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Background: Transgenic mice and gene expression in analyses were employed
to evaluate hazardous chemicals.

Methods: Mice received weekly doses of NDEA (75 mg/kg) for six weeks and
twice-weekly doses of BHT (300 mg/kg) for eight weeks. Gene expression and
splicing alterations in the livers of six transgenic mice for each treatment of NDEA
and BHT were examined using the MouseExon10ST array.

Results: Six hybridizations revealed 645 genes with significant expression changes,
and 181 genes showed both expression and splicing alterations (p < 0.01).
Furthermore, 2021 genes demonstrated significant exon–group interactions,
indicating potential alternative splicing. Pathway analysis identified enriched
groups in GOMolFn, GOProcess, GOCellLoc, and Pathway classes, with a higher
representation of alternatively spliced and expressed genes (p < 0.01).

Discussion: Among the top expressed genes was TAT, which encodes the
mitochondrial enzyme tyrosine aminotransferase, involved in tyrosine metabolism
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and recognized as a novel tumor suppressor gene linked to hepatocellular carcinoma
(HCC). Additionally, HNF-4, a transcription factor, plays a crucial role in TAT expression.

Conclusions: Thismethod can be used to identify genotoxic compounds in the att-
myc model for short-term toxicity.

KEYWORDS

gene expression pathways, exon array, att-myc model, HCC, genotoxic, non-genotoxic,
NDEA, and BHT

Introduction

Genotoxicity is the ability to damage genetic information
within a cell, resulting in mutations that may lead to
malignancies (Hartwig et al., 2020). Genotoxic substances
induce damage to the genetic material in the cells through
interactions with the DNA sequence and structure (Jacobs
et al., 2016). Various tests for genotoxicity, such as
chromosomal aberrations, micronuclei, and sister chromatid
exchanges, have been employed in both acute and chronic
studies (Ames et al., 1973). On the other hand, non-genotoxic
carcinogens promote cancer through processes that do n’t
involve mutations, such as hormonal influences, cell damage,
increased cell growth, or epigenetic alterations (Desaulniers
et al., 2021; Choy and Assessment, 2001). Additionally,
genotoxicity tests typically include cytogenetic assays to assess
significant DNA damage. Single- and double-strand DNA breaks
are key alterations that can lead to mutations. These breaks can
be detected by observing the formation of foci of histone H2Ax-
gamma, which is a marker of DNA damage (Rahmanian
et al., 2021).

The failure, downregulation, or mutation of gene repair
mechanisms, along with epigenetic changes (Chen et al., 2020)
such as DNA methylation, specific histone methylation or
acetylation (Rajan et al., 2020), and DNA damage induced by
oxidative stress (MJCl, 2012), all contribute to tumor
development.

Microarray-based genomics using a short-term in vivo model
were deemed a fast and superior method for characterizing
carcinogens through statistical and mechanistic analyses. A
previous study included differentially expressed genes and
associated pathways in cellular processes, uncovering
significant mechanisms involving key cellular components (Lee
et al., 2013).

In toxicological studies, the gene expression and
bionformatics analysis offers new insights for testing
chemicals and identifying pathways potentially linked to
cancer, although these pathways often require further
validation to develop new cancer biomarkers or drug
therapies. The specificity of identified genes should be closely
related to cancer development. Bioinformatics is applied in both
in vitro and in vivo models, and both require additional
validation (Zhao et al., 2012). Additionally, when the using
cDNA microarrays and the gene expression profiles improved
the differentiation between genotoxic and non-genotoxic effects
for 20 chemical carcinogens in HepG2 cells (Van Delft et al.,
2004; Lee et al., 2014).

Previous research found that genotoxic (GTX) carcinogens
activate the p53 tumor suppressor gene, leading to cell cycle
arrest, apoptosis, and DNA repair processes. This activation
regulates multiple genes, including Cdkn1a, Mdm2, and Bcl2
(Ellinger-Ziegelbauer et al., 2004). Additionally, a selection of
100 genes was identified to differentiate between genotoxic and
non-genotoxic hepatocarcinogens. Differential gene expression
induced by chemicals was examined using DNA microarrays and
validated through quantitative real-time PCR (Furihata
et al., 2016).

ATT-myc model of liver tumor was first identified by Dalemans
et al. (1990) andwe choices it for current study as it had 1 year displayed
only liver dysplasia andHCC appeared later after 12months a. Notably,
similar record reported that ATT-myc model displayed HCC later after
12 months (Santoni-Rugiu et al., 1996) and so this model favor the
testing of chemicals as well as known carcinogens, DEN, but it need
further validation (Hueper et al., 2012) for testing of chemical as
Rash2 transgenic model and p53−/− transgenic mice.

The goal of this study is to identify gene classifiers through
bioinformatics analysis that can differentiate between genotoxic
carcinogens (like diethyl nitrosamine) and non-genotoxic
carcinogens (such as butylated hydroxytoluene), using ATT-myc
transgenic mice and liver gene expression profiles.

Materials and methods

This study involved 72 transgenic ATT-Myc mice of both
sexes and 12 non-transgenic mice. All animals were housed in
cages with 1 to 4 mice each on sawdust bedding and under a 12-h
light–dark cycle with 50% relative humidity and a temperature of
22°C. They were provided with a standardized diet and had free
access to water (Zucht, ssniff M-/10 mm, complete mice diet,
ssniff Requirements GmbH, DE-59494, www.ssniff.de). This
study was approved by Ethical Committee of king Faisal
university (KFU-25-ETHIC53114) and the city of Hannover,
Germany (AZ:.33.9-42502-04-08/1619).

Study design and treatment

The mice were categorized into three groups; the first and
second groups each consisted of 48 transgenic mice, with
12 males and 12 females in each group. The third group
included 24 non-transgenic mice of both sexes as a vehicle
control. The first group of transgenic mice received NDEA
(99% purity, Sigma Aldrich, Germany) at a dose of 100 mg
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once per week for 6 weeks, starting at 2 months of age. The
second group of transgenic mice received BHT at a dose of
300 mg/kg twice per week for 8 weeks. Both transgenic and
non-transgenic control mice were used for comparison. During
the six-week period, transgenic mice were administered a saline
solution containing 100 mg/g NDEA weekly, while the control
mice received only saline injections.

Sample collection and preparation

Mice were anesthetized with CO2, and their thoraxes were
opened using standard surgical techniques. The liver was then
extracted using PBS at the end of the treatment period at
4 months of age. The liver tissue was promptly frozen in liquid
nitrogen and stored at −80°C.

Isolation through hybridization and RNA

Total RNA was extracted from frozen liver tissues using the
RNeasy total RNA isolation protocol from QIAGEN. The process
adhered strictly to the Target Labeling Assay Manual. This
included ribosomal RNA reduction, cDNA synthesis, cRNA
hydrolysis, fragmentation, terminal labeling, hybridization,
washing, chip staining, GeneChip scanning, and data
interpretation.

Data analysis, normalization, and
comparison

The analysis was conducted using a mixed-model analysis of
variance on 6 hybridizations of NDEA treatments and
6 hybridizations of BHT-treated transgenic samples, and all
were processed on the MouseExon10ST array. The data were
analyzed using the XRAY (version 3.2) software on
15 December 2010. Gene expression for both probes was
normalized against historical data (Figures 1, 2). Fold changes
were deemed significant with a p-value of ≤0.05, and statistical
tests were performed using the Student’s t-test.

Array normalization

The input files were normalized using complete quantile
normalization (Bolstad et al., 2003). For each probe expression
value in each input array, the average of all array points was
used instead of the array percentile probe value.

Low-level data handling

The 4,549,897 probes were subsequently converted into
analytical values, as described below. Probes with a GC count
greater than 17 or less than 6 were excluded from the analysis.

FIGURE 1
The GOMolFn gene classifications that were significantly overrepresented in the set of differentially spliced or expressed genes.
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The remaining probe scores were then transformed by multiplying
them by the logarithm of 0.1.

Background error

In exon arrays, individual mismatch probes are not used. Instead, a
set of specially designed probes are employed to provide context. The
MouseExon10ST antigenomic. bgp file included a list of background
probes, which were categorized by their CG content. BGP files are also
available for download at www.affymetrix.com. To adjust for the
background, the median expression score of background probes
with the same GC content was subtracted from each probe score.

Probe set expression scores

The MouseExon10ST array featured 1,185,965 probe sets, which
were generally groups of four probes, though this was not always the case.

Probe set expression scores and
annotation filtering

The expression score for a probe–probe set was calculated by
taking themedian of its expression scores. Probe sets with fewer than
three probes that passed all relevant tests were excluded from the
analysis. In the exon arrays, the reliability of individual probes and
probe sets was dependent on the accuracy of their genomic

annotations. The probe sets were classified into three reliability
levels: Core, Extended, and Complete, with Core being the most
reliable. For example, “Core” probe sets were linked to high-quality
genomic features, such as RefSeq or Ensembl transcripts, while
“Extended” and “Complete” probe sets were associated with less
reliable annotations, such as gene prediction algorithms and EST
hits. Only “Core” probe sets were used in this study.

Probe set presence/absence and the
removal of non-expressed probe sets

Alternative splicing tests might produce false positives if non-
expressed probes lead to “non-parallel” expression patterns across the
genome. A probe set in a given category was deemed more expressed
in the context only if the integral from T0 to infinity of the standard
normal distribution was less than or equal to 0.001. Here, Group Size
refers to the number of CEL files in the group; T0 was calculated as.

Sqr GroupSize( ) × T − P( )Sqr Pvar( )\text Sqr GroupSize( ){ }\times\
frac T − P( ){ } \text Sqr\ Pvar( ){ }{ }Sqr GroupSize( ) × Sqr Pvar( ) T − P( )

P represents the average of background probe values adjusted for
GC content; Pvar is the total variance of background probes divided
by the square of the number of probes in the probe set.

To determine if the average expression of background probes with a
similar GC content to the probe set was higher than that of the
background probes used as a reference for the probe set, we first
calculated the dispersion from the variance of the background probe set.

FIGURE 2
The GOProcess gene classifications that were significantly overrepresented in the set of 414 differentially spliced or expressed genes.
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Filtering invariant probe sets

Probe sets with low variance were removed from the analysis using
a Chi-square test. A probe set was considered to have low variance if its
transformed variance fell below the 90 percent confidence interval of the
Chi-squared distribution with (N-1) degrees of freedom. This was
determined by comparing the variance of the gene probe set to the
Chi-squared value for (N-1) degrees of freedom.

Here, NNN represents the number of input CEL files, (N−1)(N-
1)(N−1) denotes the degrees of freedom for the Chi-squared
distribution, and “probe set variance for the gene” refers to the
average variance of probe sets associated with the gene. While this
method is generally effective, it is important to note that probe sets,
and probe sets across genes are not independent. Additionally, we
compared the variance of the probe set with a random variable,
whereas the Chi-square test of variance is typically used to compare
a variance against a constant value.

The filtering results are summarized in the following table.
(*) clusters of transcripts that contain four to two hundred

passing probe sets.
(**) At least three passing probes are present in a probe set.
The following Table 1. summarizes the results of filtering.
We examined 7,864 genes for differences in gene expression or

alternative splicing patterns between the classes. Due to the filtering of
probe set annotation levels (Core) and the exclusion of probe sets not
expressed in the bht-1-mf and ndea-1-mf groups, the number of
remaining transcript clusters with more than four probe sets was
reduced. As a result, the number of genes tested may have been
considerably lower than the total number of transcript clusters
on the chip.

Identification of group-specific gene
expression and alternative splicing

To find genes with group-unique gene expression or alternative
splicing, the researchers used a mixed-model nested study of
variance (Montgomery, 2017). The nested model was suitable
because expression data points were obtained in batches based
on hybridizations rather than by randomly sampling data or
individual CEL files. A mixed model was employed because the
CEL files were treated as random variables—our focus was on the

effects of multiple arrays rather than individual CEL files. Groups
and exons had a continuous effect. If the experiment were repeated,
the designation of states would be either random or fixed. Analysis
of variance (ANOVA) was applied to the data according to a
linear model.

Multiple-test correction

For each gene tested, the probability of a “false positive” (or
“Type I Error”) was 0.01 under ideal randomization conditions.
However, this significance value could be misleading because we
were testing a large number of “independent” genes, and the chance
of finding a false positive increased as the number of genes tested
grew (Benjamini and Hochberg, 1995). To address this issue, we
used the Benjamini and Hochberg false discovery rate (FDR)
method, which was initially introduced by Simes (Dalemans
et al., 1990). This method controls the family-wide error rate in a
weaker sense by managing the expected proportion of false positives
(unlike methods such as Bonferroni correction, which controls false
discoveries in a stronger sense by bounding the probability of any
false positives; however, such methods can be overly conservative
and have reduced power for these types of studies) (Benjamini and
Hochberg, 1995) and originally proposed by Simes (Simes, 1986).

For the third-largest p-value and on, NNN represents the total
number of genes analyzed. Next, genes with a corrected p-value
greater than RRR could be excluded to determine the project’s false
discovery rate (FDR), where RRR was the threshold. Alternatively,
the FDR could be set to the highest corrected p-value, allowing all
significant results before correction to be retained. While this
method is commonly used for expression analysis, it operates
under the assumption that individual tests are independent,
which prevents it from capturing gene interactions.

Determining tissue presence/absence using
group expression above background

To determine if a gene was expressed in a group (or tissue), we
calculated the p-value to test the null hypothesis that the average
expression of CEL files from that group did not exceed the
background level. In other words, the p-value indicated the

TABLE 1 The table summarizes the results of filtering.

Filtering step Filter Probes Probe sets Transcript
Clusters

0 Total on Chip 4,549,897 1,185,965 270,096

1 Core Probe Sets 839,727 218,187 15,701 (*)

2 Pass Filter 1 and Probes with GC Counts between 6 and 17 800,357 201,370 (**)

3 Pass Filters 1 and 2 andProbe Sets Expressed Above the
Background

390,024 98,077 (**)

4 No Absolute
Score Filter Used

390,024 98,077 (**)

5 Pass Filters 1, 2
3, and 4 and Pass the Background

348,730 87,705 (**) 7,864 (*)
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probability of observing the gene expression level under the null
hypothesis, which assumed that tissue expression was no greater
than the background level. If the p-value was below the significance
threshold of 0.01 and the null hypothesis was rejected, we could
conclude that the gene was likely expressed in the tissue. The
assessment of [1 – Cumulative Standard Normal (N0) ] at N0 =
Sum (probe–GC Background)/Var yielded this significance given
the probes in a given gene. Here, Var represents the average
background variance, GC Background is the median score at a
given probe GC count, and the sum is over all probe scores
belonging to CEL files in the group.

Group expression level filters to reduce false
positives in alternative splicing

Significant variations in a gene’s expression levels across tissues
can cause nonlinear behaviors that deviate from the expected
expression model, potentially leading to false positives for
alternative splicing. An example of “non-parallel” expression
between groups occurs when exon expression in one group
approaches the background levels (or saturation) while other
groups remain within the dynamic range. This happens because
expression values in the dynamic range are more flexible, whereas
those near the background or saturation are “dampened”. Such non-
parallel behavior might be incorrectly interpreted as group-specific
alternative exon usage. To address this issue, we used p-values for
group expression of the gene to identify and exclude these cases.

Only one group expressed

Data analysis, normalization, and comparison
This study utilized a mixed model analysis of variance to examine

six hybridizations of NDEA treatments and six hybridizations of BHT
samples using theMouseExon10ST array. The analysis was conducted
by the installer with XRAY (version 3.2) software. Gene expression for
both probes was normalized non-transgenic background. Fold
changes were deemed significant at a p-value of ≤0.05, with
statistical testing performed using the Student’s t-test.

Results

Differentially expressed and alternatively spliced genes in both
genotoxic and non-genotoxic compounds were assessed immediately
after the end of treatment in a ATT-myc transgenic model.

Tissue distribution of expression

The MouseExon10ST array contained 270,096 transcript
clusters. After applying the aforementioned filters, 7,864 samples,
each with between 4 and 200 probe sets, were analyzed. These
samples were then evaluated for alternative splicing and differential
gene expression using the previously discussed statistical methods.
The number of genes (transcript clusters) expressed in each group
for the tested transcript clusters is summarized as the following.

Using the same test, the following table summarizes the
frequencies of pair-wise co-expression between the study groups.

There were 6,946 genes where the bht-1-mf group showed
significant expression above the background, while there were
only 187 genes where this group was the only one with
significant expression above the background. The numbers in
parentheses indicate exclusivity, while the plain numbers
represent the total count.

The following table summarizes all co-expression patterns. Since
frequencies were exclusive, there were 6,759 genes that expressed the
group bht-1-mf vs. ndea-1-mf and no other tissues.

Differential gene expression and
alternative splicing

The statistical analysis detailed in the “Methods” section
identified 2021 genes with significant exon–group interactions,
indicating alternative splicing, as well as 645 genes with notable
differences in gene expression between groups, including 181 genes
with both expression differences and interactions. Tables 2, 3
present the top 10 genes showing significant differential
alternative splicing and the top 10 genes with the highest fold
changes in differential gene expression.

Interestingly, as shown in Table 2, these genes are involved in
several cellular processes and pathways that intersect in the context
of cancer and genotoxicity.

Comparison of differentially expressed
genes and exons with known gene
classifications

To detect significant overrepresentation in the GOMolFn,
GOProcess, GOCellLoc, and Pathway categories, the 7,864 genes
tested for differential alternative splicing and gene expression were
compared with established gene classifications listed in the
MouseExon10ST.info file. Contingency table analysis was used to
identify groups where genes with significant splicing or expression

Group Number of transcript clusters with significant expression in each group

bht-1-mf 6,946—88.3% of genes tested

ndea-
1-mf

7,198—91.5% of genes tested

bht-1-mf ndea-1-mf

bht-1-mf 6,946 (0,187) 6,759 (6,759)

ndea-1-mf — 7,198 (0,439)

bht-1-mf vs. ndea-1-mf 6,759

bht-1-mf 187

ndea-1-mf 439
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differences were notably overrepresented. Under random
circumstances, a group’s significant gene count had a hyper-
geometric distribution (Ross, 2014), and the probability of seeing
the given number or more significant genes in a group could be
approximated as follows: the cumulative normal (x, mean = 0,
variance = 1) was used, where x is equivalent to [a - (n *p)]/Sqr
[n *p * (1-p)], the number of genes in the group is represented by n,
the number of significant genes is represented by a, and the ratio of
the total number of significant genes to the total number of genes is
represented by p value.

False discovery rate

The false discovery rate for this project was below 1.00E-00 for the
tests of differential alternative splicing and gene expression based on
calculations using the sequential step-down method described earlier.

This approach is like a one-sided Fisher exact test. The exact
statistics can be calculated by summing all the discrete hypergeometric

probability density function (PDF) values. Each group underwent this
calculation, and the significant groups are listed below for each
annotation class (i.e., where the function yields a result of less than
0.01 for either gene expression or alternative splicing).

Significant representation in groups from
the GOMolFn classification

Within the set of genes showing differential splicing or
expression (as determined previously), 198 groups from the
GOMolFn gene classification were significantly overrepresented.
The depicted Table 3 lists the top 30 groups. Each row
represents a group, with the three columns showing the group
name, the number of tested genes with significant differential
splicing (indicated by a p-value for overrepresentation), and the
number of genes with significant differential gene expression (also
indicated by a p-value for overrepresentation) (Table 4;
Supplementary Figure S1).

TABLE 2 Highlights the top 10 genes with significant fold changes in expression based on normalized, untransformed data.

Gene symbol TCluster ID Description Fold change Differential Expression p-value

1 4432416J03Rik 6995384 RIKEN cDNA
4432416J03 gene

−4.11 7.27E-04

2 Tat 6979073 Tyrosine aminotransferase 1.81 2.15E-03

3 Fgfr1 6974743 Fibroblast growth factor receptor 1 (FGFR1) 2.01 1.40E-02

4 Atp8b1 6866118 ATPase class I type
8B member 1

−1.41 2.55E-02

5 Uqcr 6775372 Ubiquinol-cytochrome c reductase (6.4kD) −1.71 2.91E-02

6 Grpel1 6929960 GrpE-like 1 mitochondrial −1.41 2.88E-02

7 Las1l 7018304 LAS1-like (S. cerevisiae) −1.31 2.47E-02

8 Slc38a2 6838257 Solute carrier family
38 member 2 (SLC)

2.31 2.32E-02

9 Nav1 6762429 Neuron navigator 1 1.31 2.16E-02

10 Pck1 6883654 Phosphoenolpyruvate carboxykinase 1 (PEPCK) 1.61 2.49E-02

TABLE 3 The top 10 genes with significant differential alternative splicing.

Gene symbol TCluster ID Description Exon–Tissue Interaction p-value

1 Dync1h1 6798108 Dynein cytoplasmic 1 heavy chain 1 1.66E-26

2 Acaca 6783063 Acetyl-coenzyme-A carboxylase alpha 3.49E-25

3 Acsm3 6963895 Acyl-CoAsynthetase medium-chain family 2.52E-17

4 Lrp1 6777957 Low-densitylipoprotein receptor-related 9.16E-17

5 Pzp 6957348 Pregnancy zone protein 1.49E-14

6 Hspg2 6917933 Perlecan (heparan sulfate proteoglycan 2) 1.64E-13

7 Abcb11 6887522 ATP-binding cassette sub-family B 4.70E-13

8 Tat 6979073 Tyrosine aminotransferase 6.45E-13

9 Tspan12 6952070 Tetraspanin 12 7.53E-13

10 Klkb1 6982094 Kallikrein B plasma 1 1.57E-12
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Significant representation in the groups
from the GOProcess classification

Among the genes that showed differential splicing or expression (as
previously described), 253 groups were significantly overrepresented in
the GOProcess gene classification. The table below shows the top
30 groups. For each group, the table lists three columns: the number
of tested genes with significant differential gene expression (indicated
by a p-value for overrepresentation), the number of genes (418)
with significant differential splicing (also indicated by a p-value
for overrepresentation), and the group name (Table 5;
Supplementary Figure 1).

Significant representation in the groups
from the GOCellLoc classification

Among the genes that exhibited differential splicing or expression
(as outlined earlier), 41 groups were significantly overrepresented in
the GOCellLoc gene classification. The table below presents the top
30 groups. Each row represents a single group, with the three columns
indicating the number of tested genes with significant differential
splicing (with a p-value for overrepresentation), the number of
genes with significant differential gene expression (also with a
p-value for overrepresentation), and the group name (Table 6;
Supplementary Figure 1).

TABLE 4 The top 30 groups of GOMolFn gene classifications that were significantly overrepresented in the set of differentially spliced or expressed genes.

Number GE Number AS Group name

1 28 (8.70E-01) 161 (1.10E-09) GO:0016491 oxidoreductase activity

2 0 (1.00-00) 14 (2.07E-07) GO:0016627 oxidoreductase activity-Activity

3 19 (3.17E-01) 85 (3.39E-07) GO:0016874 ligase activity

4 3 (5.49E-07) 1 (5.12E-01) GO:0016847 1-aminocyclopropane-1-Carboxy

5 80 (1.35E-01) 284 (9.64E-07) GO:0005524 ATP binding

6 2 (1.09E-06) 1 (2.15E-01) GO:0005087 Ran guanyl-nucleotide Exchange

7 2 (1.09E-06) 1 (2.15E-01) GO:0004311 farnesyltranstransferase activity

8 2 (1.09E-06) 0 (1.00-00) GO:0005229 intracellular calcium Activation

9 4 (1.16E-06) 0 (1.00E-00) GO:0042605 peptide antigen binding

10 1 (6.58E-01) 13 (3.05E-06) GO:0003995 acyl-CoA dehydrogenase activity

11 5 (3.28E-06) 3 (4.51E-01) GO:0000155 two-component sensor Activity

12 4 (8.06E-06) 3 (2.22E-01) GO:0005520 insulin-like growth factor

13 96 (1.83E-01) 336 (1.12E-05) GO:0000166 nucleotide binding

14 11 (2.38E-05) 14 (1.75E-01) GO:0030170 pyridoxal phosphate Binding

15 4 (5.03E-01) 25 (2.41E-05) GO:0050660 FAD binding

16 4 (8.57E-01) 36 (5.43E-05) GO:0016887 ATPase activity

17 1 (8.14E-01) 16 (6.83E-05) GO:0004177 aminopeptidase activity

18 0 (1.00E-00) 5 (7.07E-05) GO:0y016717 oxidoreductase activity

19 5 (8.63E-05) 2 (8.35E-01) GO:0016769 transferase activity-Transfer

20 4 (2.04E-02) 12 (9.12E-05) GO:0015662 ATPase activity-coupled

21 3 (9.38E-05) 3 (8.61E-02) GO:0005391sodium: potassium- exchanging A

22 36 (5.14E-02) 117 (9.51E-05) GO:0003824 catalytic activity

23 26 (1.17E-01) 91 (1.04E-04) GO:0008233 peptidase activity

24 2 (1.10E-04) 2 (5.20E-02) GO:0017112 Rab guanyl-nucleotide Exchange

25 2 (1.10E-04) 2 (5.20E-02) GO:0003989 acetyl-CoA carboxylase Activity

26 2 (1.10E-04) 2 (5.20E-02) GO:0004075 biotin carboxylase Activity

27 2 (1.10E-04) 0 (1.00E-00) GO:0004618 phosphoglycerate kinase Activity

29 2 (1.10E-04) 0 (1.00E-00) GO:0042606 endogenous peptide antigen

30 3 (1.33E-01) 12 (2.19E-04) GO:0016820 hydrolase activity-acting
On acid anhydrides
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Connecting Genotoxicity and Cancer Pathways with Gene
Ontology Terms Understanding how these molecular mechanisms
affect cellular responses to DNA damage, cell survival, proliferation,
and metastasis is crucial. This understanding is based on the Gene
Ontology (GO-cellloc) terminology assigned to important pathways
implicated in genotoxicity and carcinogenicity.

Discussion

Genetic studies of cancer models play a crucial role in advancing
our understanding of genotoxicity, cancer biology and developing

new therapies. By studying the genetic mutations, alterations, and
pathways involved in cancer, researchers can identify key
biomarkers and therapeutic targets. These studies provide
insights into the mechanisms of tumorigenesis, including how
cells bypass normal growth control, evade the immune system,
and metastasize.

Cancer models, particularly genetically engineered ones, allow
for the examination of specific genetic changes in a controlled
environment, helping to simulate the development
genotoxicityand progression of cancer. This enables researchers
to test potential therapies and assess their effectiveness in treating
different types of cancer.

TABLE 5 Shown top 30 Significant representation in the groups of the GOProcess classification.

Number GE Number AS Group name

1 3 (3.33E-09) 0 (1.00E-00) GO:0002504 antigen processing and cell express antigen

2 41 (7.55E-02) 149 (1.21E-07) GO:0008152 metabolic process

3 0 (1.00E-00) 11 (5.67E-07) GO:0000059 protein import into nucleus-

4 15 (9.08E-01) 99 (5.91E-07) GO:0006118 electron transport

5 2 (8.45E-01) 27 (6.11E-07) GO:0006631 fatty acid metabolic process

6 2 (1.09E-06) 0 (1.00E-00) GO:0007527 adult somatic muscle

7 2 (1.09E-06) 0 (1.00E-00) GO:0001659 thermoregulation

8 2 (1.09E-06) 0 (1.00E-00) GO:0042755 eating behavior

9 2 (1.09E-06) 0 (1.00E-00) GO:0030502 negative regulation of bone m

10 2 (1.09E-06) 0 (1.00E-00) GO:0048002 antigen processing and presenting cell expresses peptide antigen

11 2 (1.09E-06) 0 (1.00E-00) GO:0019883 antigen presentation, endogenous antigen

12 2 (1.09E-06) 0 (1.00E-00) GO:0045582 positive regulation of T cell

13 2 (1.09E-06) 0 (1.00E-00) GO:0002028 regulation of sodium ion transport

14 2 (1.09E-06) 0 (1.00E-00) GO:0050873 brown fat cell differentiation

15 7 (6.13E-06) 3 (8.63E-01) GO:0019882 antigen processing and presentation

16 3 (1.19E-05) 4 (2.0E-03) GO:0018107 peptidyl-threonine phosphoryl

17 3 (1.19E-05) 2 (2.31E-01) GO:0000050 urea cycle

18 1 (2.24E-01) 6 (1.53E-05) GO:0009725 response to hormone stimulus

19 6 (2.29E-05) 4 (5.80E-01) GO:0000160 two-component signal transducer

20 4 (3.64E-05) 2 (5.93E-01) GO:0019886 antigen processing and presentation

21 1 (4.17E-01) 8 (4.17E-05) GO:0006509 membrane protein ectodomain p

22 6 (5.00E-05) 7 (9.94E-02) GO:0001503 ossification

23 2 (4.74E-03) 5 (7.0?E-05) GO:0007044 cell-substrate junction assem

24 11 (3.16E-01) 48 (7.09E-05) GO:0006629 lipid metabolic process

25 3 (9.38E-05) 4 (1.0?E-02) GO:0019395 fatty acid oxidation

26 2 (1.10E-04) 0 (1.00E-00) GO:0007028 cytoplasm organization and bi

27 2 (1.10E-04) 1 (3.80E-01) GO:0006527 arginine catabolic process

28 2 (1.1OE-04) 0 (1.00E-00) GO:0006415 translational termination

29 2 (1.1OE-04) 1 (3.80E-01) GO:0006519 amino acid and derivative met

30 2 (1.1OE-04) 1 (3.80E-01) GO:0030655 beta-lactam antibiotic metabolic process
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Furthermore, genetic research can aid in personalized medicine by
identifying mutations that are specific to individual patients or cancer
types, leading to more tailored and effective treatment strategies.
Overall, genetic studies are essential for discovering novel
therapeutic approaches, improving early detection, and advancing
the development of targeted therapies that can more precisely
address the genotoxicity and genetic underpinnings of cancer.

Classifying genes based on Gene Ontology, including molecular
function, process, and cellular localization, is crucial for identifying
key biomarkers and pathways that help distinguish between
genotoxic and non-genotoxic carcinogens (Waters et al., 2010;
Pérez et al., 2016).

Notably, these genes are linked through pathways pertaining
to energy metabolism, cell signalling, stress responses, and
genomic stability. These pathways are all altered in cancer and
during genotoxic stress in the following ways, as shown in Table 2
based on Network or Pathway in Cancer and Genotoxicity: the
functions of genes such as PEPCK, GrpE-like 1 mitochondrial,
and ubiquinol-cytochrome c reductase in cellular energy
metabolism which is changed in cancer—link them together.
Mitochondrial failure can increase oxidative stress and DNA
damage, contributing to genotoxicity and genomic instability,
critical aspects in cancer formation (Sakai et al., 2012; Grasso
et al., 2020).

TABLE 6 Presents the top 30 GOCellLoc gene classifications that were significantly overrepresented in the set of differentially spliced or expressed genes.

Number GE Number AS Group name

1 3 (3.33E-09) 0 (1.00E-00) GO:0042405 nuclear inclusion body

2 3 (3.33E-09) 0 (1.00E-00) GO:0042613 MHC class II protein complex

3 2 (1.09E-06) 1 (2.15E-01) GO:0005577 fibrinogen complex

4 11 (3.49E-05) 10 (7.01E-01) GO:0009897 external side of plasma membr

5 39 (6.56E-05) 72 (3.13E-01) GO:0005886 plasma membrane

6 0 (1.00E-00) 5 (7.07E-05) GO:0005579 membrane attack complex

7 2 (1.10E-04) 0 (1.00E-00) GO:0016471 vacuolar portion- transporting

8 1 (2.78E-01) 6 (1.37E-04) GO:0001740 Barr body

9 5 (1.92E-04) 5 (2.48E-01) GO:0005741 mitochondrial outer membrane

10 1 (4.0?E-04) 1 (4.44E-02) GO:0014069 postsynaptic density

11 1 (4.0?E-04) 1 (4.44E-02) GO:0030055 cell-matrix junction

12 1 (4.0?E-04) 0 (1.00E-00) GO:0045239 tricarboxylic acid cycle enzy

13 1 (4.0?E-04) 0 (1.00E-00) GO:0005833 hemoglobin complex

14 1 (4.0?E-04) 0 (1.00E-00) GO:0043235 receptor complex

15 1 (4.0?E-04) 0 (1.00E-00) GO:0042101 T cell receptor complex

16 1 (4.0?E-04) 0 (1.00E-00) GO:0016012 sarcoglycan complex

17 1 (4.0?E-04) 0 (1.00E-00) GO:0042719 mitochondrial intermembrane s

18 1 (4.0?E-04) 0 (1.00E-00) GO:0005964 phosphorylase kinase complex

19 1 (4.0?E-04) 1 (4.44E-02) GO:0005796 Golgi lumen

20 1 (4.0?E-04) 1 (4.44E-02) GO:0008280 cohesin complex

21 2 (4.12E-01) 12 (4.78E-04) GO:0016459 myosin complex

22 29 (9 .30E-01) 148 (6.92E-04) GO:0005783 endoplasmic reticulum

23 4 (7.92E-01) 30 (9.37E-04) GO:0005777 peroxisome

24 2 (1.15E-03) 2 (1.33E-01) GO:0005890 sodium:potassium- exchanging A

25 5 (1.22E-03) 2 (9.21 E-01) GO:0005839 proteasome core complex (sens

26 61 (7.59E-01) 246 (1.25E-03) GO:0005737 cytoplasm

27 6 (1.33E-03) 8 (1.95E-01) GO:0016323 basolateral plasma membrane

28 0 (1.00E-00) 5 (2.78E-03) GO:0046581 intercellular canaliculus

29 5 (5.99E-01) 27 (4 .00E-03) GO:0005694 chromosome

30 18 (4.57E-03) 36 (1.SOE-01) GO:0005794 Golgi apparatus
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The FGFR1 gene is essential for signalling pathways that control
cell growth and survival, according to Growth and Survival
Signalling. It may interact with metabolic pathways, and by
encouraging unchecked cell division and resistance to genotoxic
stress, its dysregulation may result in carcinogenesis (Yang
et al., 2021).

Based on Cellular Stress and DNADamage Response, Genes like
LAS1-like, GrpE-like 1, and Tyrosine aminotransferase can be
implicated in cellular stress responses, including protein folding
and DNA repair. Their imbalance can contribute to genotoxic stress,
increasing cancer cell survival despite DNA damage (Batra, 2013).

The SLC family and ATPase class I type 8B genes affect how cells
process nutrients, ions, and medications, according to Transport
and Drug Resistance. By altering the uptake of genotoxic drugs like
chemotherapy, altered transport can affect the ability of cancer cells
to survive in the presence of these agents (Alam et al., 2023).

Among the top ten genes with altered expression by the end of
the DEN treatment when compared to BHT group is
Phosphoenolpyruvate carboxykinase (PEPCK), which is involved
in cellular energy metabolism an area that is significantly altered in
cancer. PEPCK is traditionally recognized for its role in
gluconeogenesis, but it also acts as a key regulator of the TCA
cycle flux. This function of PEPCK connects metabolic flux and
anabolic pathways to the proliferation of cancer cells (Montal
et al., 2015).

Notably, the key metabolic pathways, particularly those involved
in lipid synthesis, are altered in the setting of genotoxicity and
carcinogenicity due to considerable differential alternative splicing.
Specifically, genes like LRP, ACACA, and ACSM are linked to the
altered metabolism of cancer cells, which promotes their
proliferation, survival, and ability to withstand genotoxic stress.
Below is a summary of their responsibilities: Acetyl-CoA
Carboxylase Alpha, or ACACA, comes first: By changing acetyl-
CoA into malonyl-CoA, an essential step in lipid synthesis, ACACA
contributes to the production of fatty acids. An increase in fatty acid
synthesis helps cancer cells maintain membrane integrity and
prevent apoptosis, even in the face of DNA damage stress.
Alternative splicing of ACACA can produce isoforms with
altered enzymatic activity, which contribute to dysregulated lipid
metabolism in cancer cells. This change in lipid synthesis supports
the formation of cell membranes, which are essential for rapid cell
division and survival under genotoxic stress and this expression
recorded previously that the fatty acid metabolism is reprogrammed
to promote the breast cancer progression (Zhao et al., 2021).

The medium-chain fatty acids are activated to their acyl-CoA
derivatives by ACSM (Acyl-CoA Synthetase Medium Chain), which
is necessary for cellular signalling and energy production (Yan et al.,
2015). Alternative splicing of ACSM in cancer may result in the
generation of isoforms with distinct cellular localisation or substrate
preferences, thereby promoting altered lipid metabolism. This
makes it easier for energy to be provided to promote rapid
tumour growth and survival, allowing cancer cells to flourish in
hypoxic or nutrient-deficient environments that are frequently
linked to genotoxic stress (Shrestha et al., 2022).

The LRP (Low-Density Lipoprotein Receptor-Related Protein),
which aids in the absorption of lipids, cholesterol, and other
substances necessary for signalling and cellular structure
maintenance. Different ligand affinities or changed internalisation

properties can be produced by alternative splicing of LRP. By
promoting lipid uptake and accumulation in cancer cells, these
spliced isoforms may aid in the metabolic reprogramming of those
cells. Higher lipid consumption promotes membrane biogenesis,
prevents apoptosis, and helps cancer cells survive genotoxic stress by
encouraging cell division (Fernández et al., 2020).

Cancer Cell Metabolic Shift Lipid synthesis and absorption are
elevated in cancer cells as a result of the altered expression and
splicing of these genes. This change facilitates a number of
procedures. Additionally, energy production: In order to
maintain their rapid development, cancer cells need a lot of
energy. Because of the constant energy supply provided by
altered lipid metabolism, cancer cells are able to avoid energy
shortages that could otherwise result in cell death. Fifth,
Membrane Formation: Because cancer cells have a higher
capability for proliferating, they depend on the increased
synthesis of lipids to create new cellular membranes and promote
tumour growth. Lipid metabolism is essential for the formation of
new membranes during cell division.

The Resistance to Genotoxic Stress, By preserving cellular
integrity and function, the modified metabolic pathways aid
cancer cells in fending off genotoxic stress. Despite the presence
of genotoxic treatments like chemotherapy or radiation, cells with
dysregulated lipid metabolism may be able to respond to DNA
damage by avoiding apoptosis and repairing damaged DNA more
efficiently, allowing for survival and development.

Through differential splicing, genes such as ACACA, ACSM, and
LRP contribute to the altered metabolic pathways in cancer. This
metabolic reprogramming allows cancer cells to avoid apoptosis,
withstand genotoxic stress, and continue to proliferate, ultimately
contributing to tumour progression and treatment resistance.

According to Growth and Survival Signalling, the FGFR1 gene,
among the top ten genes with altered expression by the end of the
DEN treatment when compared to BHT, which is highly expressed,
is crucial for signalling pathways that regulate cell growth and
survival. By promoting unrestrained cell division and resistance
to genotoxic stress, it may interact with metabolic pathways. The
FGFR1 gene has recently been found to be expressed in
hepatocellular carcinoma, and the aberrant FGF/FGFR signalling
in HCC initiation, progression, and therapy status offers fresh
information on how to treat HCC (Wang et al., 2021).

By connecting these gene ontology terms to the molecular
mechanisms of cancer and genotoxicity, we can observe
the following:

In terms of Genomic Instability and DNA Damage Response,
disruptions in DNA repair mechanisms (e.g., GO:0016887, GO:
0016769) and oxidative stress (e.g., GO:0016491, GO:0016627) lead
to the accumulation of mutations and chromosomal instability, both
of which are key drivers of cancer development.

Under metabolic reprogramming, changes in cellular energy
metabolism (e.g., GO:0016491, GO:0016627, GO:0016874) allow
cancer cells to survive under stressful conditions, such as hypoxia
and nutrient scarcity, which are frequently encountered in the tumor
microenvironment. Thirdly, regarding Resistance to Genotoxic
Agents, genes involved in cell signaling, drug resistance, and
stress responses (e.g., GO:0005229, GO:0005087, GO:0004311,
GO:0004618) help cancer cells resist therapies like chemotherapy
and radiation by modulating survival and stress response pathways.
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Concerning Tumor Growth and Metastasis, disruptions in
growth and survival signaling pathways (e.g., GO:0005087, GO:
0005524, GO:0017112) promote tumor progression and metastasis,
allowing cancer cells to thrive under genotoxic stress and spread
throughout the body. Collectively, the genes linked to these GO
terms interact through intricate networks involving energy
metabolism, stress responses, DNA repair, and drug resistance,
all of which play essential roles in cancer development and
response to genotoxic stress.

Genotoxic agents are known to induce neoplasm development,
but many new pharmaceutical and environmental chemicals
introduced into society should undergo testing to ensure their
safety. Toxicogenomics involves applying genomic data to study
the harmful effects of these chemicals with the aim of accelerating
risk assessment and hazard screening processes (National Research
Council, 2007).

Essential cellular functions involved in the cellular response to
non-genotoxic and carcinogenicity stress are described by these gene
ontology concepts. Cancer development, progression, and resistance
to treatment are influenced by disruptions in DNA repair, cell cycle
regulation, apoptosis resistance, immunological evasion, and cell
migratory pathways (Li et al., 2007).

The following is an analysis based on the relevance of the Gene
Ontology (GOPROCESS) terms you provided to genotoxicity and
cancer, taking into account the pathways and molecular
mechanisms they represent:

According to immune response and inflammation, GO:0002504
(Antigen Processing and Presentation of Peptide Antigen via MHC
Class I): This process is involved in immune surveillance and the
detection of abnormal cells, including cancer cells; disruption of this
pathway can allow tumour cells to evade immune detection,
facilitating tumour growth and metastasis (Dhatchinamoorthy
et al., 2021). Furthermore, GO:0030502 (RNA Polymerase II
Promoter-Mediated Transcription Regulation): Cancer frequently
exhibits dysregulation of transcription factors or signalling pathways
(e.g., NF-kB), which results in immunological suppression and
genotoxic stress avoidance (Wang et al., 2004). Also, GO:0006118
(Oxidative Phosphorylation) is a crucial metabolic route involved in
energy production, according to Energy Metabolism and Cellular
Respiration. Oxidative phosphorylation is frequently changed in
cancer cells to promote fast cell division (Solaini et al., 2011).

The accumulation of DNA damage and the advancement of
cancer are significantly influenced by mitochondrial malfunction
brought on by oxidative stress, which is frequently observed in
genotoxicity. Additionally, GO:0000059 (CitrateMetabolic Process):
Cancer cells commonly exhibit dysregulation of metabolic pathways
such as the citric acid cycle. Tumour growth and survival are
influenced by modifications in metabolic pathways, particularly
in reaction to genotoxic stress (Icard et al., 2012).

According to Cell Cycle and Proliferation, GO:0007527 (Cell
Differentiation), cancer is characterised by disrupted differentiation,
which results in unchecked cell division (Williams and KJTJop,
2012). Tumour start and development are made possible by changes
in differentiation processes, and genotoxic stress frequently makes
these effects worse by producing DNA damage that encourages
mutations in tumour suppressors and oncogenes. Additionally, GO:
0001659 (Stem Cell Division Regulation): The division of stem cells
is essential for both tumour development and tissue regeneration.

Cancer stem cell populations that are resistant to genotoxic drugs
like chemotherapy are a result of abnormal stem cell control (Patil
et al., 2023).

Based on the DNA Repair and Genomic Stability, GO:0042755
(Telomere Maintenance): Many malignancies have telomere
dysfunction. Shortening telomeres, which shield the ends of
chromosomes, causes chromosomal instability, which is a key
component in the development of cancer and the body’s reaction
to genotoxic stress (Gilley et al., 2005). Additionally, the response to
jasmonic acid (GO:0009725): In order to handle DNA damage
brought on by genotoxic substances, this phrase refers to
signalling pathways that might influence cell cycle regulation and
DNA repair mechanisms (Christmann and Kaina, 2013).

Based on the GO:0048002 (Regulation of Cell Migration), which
is based on Cell Migration and Invasion, cancer cells frequently
show enhanced migration and invasion, both of which are necessary
for metastasis. The ability of cancer cells to penetrate distant tissues
is facilitated by genes that regulate migration; genotoxic stress can
alter this process (Sinsong, 2016). Furthermore, the regulation of
neurone differentiation (GO:0045582): Although this mechanism is
mostly associated with neural differentiation, it may also interact
with cancer metastasis pathways in nervous system tumours, where
altered migration and differentiation lead to tumour invasion and
resistance to genotoxic treatments (Desale et al., 2022).

Additionally, the GO:0002028 (Apoptotic Process) which is
based on Apoptosis and Cellular Stress Responses: Evading
apoptosis is a characteristic of cancer. Despite DNA damage
from genotoxic chemicals, cancer cells can persist due to
resistance to apoptosis. Cancer cells frequently exhibit inhibition
of apoptotic pathways, which increases their resistance to genotoxic
stress. Additionally, GO:0050873 (Cell Death Regulation): This
route affects cancer cell resistance to chemotherapy by
controlling the ratio of cell death to survival. The progression of
tumours and chemoresistance are facilitated by disruption of cell
death mechanisms. Furthermore, GO:0019883 (Regulation of
Apoptotic Process): Signalling pathways that are closely linked to
the regulation of apoptosis can be interfered with in cancer, resulting
in resistance to genotoxic agents (Swift et al., 2014).

Notably, the GO:0018107 (Protein Acylation), which is based on
Signal Transduction and Cancer Progression, acylation has an
impact on how well proteins function in signal transduction
pathways that control cell growth and survival. Protein acylation
changes in cancer can encourage aberrant signalling, which aids in
tumour growth and genotoxic agent resistance. Additionally, GO:
0000160 (Biosynthesis of Inositol Phosphate): The proliferation,
survival, and resistance to genotoxic stress of cancer cells are
frequently linked to the dysregulation of inositol phosphates,
which are essential for cellular signalling (Chakraborty, 2018).

The tumour suppression and protein metabolism are crucial for
controlling the cell cycle and apoptosis (GO:0006509 (Protease
Activity). Proteases in cancer may promote metastasis and
treatment resistance by facilitating tumour cell motility, invasion,
and the degradation of extracellular matrix components
(Rakashanda et al., 2012). Additionally. GO:0001503
(Biosynthesis of Chondroitin Sulphate): The extracellular matrix
contains chondroitin sulphate. Resistance to genotoxic stress and
cancer metastasis are linked to changes in the production of matrix
components. Additionally, the Cell-Cycle Phase Transition (GO:
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0007044): Genomic stability depends on the appropriate control of
cell-cycle progression. One important characteristic of cancer is
unchecked growth, which is frequently caused by changes in cell-
cycle regulation.

Based on the GOPROCESS, the uptake and efflux of
chemotherapeutic medications and other genotoxic chemicals
might be impacted by altered transport pathways, according to
cellular communication and tumour microenvironment (Vaidya
et al., 2022), GO:0006629 (Regulation of Transport). The ability
of cancer cells to endure genotoxic stress can be significantly
influenced by the modulation of transport. Furthermore, GO:
0007028 (Organelle Fission): Cell survival and mitochondrial
function are regulated by mitochondrial fission. The survival and
resilience of cancer cells to genotoxic stress are influenced by altered
mitochondrial dynamics. Additionally, GO:0019395 (Pyrimidine
Deoxyribonucleotide Biosynthesis Process): Uncontrolled cell
proliferation in cancer may be a result of nucleotide biosynthesis
dysregulation. Deoxyribonucleotide buildup can also impact DNA
repair systems, increasing the number of mutations in cancer cells
(Robinson et al., 2020).

Based on the GOPROCESS key mechanisms, the molecular
mechanisms are essential to understand the genotoxicity
reactions and the genesis of cancer. Cancer cells survive and
multiply under genotoxic stress through a variety of basic
processes, including metabolic reprogramming, tumour invasion,
resistance to apoptosis, altered cell signalling, and genomic
instability. A favourable environment for cancer progression and
therapeutic resistance is produced by dysregulation in various
pathways, whether they be in energy metabolism, apoptosis,
DNA repair, or drug resistance. Cancer’s complicated
biochemistry and how it reacts to genotoxic treatments like
radiation or chemotherapy are caused by the intersection of
several of these mechanisms (Sasaki et al., 2020).

To enhance and expedite chemical testing, we propose the use of
the ATT-myc transgenic model and exon arrays to identify gene
expression differences that aid in chemical categorization. We
specifically selected the liver as the target organ due to its role in
biotransforming a variety of compounds and its ability to activate
the toxicity of substances through the induction of cytochrome
P450 enzymes (Ioannides and Lewis, 2004), which increase the
electrophilicity of pro-carcinogens. We used exon arrays to conduct
gene expression profiling and applied Biotique analysis systems and
statistical methods for data analysis.

The analysis was conducted on 13 November 2010, using XRAY
(version 3.2) software, an Excel add-in from Biotique Systems Inc.
(Burke, 2007). This document was automatically generated by
XRAY. The 11 input CEL files were analyzed with the Affymetrix
MouseExon10ST array to identify genes that were significantly
differentially expressed or showed other notable genes with
significant differential alternative splicing between the groups of
interest (Gardina et al., 2006; Huang et al., 2007; Clark et al., 2007).

Using mixed-model analysis of variance, we examined six
hybridizations that were conducted immediately after the
treatment with both genotoxic diethylnitrosamine and non-
genotoxic butylated hydroxytoluene on a MouseExon10ST array.
Out of 645 genes with significant expression differences between the
groups and 2021 genes showing significant exon–group interactions
(indicative of alternative splicing), 181 genes exhibited both gene

and potential splicing differences (p < 0.01). Among the most
significant genes, TAT encodes the mitochondrial enzyme
tyrosine aminotransferase, which is predominantly found in the
liver and metabolizes tyrosine into toxic molecules that are either
excreted by the kidneys or utilized in energy-producing reactions
(Shiman and Gray, 1998). Furthermore, TAT is a novel tumor
suppressor gene (TSG), and its inactivation due to gene deletion and
hypermethylation plays a role in the development of hepatocellular
carcinoma (HCC) (Fu et al., 2010; Mehere et al., 2010). Additionally,
HNF-4, a transcription factor whose expression is reduced in the
albino-lethal liver, is crucial for the expression of TAT (Kelsey
et al., 1992).

Among the most significant genes, fibroblast growth factors
(FGF-1 and FGF-2) are heparin-binding factors that promote the
proliferation, migration, and differentiation of neuroectodermal and
mesodermal cells. These fibroblast growth factors are also widely
expressed in adult tissues, particularly at sites of injury
(Gospodarowicz et al., 1987; Burgess and Maciag, 1989; Basilico
and Moscatelli, 1992; Mason, 1994).

In the GOMolFn gene classification, 198 groups were
significantly overrepresented among the differentially spliced or
expressed genes. Previous research suggests that a mechanistic
approach is a promising strategy for both prediction and
functional category analysis or pathway identification. Notably,
the most significant genes were related to oxidative stress, lipid
metabolism, and genes associated with pregnancy. This finding
aligns with the known effects of genotoxins and the role of
oxidative stress in carcinogenesis (Hernández et al., 2009; Gurer-
Orhan et al., 2006). Additionally, the presence of genes related to
lipid metabolism is typical of profiles delivered by peroxisome
proliferators.

The alternative splicing of pregnancy-related genes might be
linked to fetal malformations associated with genotoxic chemicals.
Alternative splicing is crucial in various regulatory processes and
diseases. Identifying genetic variants that influence splicing
phenotypes is essential for understanding how genetic variations
impact alternative splicing (Yang et al., 2017).

The relationship between these GO keywords and important
genotoxicity and cancer pathways is examined below: According to
DNA Damage and Repair, first Phospholipids have a role in
preserving the integrity of cellular membranes (GO:0042405;
Phospholipid Binding) (Benedict, 2020). Lipid metabolism may
change in response to genotoxic stress, impacting cellular
structural stability and repair processes. Mitochondrial Outer
Membrane GO:0005741: One of the main causes of apoptosis is
mitochondrial malfunction brought on by genotoxic stress. Damage
to the mitochondria may cause cancer cells to become resistant to
apoptosis, allowing them to survive DNA damage. Additionally,
Nucleotide binding (GO:0005964): This process is involved in DNA
replication and repair. A major characteristic of carcinogenesis,
chromosomal instability and mutations are more likely when
nucleotide metabolism is dysregulated because it can disrupt
DNA repair pathways. GO:0042719 (Cholesterol Metabolic
Process): Cellular signalling, including pathways that control
DNA repair and death, and membrane composition are all
impacted by dysregulated cholesterol metabolism. Changes in the
metabolism of cholesterol are associated with the advancement of
cancer (Mehere et al., 2010).
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According to cell cycle regulation, signals that regulate the
advancement of the cell cycle are mediated by receptors on the
plasma membrane GO:0009897 (Negative Regulation of Receptor
Activity) (Li et al., 2016). Also, Uncontrolled proliferation in
response to genotoxic stress can result from the loss of receptor
activation, which is frequently observed in cancer cells. GO:0005783
(Endoplasmic Reticulum Membrane): The ER plays a role in the
folding and synthesis of proteins, both of which are critical during
reactions to DNA damage. The unfolded protein response (UPR),
which can be triggered by genotoxic stress, can accelerate the
development of cancer if it is dysregulated. GO:0008280
(Regulation of Cell Proliferation): One of the hallmarks of cancer
is unchecked cell proliferation. When under genotoxic stress, this
process is frequently dysregulated, which results in the development
and spread of tumours. Synaptic Vesicle GO:0005890: Although the
primary function of synaptic vesicles is neurotransmission, their
involvement in cellular signalling may have an impact on the
proliferation and stress response of cancer cells (Makrygianni
and Chrousos, 2023).

Considering the growth and metastasis of tumours, one of
the main characteristics of cancer metastasis is increased
migration (GO:0016471; Cell Migration). The spread of
cancer cells to distant organs can be facilitated by genotoxic
stress, which can change cell migratory routes. Additionally,
GO:0001740 (Retinal Pigment Epithelium Development):
Although particular to the eye, this phrase implies that
genotoxic stress influences cell fate and tumour
dissemination, and that altered differentiation and migration
may be involved in eye malignancies. Moreover, GO:0046581
(Regulation of Epithelial Cell Migration): Genotoxic stress can
enhance migration, which aids in the spread of cancer cells.
Epithelial cell migration is implicated in cancer metastasis
(Bharadwaj and Mandal, 2020).

Based on homeostasis and cellular communication,
Cytoplasmic Membrane-Bounded Vesicle (GO:0005579): These
vesicles take part in transport and signalling within cells
(Samanta et al., 2024). Dysregulation of vesicular transport
can impair stress responses and contribute to cancer cell
survival under genotoxic conditions. Additionally, GO:
0005694 (Chromosome): One of the hallmarks of cancer is
chromosomal instability, which is frequently brought on by
genotoxic chemicals. Mutations brought on by genomic
instability cause oncogenes to become active and tumour
suppressor genes to become silenced. Moreover, GO:0005794
(Golgi Apparatus): The Golgi apparatus is involved in protein
modification and sorting. Its malfunction can change cellular
signalling and encourage the formation of tumours, especially
when it occurs under genotoxic stress (Bui et al., 2021).

Inconclusions, the essential cellular functions involved in the
cellular response to carcinogenicity and genotoxic stress are
described by these gene ontology concepts. Cancer development,
progression, and resistance to treatment are influenced by
disruptions in DNA repair, cell cycle regulation, apoptosis
resistance, immunological evasion, and cell migratory pathways.
These changed pathways in cancer cells mitigate the DNA damage
and oxidative stress that genotoxic treatments, such radiation or
chemotherapy, usually cause. Finding therapeutic targets and
methods for overcoming cancer treatment resistance are made

easier with an understanding of these important biological
pathways. Finally, the bioinformatic of exon array analysis
identify the liver tumor genetics in ATT-myc mouse model of
liver cancer and enable distinguished molecular pathway of both
genotoxic and non-genotoxic carcinogens. Classifying genes
based on Gene Ontology, including molecular function,
process, and cellular localization, is crucial for identifying key
biomarkers and pathways that help for future development of
therapeutics agents.
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