAGC

U47924.27 Forward primer GGCCCGGTGACAGTAACC

Reverse primer CCCATTGTTCCCCTTTGCCTA

USP30-AS1 Forward primer TACGACGGTTCCCGAGACA

Reverse primer TCCGTCAGCTATTGCTCTCC

P11-573D15.8 Forward primer AGCAGAGGAAAAGGATGGGA

Reverse primer AAATGGGATTGCGACACTGC

β-ACTIN Forward primer TGACGTGGACATCCGCAAAG

Reverse primer CTGGAAGGTGGACAGCGAGG
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siRP11-573D15.8 #3 sense strand: 5′-CCUUGUUCCCAAAGG
UUAAAU-3′

antisense strand: 5′-UUAACCUUUGGGAACAAGGCA-3′
Negative control sense strand: 5′-UUCUCCGAACGUGUC

ACGUTT-3′
antisense strand: 5′-ACGUGACACGUUCGGAGAATT-3′

2.16 Cell proliferation assays

Cells transfected with siRNAs were seeded on 96-well plates
(1,000/well). Cell proliferation was detected using Cell Counting
Kit-8 (APExBIO, Shanghai, China) after incubating with fresh
medium for 0, 24, 48, 72, and 96 h. Thereafter, a 10% CCK-8
solution was added to each well and incubated for 2 h.
Absorbance (OD) at 450 nm was determined using a Multiskan
FC microplate reader (Thermo Fisher Scientific, Wilmington,
United States).

2.17 Colony formation assays

For the colony-forming assay, cells transfected with siRNAs
were seeded in six-well plates at a density of 1,000 cells per well.
Then, cells were maintained in a medium containing 10% FBS

(ExCell, Shanghai, China) for 14 days. Colonies were fixed with
methanol, stained with crystal violet, and counted.

2.18 Transwell migration assays

For the transwell migration assay, the top 8-µm pore chambers
(Millipore, United States) were seeded with 3 × 104 MDA-MB-
231 cells, and the lower chambers were filled with 600 μL DMEM
medium (Gibco, CA, United States) with 10% FBS (ExCell,
Shanghai, China). After 12 h, 4% paraformaldehyde was used to
fix the migrated cells for 15 min, and then the cells were stained
with crystal violet for 10 min and finally imaged under the
microscope.

3 Results

3.1 Identifying MPT-related lncRNAs in
BC patients

The research design and key results are shown in Figure 1. A
total of 98 normal and 1,029 tumor samples were collected
from TCGA. Based on the expression profiles of 39 MPT-related
genes and differentially expressed lncRNAs between the

FIGURE 1
Schematic diagram showing the research design and the principal findings.
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FIGURE 2
Spotting MPTRLs in BC patients. (a) Volcano plot representing 323 differentially expressed MPT-related genes. (b) Nnetwork analysis depicting the
associations between MPT genes and lncRNAs, characterized by correlation coefficients greater than 0.3 and p-values less than 0.01.

FIGURE 3
Identification of a prognostic signature for MPT-associated lncRNAs. (a) Forest plots depicting the screening of 28 lncRNAs using Cox regression in
association with MPT. (b) Heatmap illustrating the expression patterns of the MPT-related lncRNAs between tumor and normal tissue. (c, d) LASSO
regression analysis of the predictive model. (e) Sankey diagram representing lncRNAs co-expressed with genes related to MPT.
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FIGURE 4
Prognostic value of eight MPT-related lncRNAs across training, testing, and entire cohorts. (a–c) Display of the MPT-related lncRNAs model based
on risk scores for the training, testing, and entire cohorts. (d–f) Comparison of survival times and statuses between low- and high-risk groups in the
training, testing, and entire cohorts. (g–i) Heatmaps showing the expression of eight lncRNAs in the training, testing, and entire cohorts. (j–l)
Kaplan–Meier survival curves illustrating the OS of patients in low- versus high-risk groups across the training, testing, and entire cohorts. (m)
Kaplan–Meier survival curves for OS stratified by age, stage, and T and N stage in high- and low-risk groups within the entire cohort.
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normal and tumor samples, 323 MPTRLs were
identified. Among these, 150 were upregulated and
the remaining were downregulated, as depicted in
Figure 2A. Additionally, interactions between MPT-related
genes, such as BLC2 and TP53, and lncRNAs are illustrated
in Figure 2B.

3.2 Establishment and substantiation of
the model

Using univariate Cox regression analysis, 28 MPT-related
lncRNAs that were significantly correlated with OS (p < 0.05)
were found (Figure 3B), and a heatmap (Figure 3E) was

FIGURE 5
Nomogram evaluation and risk model assessment. (a, b) Univariate and multivariate Cox analyses assessing clinical factors and risk score in relation
to OS. (c) Nomogram incorporating MPTRscore, age, and tumor stage to estimate the probabilities of 1-, 3-, and 5-year OS. (d) Calibration curves for
predicting 1-, 3-, and 5-year OS outcomes. (e) Five-year ROC curves for evaluating the risk score, clinical factors, and PAM50 subtypes. (f–h) One-, three-,
and five-year ROC curves for the training, testing, and entire cohorts, respectively. (i, j) C-index for the nomogram; validation of the C-index for the
nomogram via the bootstrap method for evaluating the prognostic accuracy of the model and constitute variables. (k) DCA curves of the model and
MPTRscore for evaluating their prognostic accuracy and net benefit.
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generated. To avoid overfitting the prognostic signature, LASSO
regression was performed on these lncRNAs, and 23 MPTRLs were
extracted in BC when the first-rank value of log(λ) corresponded to
the minimum likelihood of deviance (Figures 3C, D). Among these
28 lncRNAs, 7 lncRNAs were upregulated, with the others being
downregulated, as presented in the Sankey diagram (Figure 3A).
Consequently, eight MPT-related lncRNAs independently and
significantly correlated with OS (p < 0.05) were selected via
multi-Cox regression. The risk score could be calculated using
the following formula: risk score = C9orf163 ×
(0.442036850417968) + PSORS1C3 × (−0.31350517966782) +
RP11-23D24.2 × (−1.11619026622422) + RP11-519C12.1 ×
(−0.43188554076601) + RP11-761I4.5 × (−0.46668668130283) +
RP5-1039K5.17 × (−0.529899453401692) +U47924.27 ×
(−0.210875741139221) + USP30-AS1 × (−0.480922434407888).

Using the risk score formula, the distribution of risk score,
the survival status, the survival time, and the relevant expression
standards of these lncRNAs of patients were compared between
low- and high-risk groups in the train, test, and entire sets. As
shown in Figures 4A–I, patients with higher risk scores tended to
have poorer overall survival. The Kaplan–Meier curves (Figures
4J–L) reinforce the prognostic power of this signature across
training, testing, and entire cohorts. In addition, the
conventional clinicopathologic characteristics, age, gender,
grade, and T and N stages also indicated that these eight
MPTRLs could serve as independent predictors of patient
outcomes (Figure 4M).

3.3 Construction of a nomogram and the
evaluation of the prognostic model

Univariate Cox regression analysis indicated that age, T and N
stages, tumor stage, and risk score, named MPTRscore, were
prognostic risk factors for BC patients (Figure 5A). This initial
finding underscores that the newly derived MPTRscore captures
essential components of tumor aggressiveness and patient outcomes.
Furthermore, multivariate Cox regression confirmed that age, T and
N stages, and MPTRscore remained independent prognostic risk
factors for BC patient outcomes (Figure 5B). This result highlights
the unique contribution of the MPTRscore in predicting patient
survival. Utilizing these four independent prognostic
factors—MPTRscore, age, and T and N stages (all with p <
0.05 in the multivariate Cox analysis)—a nomogram was
developed to predict 1-, 3-, and 5-year OS rates for BC patients
(Figure 5C). Calibration plots for 1-, 3-, and 5-year predictions

FIGURE 6
Analysis of tumor immune factors and therapy efficacy. (a, b)
GSEA reveals five pathways that are upregulated, downregulated, and
significantly enriched in the high-risk group, respectively. (c–e)
Correlation analysis between the risk score and prevalence of M1,
M2, and CD8 T cells. (f) GSVA via lncSEA demonstrates significant
difference in pathological processes between risk groups. (h)
Visualization of immune cell distributions across risk groups via a bar
plot. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. (g)
Heatmap shows the correlation of enrichment of immune cells with
eight lncRNAs and MPTRscore. (i) Correlation between enrichment of

(Continued )

FIGURE 6 (Continued)

TME infiltration immune cells. (j–l) Comparison of ESTIMATE
results between high and low MPTRscore groups. (m–o) Differential
expression of immune checkpoints and immune cells in the risk
groups. *p < 0.05, **p < 0.01, and ***p < 0.001. (p) Predictive
modeling of chemotherapy responsiveness in risk groups. (q) SubMap
predicts immunotherapy sensitivity of high and low MPTRscore
groups by comparing with a 47-sample immunotherapy melanoma
cohort. (r) MPTRscore distribution of four PAM subtypes. (s)
Distribution of four PAM50 classification subtypes in low- and high-
risk groups. (t–w) ROC curves for predicting 1-, 3-, and 5-year OS of
basal, luminal A, luminal B, HER2 subtypes of the TCGA cohort.
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demonstrate that the nomogram closely aligns with actual outcomes,
supporting its potential utility in a clinical setting (Figure 5D).

At the 5-year mark, ROC analysis of the risk score demonstrated
superior prognosis prediction performance over other clinical
factors in the TCGA-BRCA cohort, while the comparison with
PAM50 subtypes as a gold standard biomarker contextualizes the
prognosis prediction ability of the score (Figure 5E). Time-
dependent ROC curves were used to assess the sensitivity and
specificity of the model for prognosis, further confirming the
high sensitivity and specificity of the model and reflecting its
ability to capture dynamic changes in patient prognosis over time
(Figures 5F–J). Furthermore, the time-dependent C-index of the
nomogram was validated using bootstrap resampling 1,000 times.
DCA curves of the MPTRscore and the risk model to evaluate the
clinical prognosis benefit of biomarkers, demonstrated greater
benefit for BC patients than the MPTRscore (Figures 5K).

3.4 GSEA, investigation of the association
with the immune system and PAM subtype,
and therapy sensitivity investigation

To assess variations in biological functions between risk groups,
GSEA was employed to analyze the high-risk group’s enrichment in
KEGG pathways across the entire dataset. Notably, the high-risk
group was significantly enriched with the upregulation of MPT-
promoting pathways and downregulation of MPT-suppressing
pathways. Moreover, immune response pathways were also
enriched in the high-risk group through the upregulation of
endothelial cell chemotaxis and downregulation of CD8+ T cell
proliferation, which indicates a poorer immune infiltration in TME.
In addition, the high-risk group has a significant upregulation of the
oncogenic signaling pathway of neurotrophin TRK receptor
signaling, which has also been reported to elicit the intracellular
calcium efflux that promotes MPT by increasing cytosolic calcium
(Rose et al., 2003). Moreover, the upregulation of tubulin assembly
in the high-risk group reveals a rapid cellular replication state in
tumors. All of these pathways correspond to a worse prognosis (all
p < 0.05; |NES| > 1.5) (Figures 6A, B). Following that, GSVA was
performed using the LncSEA tool, in which the high-risk group was
featured by significant upregulation of tumorigenic processes,
metastasis, and a worse prognosis (Figure 6F).

A CIBERSORT-based analysis of TME immune infiltration was
conducted within the MPTRscore framework. The results indicate
that the low-risk group is more strongly associated with an
inflammatory immune response, as reflected in the differential
abundance of immune cell populations. The figure presents the
composition of various immune cell types, highlighting statistically
significant differences between the high- and low-risk groups (all p <
0.05) (Figure 6G). Furthermore, it was observed that lower risk
scores were more closely related to anti-tumor immune TME,
particularly high M1 and low M2 macrophages, and high CD8+

T-cell infiltration (Figures 6C–E). The correlation between the
enrichment of TME infiltration immune cells also demonstrates
that CD8+ T cells are positively correlated with M1 macrophage and
negatively correlated with M2 macrophage. Moreover, M1/M2 even
shows a stronger positive correlation to CD8+ T cells, indicating the
existence of regulation between tumor-associated macrophage

(TAM) and CD8+ T cells (Figure 6I). Furthermore, the
correlation of each of the eight lncRNAs and TME immune cell
infiltration is visualized in Figure 6H, in which USP30.AS1 and
RP11.23D24.2 were two major contributors to the significant
correlation between risk score and CD8+ T cells,
M1 macrophage, and M2 macrophage. These findings indicate
that the low-risk group is characterized by enhanced anti-tumor
inflammatory immune infiltration.

Additionally, the high-risk group demonstrated a higher
immune score and a higher ESTIMATE score, indicating that the
TME had higher tumor purity and greater immune cell infiltration
than the low-risk group (Figures 6J–L). Most immune cells and pro-
inflammatory biological processes were also found to be more
activated in the low-risk group (Figures 6M, N). Moreover,
immune checkpoints in the low-risk group were mostly
significantly lower than those in the high-risk group (Figure 6O).
In addition, the TME infiltration of pro-inflammatory
M2 macrophage was shown to be negatively correlated with
CD8+ T cells. Meanwhile, as an immune cell responsible for
immune response inhibition, the TME infiltration of
M1 macrophage was positively correlated with CD8+ T cells, and
this correlation was more pronounced for the M1/M2 ratio
(Figure 6I). Additionally, the high-risk group, which had a higher
MPTRscore, exhibited a higher IC50 value for chemotherapeutic
drugs (Figure 6M). Moreover, analysis indicated that six
chemotherapeutic drugs used in BC therapy had significantly
lower IC50 values in the high-risk group, suggesting enhanced
sensitivity to these treatments (Figure 6P). Additionally,
responses to immunotherapy between the high- and low-risk
groups were also analyzed, indicating that the low-risk group was
significantly related to high sensitivity to anti-PD-1 immunotherapy
(p < 0.05) (Figure 6Q). Additionally, relationship between
MPTRscore and PAM50 classification subtypes was analyzed. As
shown in Figure 6R, a significant difference was observed between
the four PAM subtypes (p < 2e-16, ANOVA test), with MPTRscore
increasing in order from basal-like, luminal A, luminal B, to HER2.
Following that, significant differences in the distribution of the four
PAM50 classification subtypes between the low- and high-risk
groups were also demonstrated, as shown in Figure 6S. The
basal-like and luminal A subtypes were more prevalent in the
low-risk group, while the luminal B and HER2 subtypes were
predominantly observed in the high-risk group. Finally, the
prediction accuracy of the MPTRscore for OS in basal-like,
luminal A, luminal B, and HER2 subtypes was calculated using
ROC curves (Figures 6T–W). Overall, theMPTRscore demonstrated
stable prediction accuracy spanning all the four subtypes, with the
AUC of luminal A being the lowest and HER2 being the highest.

3.5 Identification and characterization of
MPTRscore-related clusters

Drawing on prior studies, it is recognized that breast cancer, as a
highly heterogeneous tumor, can be divided into various clusters or
subtypes, which typically exhibit distinct prognostic, biomolecular,
and phenotypic characteristics. Utilizing differential expression
analysis between high- and low-risk groups with a threshold of
p < 0.001 and logFC>0.585, followed by univariate Cox regression
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FIGURE 7
Characterization of two clusters based onMPTRscore-related prognostic gene expression. (a) Patients divided into two clusters in the ratio of 2:1 by
unsupervised consensus clustering. (b) Heatmap illustrating the expression patterns of MPTRscore-related prognostic genes between clusters 1 and
2 with column annotations of clinical information and MPTRscore. (c) Kaplan–Meier survival curves of OS in clusters. (d) Difference of immune
checkpoints expression in clusters. *p < 0.05, **p < 0.01, and ***p < 0.001 (e) Heatmap of immune cells in clusters. (f) t-SNE plot of single-cell
sequencing analysis shows the expression distribution of GBP1, RTP4, KCNK5, and LY6D in different cells in the GSE176078 BRCA cohort. (g–i)
Comparison of ESTIMATE results between clusters 1 and 2. (j, k) PCA of risk groups and clusters based on gene expressions. (l, m) t-SNE of two clusters
based on gene expressions. (n) Prediction of chemotherapy responsiveness in clusters of the same six chemotherapy drugs.
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with a threshold of p < 0.05 to select five MPTRscore-related
genes (GBP1P1, RTP4, KCNK5, LY6D, and CLGN), samples were
classified into two clusters using the ConsensusClusterPlus R
package based on the expression patterns of these MPTRscore-
related lncRNAs (Figures 7A, B) (Wilkerson and Hayes, 2010).
Among the five MPTRscore-related genes, four are protein-
coding genes, while GBP1P1 is a pseudogene. GBP1P1, RTP4,
KCNK5, and LY6D were downregulated in cluster 2 and
upregulated in cluster 1, which is the opposite of CLGN.
Moreover, cluster 1 was more enriched with high MPTRscore
and luminal A, luminal B, and HER2 subtypes, and cluster 2 was
more enriched with low MPTRscore and basal-like subtypes
(Figure 7B). To investigate the expression distribution of the
five MPTRscore-related genes in different cells, single-cell
sequencing analysis was performed by re-clustering cells using
t-SNE on the GSE176078 BRCA cohort. As GBP1 acts as the
counterpart targeting effector of the pseudogene GBP1P1, the
analysis focused on the expression distribution of GBP1 rather
than GBP1P1 (Mohebifar et al., 2023). GBP1, RTP4, and
KCNK5 were found to be highly expressed in non-malignant
cells, including T cells, macrophages, DCs, and endothelial cells.
Moreover, LY6D and CLGN were found to be highly expressed in
malignant cells (Figure 7F). Additionally, cluster 1 demonstrated
significantly improved OS according to Kaplan–Meier analysis
(Figure 7C). The majority of immune checkpoints demonstrated
heightened expression in cluster 2 (Figure 7D). Moreover, cluster
2 exhibited higher levels of immune cell infiltration, as
determined by CIBERSORT (Figure 7E). Cluster 2 exhibited
elevated immune and ESTIMATE scores, indicating a TME
with higher tumor purity and immune cell infiltration, similar
to the high-risk group, compared to cluster 1 (Figures 7G–I). PCA
was conducted to compare the group distributions between risk
groups and clusters, showing the strong performance of five
MPTRscore-related genes in capturing MPTRscore
characteristics (Figures 7J, K). Additionally, t-SNE analysis
also showed clear and similar distinctions between both
clusters and risk groups (Figures 7L, M). Both dimensionality
reduction analyses show the same correspondence between
clusters and risk groups (cluster 1 aligning with the high-
MPTRscore group and cluster 2 aligning with the low-
MPTRscore group). Drug sensitivity analysis revealed that
chemotherapeutic drugs exhibited the same trend of IC50

values across clusters and risk groups (Figure 7N).

3.6 Revelation of the linkage between two
clusters and MPTRscore

Based on the characteristics shared between the clusters and risk
groups, deeper analyses were then performed to uncover the linkage
between MPTRscore and clusters. First, the correlation between five
MPTRscore-related prognostic genes and TME immune cell
infiltration was also investigated. The results showed that
GBP1P1, RTP4, and KCNK5 had a significant positive
correlation to CD8 T cells and M1 macrophages, while showing
a significant negative correlation with M2 macrophages (Figure 8A).
Among these three genes, GBP1P1 demonstrated the strongest
correlation. Afterward, the correlation between MPTRscore-

related prognostic genes and MPTRLs was studied, revealing the
strongest correlation between USP30.AS1 and GBP1P1 (Pearson
correlation analysis, R2 = 0.71), followed by USP30.AS1 and RTP4
(Pearson correlation analysis, R2 = 0.54) (Figure 8B). Based on these
findings, seven highly correlated pairs, including all five
MPTRscore-related prognostic genes and four MPTRLs with
higher correlation index (greater than 0.3), were selected for
further investigation (USP30.AS1-GBP1P1, USP30.AS1-RTP4,
RP11.23D24.2-GBP1P1, PSORS1C3-KCNK5, PSORS1C3-LY6D,
RP5.1039K5.17-CLGN, and RP5.1039K5.17-KCNK5), and an
RNA–RNA interaction network was then built using
LncRRIsearch and ENCORI. The base-pairing information and
interaction energies between RNAs are provided in the
supplementary file. Consequently, a hub lncRNA transcript,
RP11-573D15.8-018 (ENST00000627551), was identified as a
mediator of the molecular linkage between all four selected
MPTRLs and all five MPTRscore-related prognostic genes.
Moreover, an alternative RNA–RNA interaction pathway was
identified in RP5.1039K5.17-CLGN and RP5.1039K5.17-KCNK5,
mediated by miRNA MIR6820-001 (Figure 8C).

Furthermore, to investigate the role of RP11-573D15.8-018 in
linking two clusters and MPTRscore, the sum expression of the
corresponding gene of the alternative splicing transcript RP11-
573D15.8-018 was retrieved. RP11-573D15.8 was also one
member of 323 MPTRLs that were formerly identified. First,
Kaplan–Meier survival analysis of OS of high and low RP11-
573D15.8 expression groups, with high and low RP11-
573D15.8 expression groups divided in a ratio of 2:3, shows that
a higher RP11-573D15.8 expression level corresponds to worse
prognosis (p = 0.013, log-rank test) (Figure 8D). Then,
CIBERSORT analysis was performed on high and low RP11-
573D15.8 expression groups, displaying significantly higher
CD8 T cell and M1 macrophage infiltration and lower
M2 macrophage infiltration in the TME of the high RP11-
573D15.8 expression group (Figure 8E). Moreover, immune
checkpoints in the low RP11-573D15.8 expression group were
significantly lower than those in the RP11-573D15.8 expression
group (Figure 8F). Moreover, the high RP11-573D15.8 expression
group was found to be enriched with basal-like PAM subtype, and
the low RP11-573D15.8 expression group was found to be enriched
with luminal and HER2 subtypes (Figure 8G). The same
characteristics can be found in MPTRscore-related clusters. These
analyses revealed that RP11-573D15.8 was strongly associated with
MPTRscore-related clusters (with low RP11-573D15.8 expression
corresponding to C1 and high RP11-573D15.8 expression
corresponding to C2).

Finally, the association between MPTRscore, RP11-
573D15.8 expression level, and MPTRscore-related prognostic
clusters was illustrated using a sunburst chart (Figure 8H).
High and low MPTRscore groups were evenly divided (1:1);
high and low RP11-573D15.8 expression groups were divided at
a 2:3 ratio; and clusters 1 and 2 were divided at a 2:1 ratio.
Accordingly, a high MPTRscore is associated with low RP11-
573D15.8 expression and cluster 1. A low MPTRscore is
associated with high RP11-573D15.8 expression and cluster 2.
Moreover, cluster 2 tends to accumulate at a high RP11-
573D15.8 expression level. Cluster 1 tends to accumulate at a
low RP11-573D15.8 expression level.

Frontiers in Genetics frontiersin.org13

Lin et al. 10.3389/fgene.2025.1510154

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1510154


3.7 Expression of MPT-related
lncRNAs in vitro

We investigated the expression levels of the eight MPT-
lncRNAs in different breast cancer cell lines and the MCF-10A
noncancerous mammary epithelial line by RT-qPCR (Figures
9A–H). The results showed that all lncRNAs were
downregulated in the HER2-positive breast cancer cell line
SKBR3, except PSORS1C3 and RP11-519C12.1. In addition to
RP5-1039K5.17, the lncRNAs were upregulated in the ER-positive
breast cancer cell line MCF-7. However, the expression levels of the
eight MPT-lncRNAs were not always consistent across three
triple-negative breast cancer cell lines, namely, MDA-MB-231,
HCC1806, and BT-549. In addition, we further investigated the
expression levels of the eight MPT-lncRNAs of our model in
Taxol-resistant MDA-MB-231 and MDA-MB-231 (Figures
9I–P). The results showed that RP11-23D24.2 was higher in
Taxol-resistant MDA-MB-231 cells, and the other lncRNAs
were lower or showed no significant difference. Finally, we
examined the expression level of RP11-573D15.8 in MCF-10A
and breast cancer cell lines (Figures 9Q). The results showed that
the expression of RP11-573D15.8 was upregulated in SKBR3,
MDA-MB-231, HCC1806, and BT-549, except in the ER-
positive breast cancer cell line MCF-7.

3.8 Silencing RP11-573D15.8 suppressed the
proliferation and migration in BC cells

To investigate the biological functions of the hub lncRNA
transcript RP11-573D15.8 in breast cancer, we transfected MDA-
MB-231 cells with siRNA to inhibit the endogenous expression of
RP11-573D15.8 since the expression of RP11-573D15.8 in MDA-
MB-231 cells was nearly twenty times higher than that in MCF-10A
cells (Figure 9Q). The qRT-PCR results revealed that the expression
of RP11-573D15.8 was successfully decreased in MDA-MB-
231 using sequences 1 and 2 (Figure 10A). Cell proliferation and
colony formation assays showed that the downregulation of RP11-
573D15.8 could significantly reduce the proliferation ability of
MDA-MB-231(Figures 10B, C). In addition, we performed a
transwell assay to evaluate the effect of RP11-573D15.8 on cell
migration and found that the inhibition expression of RP11-
573D15.8 significantly impaired the migration ability of MDA-
MB-231 cells (Figure 10D).

4 Discussion

BC is a malignancy that presents several challenges in both
therapy and prognosis due to its heterogeneity and diverse subtypes.

FIGURE 8
Linkage between two clusters and MPTRscore. (a) Heatmap shows the correlation of enrichment of immune cells with five MPTRscore-related
prognostic genes. (b) Correlation between MPTRscore-related prognostic genes and MPTRLs. The values with p < 0.05 were hidden. (c) RNA–RNA
interaction network shows the linkage betweenMPTRLs andMPTRscore-related prognostic genes. Arrow indicates the direction of interactions. MPTRLs
are indicated in red lozenges, MPTRscore-related prognostic genes are shown in blue ellipses, and mediator RNAs are demonstrated in yellow
triangles. (d) Kaplan–Meier survival curves of OS of high and low RP11-573D15.8 expression groups. (e) CIBERSORT estimates TME immune cell
infiltrations across high and low RP11-573D15.8 expression groups. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. (f) Differential expression of
immune checkpoints and immune cells between the high and low RP11-573D15.8 expression groups. **p < 0.01 and ***p < 0.001. (g)Distribution of four
PAM50 classification subtypes in low and high RP11-573D15.8 expression groups. (h) Sunburst chart illustrating the association between MPTRscore,
RP11-573D15.8 expression level, and MPTRscore-related prognostic clusters.
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FIGURE 9
Relative expression of MPT-related lncRNAs in breast epithelial cell, breast cancer cell lines, and Taxol-resistant MDA-MB-231. (a–h) Relative
expression levels of eight MPT-lncRNAs in breast epithelial cell MCF-10A, HER2-positive breast cancer cell line SKBR3, ER-positive breast cancer cell line
MCF-7, and triple-negative breast cancer cell line (MDA-MB-231, HCC1806, and BT-549). (i–p) Relative expression levels of eight MPT-lncRNAs in Taxol-
resistant MDA-MB-231 and MDA-MB-231. (q) Relative expression levels of RP11-573D15.8 in breast epithelial cell MCF-10A, breast cancer cell lines,
and MDA-MB-231. Unpaired T-tests were used. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001; ns, no significance.
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Clinically, BC prognosis has traditionally relied on TNM and
PAM50 classifications that provide a framework for assessing
disease severity and survival probabilities (Kasangian et al., 2017;
Wallden et al., 2015). Moreover, the implementation of molecular
profiling, such as the 21-gene recurrence score assay (Oncotype DX),
has quantified the risk of recurrence in early-stage, hormone-
receptor-positive BC (Sparano et al., 2018). However, the
subpopulations of BC remain incompletely characterized,
highlighting the urgent need for reliable prognostic
biomarkers for BC.

MPT has been indicated to be associated with certain
mechanisms of the regulation of cancer cell death. MPT can be
highly associated with the mPTP, which plays a pivotal role in
regulating cell fate, especially in the case of cancer. Research has
highlighted that the mPTP facilitates a critical balance between cell
survival and death, with its opening being a key event in initiating
cell death pathways (Bonora and Pinton, 2014). In BC, apoptosis in
BC cells resulting from MPT was supported by a novel mPTP-
dependent mechanism that works mainly through ROS surge
(NavaneethaKrishnan et al., 2018). MPT-driven necrosis is a
form of cell death that can play a significant role in the

progression of various cancers (Galluzzi et al., 2018). Even if
MPT has not been widely studied regarding the aspect of its
interplay with either cancer therapy or cancer treatment, certain
studies have suggested the availability of MPT-driven necrosis as a
novel therapeutic target for cancer and the intricate function that
MPT-driven necrosis possesses in the TME (Yu et al., 2020;
Rodriguez-Ruiz et al., 2020). Even though few evidence suggests
that MPT can be cohesively associated with BC through lncRNAs,
there is abundant evidence that lncRNAs are highly related to BC
(Zhu et al., 2021; Mozdarani et al., 2020). Hence, the MPT-related
system was developed. Based on this scoring system, a clinical
prediction model was then constructed by incorporating the
clinical parameters, including age and T and N stages, which
displayed moderate accuracy in predicting prognosis and
therapeutic response.

Using LASSO-Cox regression, a scoring system called the
MPTRscore was developed to assess individuals with breast
cancer, considering individual differences. It was found that the
low MPTRscore group had increased immune activation, while the
high MPTRscore group showed immune suppression, suggesting
that the MPTRscore could predict immunotherapy response. More

FIGURE 10
RP11-573D15.8 promotes cell proliferation andmigration in MDA-MB-231 cells. (A) Relative qRT-PCR analysis for the validation of lncRNA transcript
RP11-573D15.8 knockdown in MDA-MB-231 cells. (B) Effects of RP11-573D15.8 knockdown by siRNA on cell growth were measured using the CCK-8
assay inMDA-MB-231 cells. (C) Effects of RP11-573D15.8 knockdown by siRNA on cell growth weremeasured by colony formation in MDA-MB-231 cells.
(D) RP11-573D15.8 knockdown by siRNA blocked the migration of MDA-MB-231 cells. Scale bar, 100 μm. Unpaired t-tests were used. *p < 0.05,
**p < 0.01, ***p < 0.001, and ****p < 0.0001; ns, no significance.
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importantly, the MPTRscore was identified as a TAM (tumor-
associated macrophage) and CD8+ T cell-related score, which
indicates the significant roles of MPTRLs in tumor regulation.
Interestingly, the permeability of mitochondria influences
mitochondrial DNA (mtDNA), which is pivotal in determining
the roles and characteristics of TAMs within the TME.
Dysfunctional mitochondria under oxidative stress can release
mtDNA, significantly affecting TAM behavior by enhancing their
immunosuppressive and tumor-promoting functions. Furthermore,
the oxidation of mtDNA has been linked to the inhibition of CD8+

T-cell activation. This connection underscores a potential
relationship between MPTRL and mtDNA, exploring which
could yield new insights into the treatment and prognosis of
breast cancer (Cheng et al., 2020; Guo et al., 2022). In
conclusion, the investigation of the MPTRscore demonstrated its
ability to distinguish immune patterns in BC. This was supported by
GSEA, indicating that the MPTRscore was inversely correlated with
the immunotherapy response. Hence, the response to
immunotherapy involves various factors such as immune cell
infiltration in the TME and intracellular processes. These
findings imply that the MPTRscore could influence these key
parameters and potentially predict the effectiveness of both
immunotherapy and chemotherapy.

The stratification of BC was simultaneously achieved by
identifying two clusters based on unsupervised consensus
clustering with five MPTRscore-related prognostic genes. These
five MPTRscore-related prognostic genes effectively capture the
gene expression characteristics of high and low MPTRscore
groups, as demonstrated by dimensionality reduction analyses
(cluster 1 corresponds to the high MPTRscore group; cluster
2 corresponds to the low MPTRscore group). These two clusters
also present significant differences in survival advantages (cluster
1 corresponds to a better prognosis; cluster 2 corresponds to a worse
prognosis) and TME immune cell infiltration, immune checkpoint
expressions, and chemotherapy sensitivity. Moreover, lower drug
sensitivity is found in the high-risk group, with a significant
difference (p < 2.22 × 10−16) in response to chemotherapy.
Therefore, clusters 1 and 2, respectively, closely resemble the
high and low MPTRscore groups in multiple dimensions,
including TME immune cell infiltration, chemotherapy
sensitivity, and gene expression pattern. However, a few
signatures, including prognosis and immune checkpoint
expressions, were inverted between clusters and MPTRscore
groups. The inverted immune checkpoint expressions can lead to
inverted immune anti-tumor activity and then contribute to the
inverted prognosis. This indicates that the stratification based on the
five MPTRscore-related prognostic genes does not capture the
complete characteristics of the MPTRscore. It mainly captures
the signatures of the MPTRscore in TME immune cell
infiltration and chemotherapy sensitivity but not completely in
the immune checkpoint expressions. Nevertheless, all these
indicate the robust capacity of BC subtyping of the MPTRscore.

MPTRscore is also a PAM50-classification-subtype-related
score. A higher prevalence of luminal B and HER2 subtypes was
observed in the high-risk group, while the low-risk group was
enriched with luminal A and basal-like subtypes. In addition, this
was also supported by the same distribution in MPTRscore-related
clusters. Luminal A subtype is typically associated with a favorable

prognosis due to its lower proliferation rate and higher expression of
hormone receptors than luminal B, which exhibits higher
proliferation and a slightly worse prognosis despite also being
hormone receptor-positive (Parker et al., 2009). In contrast, the
HER2 subtype is characterized by the overexpression of the
HER2 gene, correlating with a more aggressive disease course
and a poorer prognosis than that of the luminal subtypes, though
it may respond well to HER2-targeted therapies (Slamon et al.,
1989). However, there is a paradox that the basal-like subtype is
actually the most aggressive type of BC in the PAM50 subtyping
system but is more accumulated in the low MPTRscore group. Since
it has been demonstrated that MPTRL can be highly associated with
TAMs and CD8+ T cells, one possible explanation is the interruption
of the immune microenvironment: basal-like BC cells have been
indicated to be significantly associated with a reduced risk of
metastasis with higher infiltration of CD8+ T cells, and the
presence of M2 macrophages in the basal-like subtype BC is
associated with an increased risk of metastasis, which was found
from Cox regression analyses that assessed the relationship between
various immune gene sets and metastasis-free survival across
different PAM50 BC subtypes (Hammerl et al., 2020). Although
the specific mechanism is elusive, further prognostic significance of
the relationship between MPTRLs and the immune
microenvironment of BC is highlighted. Therefore, further
studies are recommended to demonstrate the specific relationship
between MPTRL, CD 8 + T cells, TAM, and basal-like BC cells.

As a necrosis-driven factor, MPT is typically regarded as a
tumor-suppressing factor. Interestingly, a paradox was found
according to GSEA that the high MPTRscore group is related to
the downregulation of MPT and the low-risk group is related to the
activation of MPT. Moreover, a similar paradox was also discovered
in MPTRscore-related clusters. For the five MPTRscore-related
prognostic genes, only CLGN is upregulated in cluster 1 and
downregulated in cluster 2. Endoplasmic reticulum chaperone
calmegin (CLGN) plays a pivotal role in regulating the
intracellular calcium ion level on the endoplasmic reticulum
membrane to avoid excessive calcium ions in the cytosol (Itcho
et al., 2020). Because MPT is a calcium-dependent mitochondrial
inner membrane transition, upregulated CLGN corresponds to
higher MPT activation in cluster 1 (Bernardi et al., 2023). Single-
cell sequencing analysis validated that CLGN is mainly expressed in
malignant cells, which implies that increasedMPT inmalignant cells
is associated with a better prognosis in cluster 1. The other four
MPTRscore-related prognostic genes downregulated in cluster
1 have not been reported to be positively related to MPT, but
they still serve as biomarkers for BC, corresponding to a worse
prognosis (Mohebifar et al., 2023; Mayama et al., 2018; Alvarez-
Baron et al., 2011; Fuchs et al., 2013). From the view of single-cell
sequencing analysis, GBP1, RTP4, and KCNK4 all show low
expression levels in malignant cells but high expression in
T cells, macrophages, DC, and endothelial cells, which indicates a
suppressing function in some tumor-suppressing cells. Therefore, a
feasible hypothesis is that the MPTRscore is mainly influenced by
tumor-suppressing cells rather than tumor malignant cells in the
TME, due to the cellular heterogeneity of bulk RNA-seq. The results
of single-cell sequencing analysis of three MPTRscore-related
prognostic genes, demonstrating high MPTRscore-related
prognostic gene expression in tumor-suppressing cells, partially
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support this hypothesis. This hypothesis accounts for the
MPTRscore to some extent in the view of cellular heterogeneity,
but further research is also needed.

The molecular mechanism linkage bridging MPTRscore and
MPTRscore-related clusters was successfully identified. The five
MPTRscore-related prognostic genes capture the characteristics
of four MPTRLs (PSORS1C3, USP30.AS1, RP11.23D24.2, and
RP5.1039K5.17) within the MPTRscore. The linkage is largely
mediated by the lncRNA transcript RP11-573D15.8-018 through
an RNA–RNA interaction mechanism. These four MPTRLs bind
and sequester RP11-573D15.8-018, reducing its availability to
regulate downstream lncRNAs. As validation, the expression level
of the RP11-573D15.8 gene effectively distinguished MPTRscore-
related clusters, indicating that RP11-573D15.8-018 could serve an
ideal biomarker for recognizing these clusters. Additionally, two
bypassing ways mediated by miRNA MIR6820-001 were also
identified (RP5.1039K5.17-MIR6820-001-CLGN and
RP5.1039K5.17-MIR6820-001-KCNK5). The lncRNA
RP5.1039K5.17 can also influence the expression level of protein-
coding mRNAs CLGN and KCNK5 by sequestering the mediator
miRNA MIR6820-001. This mechanism is in accordance with the
hypothesis of the endogenous RNA (ceRNA) network, proposing
that ncRNAs, including lncRNA, influence downstream mRNA
transcription by acting as sponges for mRNA-targeting
microRNAs (miRNAs) (Yang et al., 2023). Therefore, two ceRNA
axes were also found in this study. Meanwhile, RP11-573D15.8-
018 plays the most central role in linking MPTRscore and
MPTRscore-related clusters overall. Finally, through the
abovementioned analyses, correspondence among the three levels
was uncovered: high MPTRscore–low RP11-573D15.8 expression
level–cluster 1 and low MPTRscore–high RP11-
573D15.8 expression level–cluster 2.

Some limitations still exist in this study. First, in the initial step
of filtering candidate MPTRLs, the Pearson correlation-based
approach alone may not have effectively reduced confounding
factors. Despite that, in the following steps, more effective
methods were employed to mitigate confounding effects. For
instance, the multivariate Cox regression incorporates key clinical
potential confounding covariants such as age, T stage, N stage, and
overall stage. By doing so, these prognostic factors can be controlled
and the prediction independence of the MPTRscore can be ensured.
In addition, the MPTRLs determined in this study are based solely
on the statistic correlations of RNA expression levels. Given that the
association betweenMPT and lncRNAs has not been widely studied,
the statistic relationships do not definitively establish a regulatory
relationship. Therefore, experiments to identify the lncRNAs among
MPTRLs affecting MPT in BC cells should be conducted to
eventually validate this relationship. Moreover, to further reduce
bias produced in statistical analyses, cohorts with larger sample sizes
are required, and the baseline of datasets needs to be controlled.
Furthermore, considering the high cellular heterogeneity of BC, the
gene expressions of eight MPTRLs and MPTRscore could be
investigated through single-cell sequencing analysis to identify
the contributions of each cell cluster in BC tumors to the
MPTRscore. Additionally, as an alternative splicing transcript,
transcribed from the gene RP11-573D15.8, RP11-573D15.8-
018 only accounts for a partial percentage of the total RP11-
573D15.8 expression. To better understand its specific functions

from a transcriptomic perspective, its individual expression value
should be extracted from the total RP11-573D15.8 expression
through sequence alignment. Moreover, the predicted molecular
mechanisms of RNA–RNA interactions still need experimental
validation in the future.

In this study, the MPTRscore effectively stratifies breast cancer
patients and is associated with prognosis, immune cell infiltration in
the TME, and immune and molecular characteristics. Additionally,
the MPTRscore could serve as a standalone prognostic tool for
breast cancer patients and aid in guiding decisions regarding
immunotherapy and chemotherapy. Additionally, RP11-
573D15.8-018 (ENST00000627551) plays a central role in the
molecular mechanism of the MPTRscore, and it can also act as a
single biomarker in BC stratification. More importantly, the findings
provide valuable insights into the potential application of MPT-
related lncRNAs in breast cancer treatment.
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