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Introduction: Polygenic Scores (PGSs) assess cumulative genetic risk variants
that contribute to the association with complex diseases like Alzheimer’s Disease
(AD). The PGS Catalog is a valuable repository of PGSs of various complex
diseases, but it lacks standardized annotations and harmonization, making the
information difficult to integrate for a specific disease.

Methods: In this study, we curated 44 PGS datasets for AD from the PGS Catalog,
categorized them into five methodological groups, and annotated 813,257
variants to nearby genes. We aligned the scores based on the “GWAS
significant variants” (GWAS-SV) method with the GWAS Catalog and flagged
redundant files and those with a “limited scope” due to insufficient external
GWAS support. Using rank aggregation (RA), we prioritized consistently important
variants and provided an R package, “PgsRankRnnotatR,” to automate
this process.

Results: Of the six RA methods evaluated, “Dowdall” method was the most
robust. Our refined dataset, enhanced by multiple RA options, is a valuable
resource for AD researchers selecting PGSs or exploring AD-related
genetic variants.

Discussion: Our approach offers a framework for curating, harmonizing, and
prioritizing PGS datasets, improving their usability for AD research. By integrating
multiple RA methods and automating the process, we provide a flexible tool that
enhances PGS selection and genetic variant exploration. This framework can be
extended to other complex diseases or traits, facilitating broader applications in
genetic risk assessment.
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Introduction

Alzheimer’s Disease (AD) is a neurodegenerative disorder
characterized by gradual cognitive decline and memory loss. Genetic
predisposition plays a significant role in AD etiology, with numerous
susceptibility loci identified through genome-wide association studies
(GWASs). Heritability estimates for AD, which range from 60% to 80%
(Bergem et al., 1997; Gatz et al., 2006), underscore the importance of
genetic factors in understanding AD risk.

The Polygenic score (PGS) is a numerical estimate of an
individual’s genetic susceptibility to a trait or condition,
computed by summing the effects of the individual’s genome-
wide genotypes, weighted by effect size estimates derived from
genome-wide association studies (GWAS) summary statistics
(Choi et al., 2020). Therefore, Polygenic risk scores (PGSs) offer
a promising approach to integrating multiple genetic variants and
estimating an individual’s genetic susceptibility to AD (Leonenko
et al., 2019). With the rising popularity of PGSs in recent years, the
PGS Catalog (https://www.pgscatalog.org) was developed (Lambert
et al., 2021) to tackle the lack of established best practices and
reporting standards that pose a significant barrier to PGS research.
The PGS Catalog is an open resource that offers a comprehensive
compilation of published PGSs, along with detailed metadata. This
metadata includes variant scoring files, effect alleles/weights, and
predictive performance evaluations, ensuring the accurate
application and evaluation of PGSs.

Researchers have employed various methodologies to generate
PGSs that capture the genetic risk associated with the AD; GWAS
Significant Variants (GWAS-SV) select top hits from genome-wide
association studies; LASSO uses regression-based selection and
regularization to handle large datasets with many predictors
(Privé et al., 2020a; Mak et al., 2017); Bayesian approaches such
as DBSLMM, LDpred2, PRS-CS, and SBayesR (Yang and Zhou,
2020; Privé et al., 2020b; Ge et al., 2019; Lloyd-Jones et al., 2019)
incorporate prior knowledge and probabilistic modeling to account
for uncertainty and LD; and ensemble methods which combine
multiple models/summary statistics to improve predictive
performance by leveraging the strengths of each (Zhang et al.,
2021; Sofer et al., 2023).

However, the inherent variability in method and number of
variants in the PGS catalog hinders researchers from easily
identifying appropriate scores for reuse due to variations in
reliability and accuracy based on the methodologies and quality of
theGWASused. Recent efforts have beenmade to significantly improve
the reporting standards for PGSs. Wand et al. (Wand et al., 2021)
outlined guidelines to enhance the reproducibility and standardization
of PGSs, while Lambert et al. (2024) expanded the PGS Catalog,
improving data content and interface to support FAIR principles
(Findable, Accessible, Interoperable, Reusable) (Wilkinson et al.,
2016; Xiang et al., 2024), thereby facilitating reproducible research
and equitable application across diverse populations.

To achieve these goals, we aim to bridge this gap by developing a
unified curation standard with harmonized annotations, simplifying
the exploration of diverse PGSs and their associated genetic variants
and genes. We used AD as a demonstration trait to curate and
annotate a database of PGSs from the PGS catalog, where we
manually classified methodologies and annotated the variants
based on detailed examination of metadata and associated

documentation, to ensure accurate classification of PGS datasets.
Variant annotations were conducted through systematic mapping to
nearby genes by using established genomic resources such as the
University of California Santa Cruz (UCSC) Genome Browser
database. Additionally, we provided multiple rank aggregation
(RA) options to consolidate variant rankings based on effect
weights, providing researchers with a streamlined method to
quickly explore variants that consistently have high effect weights
across multiple PGSs. Finally, we deployed a publicly available R
wrapper package, “PgsRankRnnotatR,” to accelerate the variant
annotation and RA processes.

Methods

Curation of PGSs for AD

We downloaded AD-related PGSs from the PGS Catalog
(accessed in December 2023) and harmonized variant positions
to the GRCh38 human reference genome build. Utilizing the
Quincunx package in R (Magno et al., 2022), we queried the
catalog’s REST API with the trait term ‘Alzheimer’, extracting a
total of 44 PGSs. We applied the R package ‘dplyr’ (Wickham et al.,
2023) to aggregate these PGSs into a singular cohesive dataset to
facilitate downstream analyses.

Variant annotation and methodological
classification of PGSs

We used the R package “annotatr” (version 1.20.0) to annotate
variants with the nearest gene using the UCSC annotation databases.
Gene annotations were primarily based on proximity due its
simplicity, though it has inherent limitations in capturing
intergenic variants. Quality checks were conducted to ensure the
standardization of allele nomenclature (rsIDs), filtering out non-
standard variant labels like APOE ε2, ε3, and ε4, which were
excluded because the three labels are defined by a combination of
two SNPs, rs429358 and rs7412, which cannot be easily integrated
into the single-SNP weighting framework of this study. To maintain
consistency, only standard SNP identifiers were considered. We
classified PGSs by methodology into five main categories: “GWAS
significant variants (GWAS-SV)”, “Clumping and thresholding”,
‘Bayesian’, ‘Least Absolute Shrinkage and Selection Operator
(LASSO)”, and “Others”. For PGSs using the GWAS-SV,
redundant files were identified as those developed from the same
original GWAS, and therefore utilized identical variants and
weights; this redundancy was confirmed through systematic
review of bibliographic metadata and variant annotations. When
additional variants were provided by authors, a single representative
file was retained, prioritizing those closely aligned with the original
GWAS variants to ensure consistency.

Rank aggregation of genetic variants

We implemented a RA framework to prioritize genetic variants
with consistent relevance across multiple PGS datasets. The ranking
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process was based on the absolute values of PGS effect weights,
reflecting each variant’s relative contribution within individual
PGSs, while GWAS effect sizes (odds ratios) from the GWAS
Catalog were used to validate and contextualize the
aggregated rankings.

To benchmark six different RA techniques, we generated
consensus rankings of the variants based on their effect weights.
Among them, the Dowdall method was implemented via our custom
R script to calculate the mean of the reciprocals of variant ranks,
where ranks range from 1 (highest rank) to N (lowest rank, where N
represents the total number of variants) (Grofman et al., 2017). For
multiple queries (score files) Q, the mean reciprocal rank (MRR)
score is the mean of the Q reciprocal ranks. MRR scores values range
from 0 to 1, where the score closer to 1 indicates consistently high
rank, while the score closer to 0 indicate lower rank. Variants were
then re-ranked based on their MRR scores, with higher MRR scores
resulting in higher aggregated ranks. We generated a rank matrix for
all the aggregated PGSs, assigning variants with missing effect
weights in a particular PGS the lowest rank, N.

1
Q
∑
Q

i�1

1
ranki

For other methods, we utilized the RobustRankAggreg package
(version 1.2.1) in R inputting ranks normalized by Min-Max scaling.
We applied five algorithms from the package: Robust Rank
Aggregation (RRA) works by comparing the actual ranks to a
null model of random orders to identify high rankings consistent
across studies and adjusting for multiple testing (Kolde et al., 2012);
The Stuart Method aggregates ranks by calculating corrected
p-values from a joint cumulative distribution of order statistics
and ultimately using these to derive a final aggregated rank that
measures the statistical likelihood of observed rankings occurring by

chance (Stuart et al., 2003); Borda’s Methods include the Minimum
Rank that prioritizes variants based on the highest rank position
(meaning the lowest numerical value) across all rankings; the
Geometric Mean that calculates the Nth root of the product of
all ranks, where N is the total number of ranks. Lastly, the Mean of
Ranks as a straightforward statistical measure for a central tendency
of ranks (Wang et al., 2022) (Supplementary Text S1).

Then, we evaluated the performance of these six RA methods
using a ‘GWAS priority score,’ presenting the product of the
‘Average effect size’ and the ‘Number of Genome-Wide
Significant Associations with AD.’ The ‘Average effect size’ was
calculated as the absolute value of the log-transformed odds ratio.
We utilized the R package ‘gwasrapidd’ (version 0.99.17) (Magno
and Maia, 2020) to retrieve effect sizes and the counts of GWAS
significant associations for each genetic variant. Therefore, this score
provides a measure of the relative importance of each variant based
on its impact and the robustness of its association with AD. We
evaluated the different RA methods by comparing how well the
aggregated ranks correlated with the GWAS priority scores. The
top-ranked PGS variants would demonstrate high GWAS
priority scores.

To streamline aggregating, ranking, and annotating the PGS
variants, we wrapped the PgsRankRnnotatR into an R package
(Supplementary Figure S1).

Results

Workflow for curating PGSs

To address the need for a standardized approach in collecting,
annotating, and prioritizing variants from PGSs for a specified trait
such as AD, we developed “PgsRankAnnotatr,” an R-based wrapper

FIGURE 1
Study design. AD PGS datasets were collected and subjected to quality control steps and manual annotations, genetic variants were annotated and
ranked, and then the final RA score was computed.
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package to automate the acquisition, annotation, and RA of PGS
variants for specific trait using data from the PGS Catalog. Figure 1
illustrates an overview of the workflow for curating and annotating
PGSs, which consists of two main steps: retrieving PGSs from the
PGS Catalog and conducting PGS curation. The PGS curation
process encompasses three main functions: quality control,
variants annotation, and variants rank aggregation.

AD PGS studies curation

Following the workflow outlined in Figure 1, we retrieved 44 AD
PGSs from the PGS catalog (see Supplementary Table S1 and
Supplementary data for details). We observed significant

variability in the number of variants used to construct PGSs for
AD, ranging from six (Tanigawa et al., 2022) to over one million
variants (Monti et al., 2023). This variation reflects methodological
differences, with GWAS-SV methods prioritizing fewer, highly
associated variants for better interpretability, and Bayesian
approaches (Yang and Zhou, 2020; Privé et al., 2020b; Ge et al.,
2019; Lloyd-Jones et al., 2019) integrating a broader spectrum of
genetic data for potentially improved risk assessment at the cost of
higher computational demands and underscores the diverse utilities
and purposes of AD-related PGSs.

The variants utilized for PGS development primarily originate
from GWAS conducted on cohorts of European ancestry
(Figure 2A), drawing from data from 15 GWASs (Figure 2B),
which also depicts the need for a broader spectrum of GWAS

FIGURE 2
Overview of AD PGSs curation (A) Ancestry group frequencies of cohorts used for PGS development and evaluation. Each cell represents the
frequency of a specific ethnic group (row-wise) for various PGSs (column-wise). While most PGSs were developed using predominantly European
ancestry cohorts, 14 out of 27 PGSs were evaluated in more diverse non-European cohorts. Scores with identical ethnic group frequencies are grouped
under a single citation (author, year) with details in the figure legend. (B) Heat map of discovery cohort sizes in GWAS for polygenic score variant
selection. A visual representation of the discovery cohort sizes of the GWAS was used to select variants for PGS development. Each row corresponds to a
different GWAS or meta-analysis, while each column represents a specific cohort used for data generation. One cluster predominantly consisted of
studies leveraging the UK Biobank cohort to increase sample sizes (Green box) substantially. The other cluster primarily comprised older studies that did
not utilize the UK Biobank cohort (Red box).
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focusing on ADwith diverse ancestral backgrounds. Notably, certain
large AD GWAS, such as the one conducted by Wightman et al.
(2021), were absent from the datasets utilized for PGS development.
However, the cohorts used for evaluating the PGSs exhibited greater
diversity, with 14 PGSs evaluated in non-European cohorts
(Figure 2A). Four PGSs from two studies (Privé et al., 2022;
Tanigawa et al., 2022) relied on individual-level genetic and
phenotypic data from the UK Biobank rather than GWAS
summary statistics. Upon cross-referencing with the GWAS
catalog, it was observed that the variants included in these scores
lacked external validation through independent GWAS datasets.
Although this does not compromise the methodological quality or
validity of these scores, the absence of external validation limited
their compatibility with the harmonization framework used in
this study.

Various PGS methods utilize different
numbers of genetic variants

We found that the Clumping and Thresholding (C + T) method
(Euesden et al., 2015) was the most frequently used for PGS
generation, appearing in approximately 34% of the analyzed
studies, as depicted in Figure 3A. This method is widely used for
its computational efficiency while accounting for the impact of
linkage disequilibrium (LD) between SNPs. It enables the
selection of independent genetic variants that significantly
contribute to AD risk. Subsequently, the use of GWAS-SV
constitutes 32% of the approaches. These methods are preferred
for their direct focus on variants with robust statistical evidence
linking them to AD. However, we identified one file containing
variants not represented in the GWAS catalog, despite being labeled
as GWAS-SV, and excluded it from our RA analysis.

Our systematic review identified ten redundant files originating
from four GWASs, as outlined in Supplementary Data. To ensure

unbiased RA analyses and avoid overrepresentation of variants, these
redundant PGSs were excluded from the dataset. The LASSO and
Bayesian methods were used less frequently in 14% and 11% of the
studies, respectively. LASSO is favored for its ability to handle large sets
of predictors by simultaneously performing variable selection and
regularization, which can be helpful for complex traits like AD.

Bayesian methods require intensive computational resources
and more sophisticated analysis, possibly explaining their lower
prevalence. These findings underscore the diversity of
methodologies in generating PGS for AD, indicating that
preferences are influenced by a balance among computational
demands, analytical precision, and specific research goals. In
addition to the primary methodologies identified, we identified a
subset of approaches we classified under ‘Other,’ accounting for
approximately 9% of the methods utilized, as illustrated in
Figure 3A. This category encompasses strategies such as curated
variants, selected based on expert knowledge or specific criteria
beyond statistical significance, and ensemble methods, which
combine predictions from multiple PGS generation techniques to
increase the accuracy and robustness of the risk scores (Zhang et al.,
2021; Sofer et al., 2023). Incorporating curated variants signifies a
customized approach to PGS development, prioritizing genetic
markers with established biological relevance to AD. Conversely,

FIGURE 3
(A)Methods for the polygenic risk score calculation. The stacked bar plot depicts the prevalence of different tools classified by polygenic risk score
(PGS) calculation methodology. Methods utilizing GWAS-SV and C + T dominate the landscape, particularly in AD studies, followed by LASSO regression,
Bayesian methods, and alternative or ensemble approaches. Direct Correlation between PGS variants and GWAS characteristics. (B) The plot
demonstrates a direct proportionality between the number of genome-wide significant variants used to compute the PGS and the GWAS sample
size. (C) The plot illustrates a similar direct relationship between the number of variants in the PGS and the GWAS p-value threshold.

TABLE 1 Summary of PGS methods by category and the variant count.

Method category No. of variants

Min Median Max

Bayesian method 915,771 1,092,011 1,136,212

Clumping and Thresholding 15 85 249,273

Genome-wide significant variants 11 26 83

LASSO 6 15 5,663
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ensemble methods aim to harness the advantages of diverse
predictive models to mitigate their individual constraints. Though
less prevalent, these alternative approaches demonstrate continuous
exploration and adaptation in PGS research.

Influence of GWAS on PGS selection

Larger GWASs have greater statistical power to discover more
genome-wide significant variants, leading to a direct correlation
between the GWAS sample size and the number of variants included
in PGS methodologies using GWAS-SV, as depicted in Figure 3B.
On average, this approach utilized the fewest variants compared to
others (Table 1). In C + Tmethods, variant selection heavily depends
on the p-value threshold set by researchers, resulting in a wide range
of variant numbers, as shown in Figure 3C. Notably, the ‘Bayesian’
methods incorporated the most extensive set of variants, as
highlighted in Table 1.

Conversely, we identified four PGS files derived from LASSO,
which were categorized as having a ‘limited scope’ and thus omitted
from our RA analysis. We used the term “limited scope” to describe
the restricted applicability of these scores due to the lack of
validation of the variants through external GWAS data. While
the individual-level data they utilize is valuable, external GWAS
validation ensures broader applicability and reliability across
different datasets and populations. These PGSs, developed
independently of GWAS and relying solely on individual-level

genetic and phenotypic data, lacked GWAS validation for the
selected variants. This highlights the critical role of external
GWAS validation in affirming the reliability and relevance of
PGSs for AD research.

Comparison of ranking algorithms

We evaluated six RA methods based on their Pearson’s
correlation coefficient with the GWAS priority score across four
datasets: the combined dataset (“All”), “GWAS”, “Bayesian”, and “C
+ T” (Supplementary Figure S2). As summarized in Supplementary
Figure S2, the average correlation coefficients (Rmean) were:
Geometric Mean (Rmean = −0.39), Dowdall (Rmean = −0.42),
Stuart (Rmean = −0.38), Minimum (Rmean = −0.42), Robust Rank
Aggregation (Rmean = −0.17), and Mean (Rmean = −0.30). The
Dowdall and Minimum rank methods showed the strongest
correlations, but Dowdall offered a key advantage through its
continuous scoring system (Supplementary Figure S2). With the
Minimum rank, multiple variants can share the same aggregated
rank; however, the Dowdall provided unique scores that allow for
finer differentiation, particularly in the combined (“All”) and “C +
T″ datasets. The GWAS priority scores for AD variants ranged from
0 to 27.19 (rs429358), with a median value of 0.04 and a mean value
of 0.39. Most variants had low or no priority scores, while a few
showed significantly high values, reflecting their strong association
with AD. Through RA, we can visualize how different PGS

FIGURE 4
A scatter plot for visualizing the variants by rank aggregation (RA) score (Dowdall method) and GWAS priority score. This scatter plot shows the
negative correlation between the top 100 AD genetic variants based on the Dowdall RA score and the GWAS priority score. Variants were categorized by
methodology type before performing RA analysis. Due to clumping, the C + T method had fewer GWAS Catalog variants than the Bayesian or GWAS-SV
method. Top GWAS priority score variants are labeled in red.
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development methodologies impact the variants used. For example,
the C + Tmethod had fewer GWAS catalog variants due to clumping
compared to GWAS-SV and Bayesian methods (Figure 4).
Furthermore, we used the “PgsRankAnnotatR” tool to curate and
rank variants for additional traits, schizophrenia and cognition
(Supplementary Figure S3), and integrated these into an AI-
driven chatbot framework, GENEVIC (GENetic data Exploration
and Visualization via Intelligent interactive Console) (Nath et al.,
2024), which provides an interactive conversational interface for
querying and exploring ranked PGS variants using the Dowdall
method. This demonstrates the practical utility of our resource in
real-world research workflows.

Discussion

PGSs have been recognized as crucial tools for assessing
individual’s genetic risk in AD (Escott-Price et al., 2015), with
diverse methodologies and GWASs contributing to an extensive
range of available scores (Zhou et al., 2021). This flexibility, while
contributing to methodological heterogeneity, also reflects efforts to
enhance the accuracy, robustness, and biological relevance of genetic
risk assessments for AD. For example, Bayesian methods not only
incorporated the most extensive set of variants, offering a
comprehensive genetic landscape for analysis, but they also often
achieve the highest predictive accuracy for AD risk (Ni et al., 2021).
Despite their superior performance, these methods are
computationally intensive and pose challenges for clinical
application, highlighting the trade-offs between analytical
precision and resource requirements (Ni et al., 2021). However,
the heterogeneity of these scores poses challenges for researchers
aiming to reuse them effectively, and thus, there is a need for
systematically curating and annotating the scores. Leveraging the
PGS catalog as a core resource, our curated database aims to enhance
accessibility and usability for researchers by streamlining the process
of reusing these scores. This will not only facilitate the advancements
in personalized AD risk assessments but will also bolster the
development of targeted interventions, driving forward the
broader mission of advancing precision medicine in addressing
the disease.

Each method offers distinct advantages depending on the
research context and data availability. The curation process
involved broadly categorizing methodologies, identifying
overlapping scores, and uniformly annotating and ranking the
variants. In addition, we provide a rank score that allows for the
quick prioritization and exploration of the most impactful genetic
variants, based on their consistent significance across multiple PGSs.
Furthermore, we developed an R package, ‘PgsRankRnnotatR,’ as a
supplementary tool to automate this process. This allows researchers
to select scores that best align with their genotyping resources,
ranging from basic GWAS-SV to more comprehensive PGSs.
Additionally, incorporating RA methods for identifying ‘priority
variants’ should enhance the database’s utility, enabling a more
focused exploration of genetic variants.

Although our curated database is based on the PGS Catalog, and
there are other AD genetic databases, such as the Alzheimer’s
Disease Variants Portal (ADVP) (Kuksa et al., 2022) and similar
resources that compile genetic association findings from the

literature, our database stands out by offering a comprehensive
integration of AD PGSs, along with aggregated variant ranks to
facilitate the exploration of risk variants.

Our current curated database still has several limitations. First,
the prioritization of variants through RA, though adequate for
highlighting consensus genetic variants, may overlook rare but
potentially influential variants. Additionally, our ‘GWAS priority
score’ is limited to GWAS significant variants reported in the GWAS
catalog with odds ratio effect sizes, which may exclude potentially
relevant variants. We recognize that annotating variants based solely
on proximity may not fully account for intergenic variants, which
represent a substantial portion of GWAS findings. Future versions of
this resource could incorporate additional functional datasets, such
as various QTL annotations [e.g., expression QTL (eQTL),
methylation QTL (mQTL), protein QTL (pQTL)], available from
general resources such as GTEx (gtexportal.org) and the resources
for specific diseases such as FunGen-AD (https://adsp-fgc.niagads.
org/). This would enhance the biological relevance of the
annotations and broaden the tool’s applicability. There is also the
selective exclusion of significant variants such as rs429358 and
rs7412 or other variants in the APOE locus in the AD PGS
studies given their dominant effect; this is typically justified to
aid the discovery of novel variants outside this well-known locus;
however, this can also bias the results of RA, potentially
underrepresenting the crucial roles of these variants in AD. For
example, rs429358, a well-known variant impacting CSF amyloid-
β42 levels and dementia risk (Bennet et al., 2010), was included in
only 6 out of 44 polygenic scores, and rs7412 was included in 10,
resulting in rs7412 having a much higher aggregated rank than
rs429358. Variability in variant selection strategies, including the C
+ T methods, further complicates consistent variant usage across
studies. While RA algorithms, such as Dowdall and Minimum rank,
demonstrated robustness when handling variants with varying usage
across studies, future versions of the ranking procedure could
include imputation-based methods to account for missing but
biologically relevant variants. Secondly, the database’s breadth is
also limited by the overlapping cohorts in the GWAS used for PGS
development and the subsequent lack of ethnic diversity, potentially
affecting its applicability across different demographic groups. Since
overlapping cohorts may introduce bias in RA calculation, future
work may address this issue by implementing strategies such as re-
weighting the rank.

Additionally, although the manual curation of scores may
address nomenclature discrepancies in methodologies, it also
imposes limitations on scalability and timeliness because of its
labor-intensive nature. Finally, while the RA analysis aimed to
aggregate PGS Catalog variants to provide an overall ranking for
variant exploration and prioritization, it does not account for LD
between genetic variants. Although the different PGS methodologies
in our analysis already incorporate LD structures, accounting for LD
information directly into the RA process could further enhance the
robustness of our variant prioritization.

RA serves as a unique form of meta-analysis, emphasizing
consistency across studies rather than pooling effect sizes. Unlike
traditional meta-analysis, which assesses the overall strength of
associations by combining effect sizes, RA highlights variants that
consistently rank highly across diverse PGS methodologies, thus
offering researchers with a valuable tool for exploring the curated
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database and identifying consistent and reliable genetic variants for
further study.

We exemplify the real-world utility of “PgsRankAnnotatR” by
integrating curated and ranked PGSs into GENEVIC (Nath et al.,
2024), an AI-based application that enables researchers to
interactively explore genetic variants, and automatically link the
results to protein-protein interactions, gene set enrichment analysis
and literature mining, without additional tool installation or
updates. Future iterations of the application will further refine its
capabilities, incorporating additional data sources and case-study
validations to support complex trait research.

This paper presents a curated and annotated database of PGSs
specifically tailored for AD research. Through curation by classification
of methodologies and annotation of genetic variants, we have
established a resource that significantly streamlines the retrieval and
application of PGSs in AD research. The integration of RA techniques
has refined the utility of this database, enabling researchers to prioritize
variants with increased precision and confidence. Moving forward, we
are committed to continuously updating this database and expanding
its scope to include additional traits and diseases, thereby advancing the
field of precision medicine, and enhancing our ability to tackle complex
genetic challenges.
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