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There is rising interest in using longitudinal microbiome data to understand how
the past status of the microbiome impacts the current state of the host, referred
to as “time-lagged” effects, as these effectsmay take time to occur. While existing
works used previous states of the microbiome in their analysis, they did not use
methods that identify both the time-lagged associations and their corresponding
time lags. In this article, we present a framework to identify time-lagged
associations between abundances of longitudinally sampled microbiota and a
stationary response (final health outcome, disease status, etc.). We start with a
definition of the time-lagged effect by imposing a particular structure on the
association pattern of longitudinal microbial measurements. Using group
penalization methods, we identify these time-lagged associations including
their strengths, signs, and timespans. Through simulation studies, we
demonstrate accurate identification of time lags and estimation of signal
strengths by our approach. We further apply our approach to find specific gut
microbial taxa and their time-lagged effects on increased parasite worm burden
in zebrafish.
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1 Introduction

The study of the gut microbiome is critical for understanding health and disease
(Gomaa, 2020; Afzaal et al., 2022). The gut microbiome is not a static system; it has complex
dynamics and the composition shifts constantly (Gerber, 2014). Changes to the gut
microbiome can occur due to diet, medical interventions (i.e., antibiotic usage), and
health status, among other drivers. Sampling the microbiome longitudinally (at several
points in time) uncovers potential temporal variations in the microbiome, which can
provide a full understanding of the ecosystem (Grieneisen et al., 2023). The dynamic aspect
of the microbiome/host relationship is understudied and there is a need for analytical
approaches that can handle this kind of complex data.

While many studies have investigated the link between the gut microbiome and health
outcomes using a static snapshot of the gut microbiome and host health status, there is a
growing recognition of the importance of incorporating longitudinal data. By examining the
dynamic structure of the microbiome and its associations over time, researchers can discern
patterns that may not be apparent in single-time point analyses or that may take time to
develop. A prior state of the gut microbiome may be as or more informative of the current
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health of a patient than the current state of the gut microbiome.
These connections are not necessarily immediate and may take time
to occur. We call the association of a previous state with the current
state a time-lagged association or a time-lagged effect. One famous
instance of the time-lagged microbiota-host association is the long-
term health and disease outcomes that are associated with the infant
microbiome (Sarkar et al., 2021).

Identifying time-lagged associations/effects helps uncover the
unique dynamics of the microbiome. Biological responses to
changes in the microbiome do not necessarily appear
immediately. Instead, these responses may manifest after some
lag, creating a time-lagged association. A biological response
associated with some disruption or change in the microbiome
may not be observable until weeks later. By pinpointing the
timing of these lagged associations, we gain insight into when
interventions could be introduced for maximum effect. This
approach allows for better-informed, time-specific strategies in
microbiome research, leading to more effective interventions and
a deeper understanding of host-microbiome interactions.

Multiple studies have been conducted to identify time-lagged
microbiota-host association. Wilmanski et al. (2021) linked low gut
microbiome uniqueness and high relative Bacteroides abundance to

decreased 4-year survival in older healthy adults using Cox
proportional hazard regression models. In a study to identify
associations between the gut microbiome and nestling weight
and survival in wild great tits, Davidson et al. (2021) identified
specific microbial ASVs associated with surviving to fledgling
using data from day 8 post-hatch, as well as specific ASVs
associated with non-survival. Luna et al. (2020) developed a
joint modeling framework to detect associations between
longitudinal microbiome count data and time-to-event
outcomes. They applied this method to analyze longitudinal
samples of pregnant women and found that a 10% increase of
the genus Prevotella was associated with a 1.5-fold increase in
hazard of delivery. These studies show the wide interest and great
potential in using longitudinal microbiome data to understand
how the past status of the microbiome impacts the current state of
the subject. However, none of these studies have used methods that
identify both the time-lagged associations and their corresponding
time lags, although they included previous states of the
microbiome in their analysis. These studies showcase the need
for more tailored methods.

In this work, we introduce a novel framework that identifies the
lags and associations of specific taxa with a response, utilizing

FIGURE 1
Diagram of time-lagged effects.

TABLE 1 Penalties for grouped variable selection methods.

Type Follows pattern in (2) Method Penalty function

Group/Bi-level 7 GrLasso P(β) � ∑p
j�1λ‖βj‖2

GEL P(β) � ∑p
j�1λ

2

γ (1 − exp{−γ
λ‖βj‖1})

cMCP P(β) � ∑p
j�1MCPλ,γ(∑T

t�1MCPλ,γ(|βj,t|))

GrBridge P(β) � ∑p
j�1λTγ‖βj‖γ1

Overlapping ✓ O-GrLasso P(β) � ∑p
j�1∑

T
t�1λ‖β(t)j ‖2

O-GrMCP P(β) � ∑p
j�1∑

T
t�1MCPλ,γ(‖β(t)j ‖2)

O-GrSCAD P(β) � ∑p
j�1∑

T
t�1SCADλ,γ(‖β(t)j ‖2)

Frontiers in Genetics frontiersin.org02

Palmer et al. 10.3389/fgene.2025.1504443

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1504443


penalized group selection methods. The group selection methods
identify taxa as well as associated time points to form their specific
lagged associations. We apply this framework to real data of
longitudinally sampled zebrafish gut microbiome and host
parasite infection (Hammer et al., 2024). These data were
originally collected to investigate the links between the
microbiome, parasitic infection, and intestinal metabolites.
Hammer et al. (2024) found the amount of microbiome
disruption in parasite-infected zebrafish was correlated with
parasite infection severity. Our analysis further found genera that
were also identified as microbial mediators for the metabolome by
Hammer et al. (2024) as well as additional genera worthy of further
exploration to understand the gut microbiome-parasite burden link.

2 Methods

2.1 Time-lagged effects

In this section, we formally define a time-lagged effect and its
corresponding time lag. For each of the n subjects, we collect
repeated measures on p covariates, X1, . . . , Xp, each of which is
measured T times, denoted by Xj � (Xj,1, . . . , Xj,T)′, j � 1, . . . , p.
In a high-dimensional setting, we have p≫ n. In addition, we
measure a response Y, recorded at the final time point T for
each subject, thus denoted by YT. The relationship between the
repeated measures of the covariates X1, . . . ,Xp and the response YT

is modeled through a linear model or a generalized linear model
in which

g E YT|X1, . . . ,Xp( ){ } � β0 + X1′β1 +/ + Xp′βp, (1)

where βj � (βj,1, . . . , βj,T)′ are the coefficients for Xj �
(Xj,1, . . . , Xj,T)′ and g(·) is a link function depending on the
distribution of the response. For example, g(·) can be the
identity function when YT follows a normal distribution and the
logit function when YT follows a Bernoulli distribution.

In this work, we focus on identifying and estimating time-
lagged associations between the covariates and the response.
We start with the definition of the time-lagged effect of a
covariate on the response. To facilitate the definition, we
illustrate the underlying relationship between two covariates
and the response over time in Figure 1. In Figure 1, we lay out
the repeated measures of two covariates X1 and X2 over time as
well as the measurement of the response Y at the final time point
T. We also include the hypothetical measurements of the
response Y at previous time points t � 1, . . . , T − 1 to
facilitate the interpretation of the time-lagged effect,
although these measurements were not collected in practice
(indicated by the dotted circles instead of solid circles in the
diagram). The longitudinal dependence between the repeated
measures of a covariate or between the repeated measures of the
response is shown as dashed arrows, indicating the causal effect
from a previous time point to the next. For simplicity of
illustration, we did not include confounders for the repeated
measures of covariates or the response in Figure 1, although
adding them does not really change the interpretation of time-
lagged effects.

In Figure 1, on the one hand, we say that X1 has an
instantaneous effect (with no time lag or lag 0) on Y, as
shown by the solid directional arrows from X1,t to Yt at every
time point t � 1, . . . , T, as if Y1, . . . , YT−1 were measured. In this
case, the instantaneous effect ofX1,T on YT, represented by β1,T in
model 1, is nonzero. However, given that we do not observe the
responses at the previous time points, Y1, . . . , YT−1, we need to
assess β1,1, . . . , β1,T−1 in model 1, the effects of X1,1, . . . , X1,T−1 on
YT. From the figure, it is seen that there are indirect associations
between X1,1, . . . , X1,T−1 and YT through the longitudinal
dependence between the repeated measures of either X1 or Y.
Even if we include all repeated measures of X1 in model 1, the
effects of X1,1, . . . , X1,T−1 on YT, represented by β1,1, . . . , β1,T−1,
remain nonzero in model 1 due to the longitudinal dependence
between the hypothetical repeated measures of the response. In
summary, if X1 has an instantaneous effect on Y, the coefficients
in model 1) possess the following pattern:

β1,1 ≠ 0, . . . , β1,T−1 ≠ 0, β1,T ≠ 0.

On the other hand, X2 has a 1-lagged effect on Y (time-lagged
effect with lag 1), i.e., X2,t has a direct effect on Yt+1 for any given
time t � 1, . . . , T − 1, indicated by the solid directional arrows
from X2,t to Yt+1 for t � 1, . . . , T − 1. In this case, the 1-lagged
effect of X2,T−1 on YT, represented by β2,T−1, is obviously nonzero.
We still need to assess β2,1, . . . , β2,T−2 and β2,T in model 1. Similar
to X1, β2,1, . . . , β2,T−2 are also nonzero in the model due to the
indirect associations betweenX2,1, . . . , X2,T−2 and YT caused by the
longitudinal dependence between the hypothetical repeated
measures of the response. However, β2,T in 1 is zero, because
the indirect association between X2,T and YT is through X2,T−1,
which has been included in the model. In summary, if X2 has a 1-

FIGURE 2
Possible sparsity patterns and their corresponding lags for each
type of grouped variable selection methods applied to a toy example
with one single variable X1 measured at three timepoints. A filled-in
(dotted) square indicates that variable/timepoint is present in the
final model and a blank square indicates that variable/timepoint is
absent in the final model.
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lagged effect on Y, the coefficients in model 1 possess the
following pattern:

β2,1 ≠ 0, . . . , β2,T−1 ≠ 0, β2,T � 0.

Based on the above discussion, we formally define the time-
lagged effect of a covariateXj onYT with lag d through the following
sparsity pattern of the corresponding
coefficients βj � (βj,1, . . . , βj,T)′:

FIGURE 3
Group TPR and FPR for eachmethod across three sample sizes (rows) and signal magnitudes (columns). Plot (A) shows results for the normal setting
and plot (B) shows results for the Poisson setting. Solid line box plots represent the overlapping group selection methods; dotted line box plots represent
the group-level/bi-level selection methods.
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βj,1 ≠ 0, . . . , βj,T−d ≠ 0, βj,T−d+1 � 0, . . . , βj,T � 0. (2)

In other words, if Xj has a d-lagged effect on YT, the first T − d
coefficients are nonzero and the last d coefficients are zero, as it takes
d time intervals for Xj to impact YT.

The time-lagged effect of microbiome on host status is not
uncommon in practice. For example, our real data analysis identifies
several microbial taxa in the gut that have a variety of lagged
associations with zebrafish parasite worm burden. In particular,
abundances of genus Chitinibacter were found to have a 29-day-

FIGURE 4
Variable TPR and FPR for each method across three sample sizes (rows) and signal sizes (column). Plot (A) shows results for the normal setting and
plot (B) shows results for the Poisson setting. Solid line box plots represent the overlapping group selection methods, dotted line box plots represent the
group-level/bi-level selection methods.
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lagged association with parasite worm burden, whereas abundances
of genus Mycobacterium were found to have an instantaneous
association with parasite worm burden. More details of such
findings can be found in the real data section.

2.2 Grouped variable selection methods

Due to the correspondence between the time-lagged effect and
the sparsity pattern of the grouped coefficients in (2), identifying and

FIGURE 5
Proportion of correct lag-identification across simulation replicates for each of the four true lags. Plot (A) shows results for the normal setting and
plot (B) shows results for the Poisson setting. Solid lines represent overlapping group selection methods, dotted lines represent the group-level/bi-level
selection methods.
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estimating time-lagged effects can be regarded as a grouped variable
selection problem. To identify these effects, we aim to pinpoint
which time points have non-zero coefficient values, indicating a true
association with the response. This process parallels traditional
variable selection, where the objective is to determine which
covariates contribute to the model. By considering the
measurements of a covariate at different time points as a group,
we treat the identification of time-lagged effects as a grouped
variable selection problem, often solved using group penalization
approaches, ensuring that only the relevant time points are retained
in the model.

In the group penalization framework, we estimate the
parameters β � (β1′, . . . , βp′ )′ in model 1 by minimizing a
objective function of the following form:

Q β|X,Y( ) � L β|X,Y( ) + P β( ),

where L(β|X,Y) is the negative log-likelihood function depending
on the underlying model 1 and P(β) is a penalty function, with
observations X � ((X1,1′ , . . . ,X1,p′ )′, . . . , (Xn,1′ , . . . ,Xn,p′ )′)′ and
Y � (Y1,T, . . . , Yn,T)′ of sample size n.

In this subsection, we briefly review existing grouped variable
selection methods as well as their corresponding penalty functions
P(β) by classifying them into two categories—group-level/bi-level
selection methods and overlapping group selection methods.

2.2.1 Group-level/bi-level selection methods
Group-level selection methods select groups of variables and bi-

level selection methods select both groups of variables and
individual variables within a group, to represent their
associations with a response. A well-known representative of
group-level selection methods is group lasso (Yuan and Lin,
2006), while bi-level selection methods include group bridge

(GrBridge) (Breheny and Huang, 2009), group exponential lasso
(GEL) (Breheny, 2015), and composite MCP (cMCP) (Huang
et al., 2012).

The first half of Table 1 shows the penalty functions P(β) for the
above-mentioned methods when they are applied to the groups of
coefficients β1, . . . , βp in model 1, where λ and γ are tuning
parameters. We fix the tuning parameter γ at its default values,
where γ � 1/2 for GrBridge, γ � 1/3 for GEL, and γ � 3 for cMCP. In
addition, the MCP function in Table 1 is defined as

MCPλ,γ θ( ) � λθ − θ2/ 2γ( ){ } × I θ ≤ γλ( ) + 1
2
γλ2 × I θ > γλ( ),

where I is the indicator function.
Applying group-level selection methods to the groups of

coefficients β1, . . . , βp yields a subset of groups that are associated
with the response, within each subgroup all individual variables
included in the model. Applying bi-level selection methods to the
same groups of coefficients yields a subset of groups and further a subset
of variables within each group that are associated with the response.
Notably, neither group-level nor bi-level selection methods may result
in the desired sparsity pattern in (2) that defines the time-lagged effects.

Nonetheless, to report the performance of group-level/bi-level
selection methods in lag identification, we still define the time lag for
these methods using the largest index of nonzero estimated
coefficients in a selected group. For example, for a variable X1

measured 3 times, if a bi-level selectionmethod provides zero-valued
coefficients forX1,1 orX1,2, or both, but a nonzero-valued coefficient
for X1,3, we still define the estimated lag to be 0 for X1. Figure 2
shows the possible sparsity patterns as well as their corresponding
lag definitions for group-level and bi-level selection methods applied
to a toy example with a single variable X1 measured at three
timepoints.

FIGURE 6
Schematic of real data experimental design by Hammer et al. (2024). (1) Adult fish were placed in individual tanks, (2b) half of the fishwere exposed to
antibiotics, (3b) fish were exposed to the zebrafish parasite Pseudocapillaria tomentosa. Only the parasite groups were used in the analysis with parasite
worm burden as the response. Fecal microbiome and metabolome samples were collected (2a) prior to antibiotic exposure, (3a) prior to parasite
exposure, and (4) 32 days post-antibiotic exposure after which fish worm burden was counted. Sample size represents fish alive throughout
the study.
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2.2.2 Overlapping group selection methods
Compared to the group-level/bi-level selection methods that are

often applied to non-overlapping groups, overlapping group
selection methods (Obozinski et al., 2011) impose group-level
selection methods to overlapping groups. Interestingly, applying
overlapping group selection methods appropriately yields the
sparsity pattern that defines the time-lagged effect in (2), as
illustrated below.

Instead of constructing one group of coefficients for a covariate
Xj in group-level/bi-level selection methods,
i.e., βj � (βj,1, . . . , βj,T)′, we construct T + 1 groups for Xj,
β(0)j � (βj,1, . . . , βj,T)′, β(1)j � (βj,1, . . . , βj,T−1)′, . . ., β(T)j � 0/,
representing all possible sparsity patterns with lags 0, 1, . . . , T,
respectively. Once these groups are defined, overlapping group
selection methods impose group-level penalization to these
overlapping groups. Commonly used overlapping group selection
methods include O-GrLasso, O-GrMCP, and O-GrSCAD,
respectively imposing GrLasso, GrMCP, and GrSCAD to the
overlapping groups (Jacob et al., 2009; Obozinski et al., 2011;
Breheny and Huang, 2015).

The second half of Table 1 shows the penalty functions P(β) for
the above-mentioned methods, where λ and γ are tuning
parameters. It is noteworthy that these penalty functions involve
the above-mentioned overlapping groups: β(0)j , β(1)j , . . . , β(T)j for
j � 1, . . . , p. Similar to the group-level/bi-level methods, we fix γ

at its default values, where γ � 3 for O-GrMCP and γ � 4 for
O-GrSCAD. In addition, the SCAD function used in O-GrSCAD
is defined as

SCADλ,γ θ( ) � λθ × I θ ≤ λ( ) + γλθ − 0.5 θ2 + λ2( ){ }/ γ − 1( )

× I λ< θ ≤ γλ( ) + λ2 γ2 − 1( ){ }/ 2 γ − 1( ){ }
× I θ > γλ( ).

Due to the property of group-level selection methods, all its
variables will be kept in the model if a group is selected. Therefore,
for each selected group, its estimated coefficients satisfy the sparsity
pattern in (2) due to the special construction of these groups. The
final model for Xj is the union of all selected coefficients from
β(0)j , β(1)j , . . . , β(T)j , which is just the largest selected group, also
satisfying the sparsity pattern in (2). Therefore, the lag of the
association of Xj is well defined based on the largest index of
nonzero coefficients in the final model. Figure 2 shows the possible
sparsity patterns as well as their corresponding lag definitions for
overlapping group selection methods applied to a toy example with a
single variable X1 measured at three timepoints.

3 Simulation

3.1 Simulation settings

To mimic the real data in our simulation, we make use of the
microbiome data from a longitudinal study sampling the zebrafish
microbiome (Hammer et al., 2024). The fecal microbiome of
zebrafish was analyzed across three separate days (T � 3) for
38 taxa (p � 38). After filtering for samples present in each of
the 3 days, we are left with an initial sample size of 21 (n � 21).
Measurements are then transformed using the centered log-ratio
transformation (Aitchison, 1982) and serve as the covariates
X1, . . . ,Xp. Details of this study and the data can be found in
the real data section.

We simulate the response with two distributional settings, the
normal distribution and the Poisson distribution. With the normal
distribution, we simulate the response using a linear model: Y �
X1′β1 +/ + Xp′βp + ϵ where ϵ ~ N(0, 1). With the Poisson

TABLE 2 Lags of microbial main (M) and interaction (I) effects on worm burden (in days).

Genus Overlapping group
selection methods

Group/Bi-level selection methods

O-GrLasso/
O-GrSCAD

O-GrMCP GrLasso GEL cMCP GrBridge

M I M I M I M I M I M I

Candidatus
Accumulibacter

0 0 0 0 0 0

Cetobacterium 0 0

Chitinibacter 29 29 29 29

Hyphomicrobium 29 29 32 32

Legionella 0

Mycobacterium 0

Pelomonas 0

Plesiomonas 0

Pseudomonas 32

Shinella 29

Undibacterium 32
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TABLE 3 Coefficient estimates of microbial main (M) and interaction (I) effects on worm burden.

Genus Overlapping group selection methods

O-GrLasso/O-GrSCAD O-GrMCP GrLasso

M I M I M I

t0 t3 t32 I3 I32 t0 t3 t32 I3 I32 t0 t3 t32 I3 I32

Candidatus Accumulibacter 0.228 −0.001 0.08 −0.137 −0.048 0.136 0.013 0.304

Cetobacterium −0.003 −0.361 0.563

Chitinibacter −0.290 0.120 0.507 −0.414 0.474 0.466

Hyphomicrobium 0.663 −0.188 0.848 0.732

Legionella

Mycobacterium 0.045 −0.306 −0.35

Pelomonas 0.099 −0.071 0.290

Plesiomonas

Pseudomonas

Shinella

Undibacterium

Group/Bi-level selection methods

GEL cMCP GrBridge

M I M I M I

t0 t3 t32 I3 I32 t0 t3 t32 I3 I32 t0 t3 t32 I3 I32

0.045 0.349 0.267 0.62

−0.114 0.379

0.449

0.424

(Continued on following page)
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distribution, we set μ � exp(X1′β1 +/ + Xp′βp), and simulate the
response using a Poisson model: Y ~ Poisson(μ).

For longitudinal data sampled at three time points, there are four
possible lags, lag 0, 1, 2, and 3, where lag 3 corresponds to no
association. Of the 38 taxa, we set a sparse signal of six true
associations, two instances of each of lag 0, 1, and 2. We
randomly assign the six true associations among the 38 taxa.
Additionally, we test three magnitudes of the signal of the true
associations, small, medium, and large. For the linear case these are
βj,t ≡ c when βj,t ≠ 0, where c ∈ {0.1, 0.5, 2}. For the Poisson case
these are βj,t ≡ c when βj,t ≠ 0, where c ∈ {0.01, 0.05, 0.1}. These
values were chosen to simulate counts in a similar range to those
present in the real data.

The original sample size of the zebrafish study (n � 21)
represents a small, but not unusual, sample size. We also want to
test other sample sizes. To do this, we resample from the original
21 samples, and add noise from N(0, 1), resulting in a medium
(n � 50) and a large (n � 100) sample size.

We compare seven grouped variable selection methods
in two categories: group-level/bi-level selection methods and
overlapping group selection methods. For the former, we
applied group lasso (GrLasso), group exponential lasso (GEL),
composite MCP (cMCP), and group bridge (GrBridge) to the
simulated data. For the latter, we applied overlapping group
lasso (O-GrLasso), overlapping group MCP (O-GrMCP), and
overlapping group SCAD (O-GrSCAD).

3.2 Simulation results

We compare the performance of the seven grouped variable
selection methods with various simulation settings: sample size
(21, 50, 100) and signal magnitude (small, medium, large), for
both linear model and Poisson model. The simulation results are
summarized from 100 replicates. In the Poissonmodel, the GrBridge
method did not converge in half of the simulation replicates in the
medium-signal case when n � 100, and never converged in the
large-signal case. Results are shown only for the cases in which
the algorithm did converge.

3.2.1 Group TPR and FPR
Since our goal is to identify the groups of variables associated

with the response, we first examine the group true positive rate
(TPR) and false positive rate (FPR). We define group rates based on
whether at least one variable in the group is present in the model
(regardless of whether it has the correct lag or not). Recall that we
have six relevant groups with a signal (two repeats of each lag 0, 1,
and 2); the remaining 32 groups are irrelevant as they have no signal.
The group TPR and FPR are calculated based on the relevant and
irrelevant groups, respectively.

Figure 3 shows the group TPR (left) and FPR (right) across
simulation settings. Comparing the normal and Poisson settings,
group TPR and FPR have better performance in the normal setting
than in the Poisson setting. GrBridge has one of the best
performances in the normal setting, having the lowest group FPR
in all cases, and comparable group TPR, but performs the worst in
the Poisson setting, having very low group TPR even as the sample
size increases.T
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TABLE 4 Lags of microbial main (M) and interaction (I) effects on salicylaldehyde (in days).

Genus Overlapping group selection methods Group/Bi-level selection methods

O-GrLasso O-GrSCAD O-GrMCP GrLasso GEL cMCP GrBridge

M I M I M I M I M I M I M I

Acinetobacter 0 0 0 0

Aeromonas 29

Bosea 32 29

Bradyrhizobium 29

Candidatus Accumulibacter 0 0

Candidatus Odyssella 0 0 0 0

Candidatus Protochlamydia 32 32 32 32 0 29

Cetobacterium 29

Chitinophaga 32

Cloacibacterium 29 0 29

Dechloromonas 32 32 29

Defluviimonas 0

Dinghuibacter 32

Ensifer 29

Flavihumibacter 0 0 29 29

Gemmata 29 32 29 0 0

Legionella 29 0 0 0

Mycobacterium 0

Pelomonas 0 0

Phenylobacterium 32 32

Plesiomonas 32

Rhodobacter 0 0

Uliginosibacterium 0

Vogesella 0 29 0

Genera in bold font are also identified in the parasite worm burden analysis.
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TABLE 5 Lags of microbial main (M) and interaction (I) effects on γ-tocopherol (in days).

Genus Overlapping group selection methods Group/Bi-level selection methods

O-GrLasso O-GrSCAD O-GrMCP GrLasso GEL cMCP GrBridge

M I M I M I M I M I M I M I

Acinetobacter 0 0 0 0 0 0 0

Aeromonas 0

Bosea 32 32

Bradyrhizobium 0

Candidatus Accumulibacter 0

Candidatus Odyssella 0

Candidatus Protochlamydia 0

Cetobacterium 0 0

Chitinibacter 0

Cloacibacterium 0 0 0 0

Dechloromonas 32 32 29

Defluviimonas 0 0 0 0 29

Dinghuibacter 0 0 0 29

Ensifer 0 0 29

Flavihumibacter 29 0

Flavobacterium 0 0 29

Gemmata 0

Legionella 0 0 0 0 0 0

Mycobacterium 29

Pelomonas 29 0 29

Phenylobacterium 0 0 0 0

Phreatobacter 0

Plesiomonas 0 0

Pseudomonas 0 0

(Continued on following page)
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Comparing the sample sizes, group TPR increase as the sample
size increases in all cases. Group FPR also generally decreases with
an increased sample size, but there are some cases of a higher group
FPR when n � 50 than when n � 21. This is likely because a larger
possible model is allowed when n � 50 so that more false positives
slip through. The group FPR decreases again when n further
increases to 100.

Comparing the signal magnitudes, group TPR remains lower
with a smaller signal magnitude across all sample sizes and for both
the normal and Poisson cases. We see group TPR increases as the
signal size increases, however, we do not see the same trend for
group FPR. The group FPRs in the normal setting are roughly the
same as the signal magnitude changes. In the Poisson case we see
somewhat a higher group FPR with a larger signal magnintude, but
this can possibly be attributed to the increase of dispersion in the
simulated responses.

Comparing the grouped variable selection methods, we
generally see that the overlapping group and bi-level selection
methods perform similarly to each other. The exception to this is
GrLasso and O-GrLasso, which perform similarly, and worse than
the other methods in the normal setting for a larger sample size and
signal magnitude.

In the simulation setting that is the closest to the real data (the
Poisson model with sample size of 21 and large signal magnitude),
the group TPR is between 35% and 50% for a few methods such as
O-GrLasso, GrLasso, GEL, and cMCP (see the right upper corner of
the left panel in Figure 3B). In addition, in the same simulation
setting, the group FPR is between 15% and 25% for the above
methods (see the right upper corner of the right panel in Figure 3B).
In other words, these few methods result in group TPR that are well
above zero, and they control group FPR quite well. Such results
suggest that these methods can identify potentially true signals from
the real data analysis, although they may not be able to reveal all true
signals for a data set of this size.

3.2.2 Variable TPR and FPR
As we are also interested in seeing how well the methods

perform in identifying the variables that should be present in the
model, we additionally examine the variable TPR and FPR. Recall
that in our simulation, we have 12 relevant variables and
102 irrelevant variables. The variable TPR and FPR are calculated
based on the relevant and irrelevant variables, respectively.

Figure 4 presents the variable TPR (left) and FPR (right) across
our simulation settings. As the sample size increases, we see
generally an increasing variable TPR and the rate becomes low in
all cases except the small-signal case. GrBridge notably remains
unlikely to pick up any of the true signals in the small-signal case,
although it performs among the best in other signal cases for the
normal setting.

Similarly, the variable FPR decreases when the sample size
increases. In all settings, we see an average variable FPR below
0.25. GrLasso retains a higher FPR as the sample size increases,
unsurprisingly, as it by definition always includes all variables of a
chosen group, which is an overestimation if any non-instantaneous
group is selected. We also see a slight increase in variable FPR when
the sample size increases from 21 to 50, likely due to the increased
allowable model size allowing more irrelevant variables to
be included.T
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Comparing the grouped variable selection methods, we see a
lower variable TPR from the bi-level methods in almost all cases.
This is unsurprising as bi-level methods have the possibility of
excluding relevant variables before the lag time as they do not
necessarily maintain the correct sparsity pattern as in (2). Except
GrLasso, the overlapping group selection methods and the bi-level
selection methods yield comparable variable FPR and there is no
obvious winner.

3.2.3 Lag identification
Figure 5 shows the proportion of the 100 replicates in which the

lag is correctly estimated for each true lag (0–3). As expected,
GrLasso performs the worst for intermediate lags of 1 or 2, as it
can only ever identify all of the time points (lag 0) or none of them
(lag 3) in a group.

Lags are generally more correctly identified as the sample size
increases, although the proportion of correct lag-identification
remains low in the setting with the smallest signal magnitude.
Except in the setting with the smallest sample size and the
smallest signal magnitude, all methods generally identify the
correct lag over half of the time in the normal setting. The
normal setting yields a higher proportion of correct lag-
identification than the Poisson setting.

In general, lag identification also improves as the signal
magnitude increases, although we see a few methods performing
worse for true lag 1 as the signal magnitude increases. In the Poisson
setting, an increased signal magnitude occasionally leads to a
decreased proportion of correct lag-identification for true lags
of 1 and 3.

Comparing the grouped variable selection methods, we do not
see any clear winner between the overlapping group and bi-level
selection methods. While an overlapping group selection method
always identifies the sparsity pattern correctly whenever it
identifies the lag correctly, it is not necessarily the case for a
bi-level selection method. Therefore, we also report the
proportion of incorrect identification of the sparsity pattern
from the bi-level selection methods. Averaged across all
sample-size and signal-magnitude settings, GEL has an
incorrect lag pattern 22% of the time, cMCP has an incorrect
lag pattern 29% of the time, and GrBridge has an incorrect lag
pattern 12% of the time in the normal setting. In the Poisson
setting, GEL and cMCP have an incorrect lag pattern 44% of the
time, and GrBridge has an incorrect lag pattern 62% of the time.
However, as we see from Figure 5, they can still generally identify
the time lag correctly. These observations suggest a careful
interpretation is needed for the time-lagged association from
the bi-level selection methods.

Based on the simulation results, we have not identified a clear
winner from the seven methods in all simulation settings. However,
we could still make the following recommendations based on our
limited observations. To ensure the sparsity pattern in (2), we
recommend using the overlapping group selection methods,
including O-GrLasso, O-GrMCP, and O-GrSCAD. In the
simulation setting that is closest to the real data (Poisson model
with sample size of 21 and large signal magnitude), O-GrLasso
outperforms O-GrMCP and O-GrSCAD in terms of group selection
and variable selection, suggesting its better performance in detecting
the time-lagged effects. Nonetheless, we regard all these methods as a

toolbox for identification of time-lagged effects and suggest the use
of them in a complementary way.

4 Real data

4.1 Zebrafish data

We apply our group penalization framework to the real dataset
from Hammer et al. (2024), which originally studied the role of the
gut microbiome in mediating parasitic infection of Pseudocapillaria
tomentosa in zebrafish. In our application, we make use of the data
collected from longitudinally sampled zebrafish fecal samples
(sampled on days 0, 3, and 32) to find time-lagged associations
between the abundances of microbial taxa in the zebrafish gut and
the parasite burden on zebrafish.

After day 0 and before day 3, half of the tanks of the zebrafish in
the study were given an antibiotic and the other half were not.
After day 3, in each group of zebrafish (antibiotic and control),
roughly half of them were exposed to the parasite P. tomentosa. All
zebrafish were sacrificed to assess intestinal histopathology on day
32, and the parasite burden on zebrafish was measured. In other
words, microbiome data from the zebrafish gut were collected (a)
prior to antibiotic exposure (day 0), (b) just prior to parasite
exposure but after antibiotic exposure (day 3), and (c) 29 days
post-parasite exposure (day 32). Figure 6 further explains the
experimental design.

Since we use the final parasite burden as our responseY (day 32),
our analysis only focuses on the half of fish that were exposed to the
parasite. After filtering for die-off, 21 zebrafish remain in the parasite
exposed group, 9 of which were given an antibiotic and 12 were not.
In addition, we examine taxa at the genus level and apply an
inclusion threshold to analyze genera present in at least 30% of
samples, resulting in p � 38 genera being included in our analysis.

4.2 Statistical analysis

In our analysis, the response Y is the final parasite burden on
zebrafish, measured by the counts of the parasite P. tomentosa via
intestinal histopathology. Therefore, we use a Poisson regression
model for Y, with the link function in (1) chosen as the logarithm
function. In addition, we apply a centered log-ratio transformation
on the genus abundances collected on each day, and treat them as
the repeated measures of the genera X1, . . . ,Xp where Xj �
(Xj,0, Xj,3, Xj,32)′ for j � 1, . . . , p.

We use these data to find time-lagged associations between final
parasite burden of the zebrafish and genus abundances measured on
day 0, 3, and 32. Since our samples are split into two groups, those
exposed to antibiotics and those not exposed, we also take potential
effects of antibiotic exposure into account in our modeling. To this
end, we include antibiotic exposure as a main effect (A, an indicator
function for antibiotic exposure) as well as its interaction effects with
the longitudinal genus abundances (AX1, . . . , AXp), where AXj �
(AXj,3, AXj,32)′ for j � 1, . . . , p. It is noteworthy that there is no
interaction between A and Xj,0 as the zebrafish are exposed to the
antibiotic after day 0. In summary, the model in this data analysis
can be written as:
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TABLE 6 Coefficient estimates of microbial main (M) and interaction (I) effects on salicylaldehyde.

Genus Overlapping group selection methods

O-GrLasso and O-GrSCAD O-GrMCP GrLasso

M I M I M I

t0 t3 t32 I3 I32 t0 t3 t32 I3 I32 t0 t3 t32 I3 I32

Acinetobacter

Aeromonas

Bosea

Bradyrhizobium

Candidatus Accumulibacter −0.287 0.176 0.132 −0.216 −0.359

Candidatus Odyssella −0.333 0.301 1.106

Candidatus Protochlamydia 0.44 0.770

Cetobacterium

Chitinophaga −0.260

Cloacibacterium

Dechloromonas 0.899

Defluviimonas

Dinghuibacter

Ensifer

Flavihumibacter 0.009 0.311 0.066 −0.758 0.014

Gemmata −0.531 −0.435

Legionella

Mycobacterium

Pelomonas

Phenylobacterium −0.770

Plesiomonas

Rhodobacter 0.617 −0.258 0.284 0.699 −0.662

(Continued on following page)
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TABLE 6 (Continued) Coefficient estimates of microbial main (M) and interaction (I) effects on salicylaldehyde.

Genus Overlapping group selection methods

O-GrLasso and O-GrSCAD O-GrMCP GrLasso

M I M I M I

t0 t3 t32 I3 I32 t0 t3 t32 I3 I32 t0 t3 t32 I3 I32

Uliginosibacterium

Vogesella 0.259 0.191 −0.092

Group/Bi-level selection methods

GEL cMCP GrBridge

M I M I M I

t0 t3 t32 I3 I32 t0 t3 t32 I3 I32 t0 t3 t32 I3 I32

−0.168 0.398 −0.341 −0.041 −0.229 0.418 0.449

−0.204

−0.117 0.151

−0.156

0.726 1.038 0.944

0.443 0.520 0.411 −0.332 −0.645

−0.276

−0.087 −0.082 −0.385 −0.166 −0.422 0.569

0.228 0.345 −0.146

0.254

−0.432

−0.141

−0.365 −0.580

−0.321 −0.336 −0.142 −0.270 −0.355 −0.038 −0.312 −0.333

(Continued on following page)
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Y|A,X1, . . . ,Xp~ Poisson μ( ),where log μ( )
� α0 + Aα1 + X1′β1 +/ + Xp′βp + AX1′γ1 +/ + AXp′γp, (3)

where βj � (βj,0, βj,3, βj,32)′ and γj � (γj,3, γj,32)′ for j � 1, . . . , p.
We do not penalize the main effects α0 and α1, and penalize the

main effects β1, . . . , βp and the interaction effects γ1, . . . , γp using
either group-level/bi-level selection methods or overlapping group
selection methods. For group-level/bi-level selection methods, a
group of coefficients is formed for each taxon,
(βj,0, βj,3, βj,32, γj,3, γj,32)′ for j � 1, . . . , p. Group-level/bi-level
selection methods then select from these groups and bi-level
selection methods further select individual parameters in each
group. For overlapping group selection methods, we construct
6 groups for each taxon j:

0/, βj,0, βj,0, βj,3( )′, βj,0, βj,3, βj,32( )′, βj,0, βj,3, γj,3( )′,
βj,0, βj,3, βj,32, γj,3, γj,32( )′,

Corresponding to different patterns of association with different lags.
The first empty set corresponds to no association, the next three
correspond to main effects with lags 32, 29, and 0 days, the last two
correspond to main and interaction effects with lags 29, and 0 days.
Note that the above construction of groups enforces the main effect to
be included in the model before the corresponding interaction effects,
whereas the bi-level selection methods have no such restriction.

4.3 Results

We tabulate in Table 2 the list of genera that are identified to be
associated with parasite burden, together with their lags of such
associations. For main effects, there are three possible lags—0, 29,
and 32 days; for interaction effects, there are two possible
lags—0 and 29 days, as there is no interaction between the
antibiotic treatment and the microbial abundance on day 0. A
lag of 0 days indicates an instantaneous effect, a lag of 29 or
32 days implies there is a lag for the microbial abundance to
affect the parasite burden, either after antibiotic exposure or
before antibiotic exposure. From the results in Table 2, we can
draw the following conclusions.

First, the results highlight the importance of identifying time-
lagged associations. Five of the eleven identified genera have a time-
lagged effect, which would not have been found if we were not using
the proposed approaches.

Second, the overlapping group selection methods perform more
similarly to each other, with O-GrLasso and O-GrSCAD producing
the same results, while the bi-level selection methods do not have
many similarities amongst themselves. GrBridge did not even
identify any associated taxa. The most commonly identified
genus was Candidatus Accumulibacter which was present in
every method except O-GrMCP and GrBridge.

Third, we see a variety of identified lags. Candidatus
Accumulibacter was identified with an instantaneous effect (lag of
0 days) by O-GrLasso/O-GrSCAD and GEL, Chitinibacter was
found to have a lag of 29 days, including a 29-day lagged
antibiotic interaction effect by all overlapping methods.
Hyphomicrobium had a lag of 29 days by O-GrLasso and
O-GrSCAD, and a lag of 32 days by O-GrMCP and cMCP.T
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Table 3 further presents the estimated coefficients for the
identified genera in each model. Table 3 demonstrates a key
difference between the overlapping group selection methods and
the bi-level selection methods, namely, whether or not the sparsity
pattern in (2) is met. For example, Candidatus Accumulibacter has a
lag of 0 days for O-GrLasso andO-GrSCAD, as well as GEL, but GEL
does not find an association on day 3, violating the sparsity pattern
in (2). Additionally, Candidatus Accumulibacter is identified by
cMCP to have an association with worm burden, but only the
interaction effect on day 32, with no effects on earlier days and no
main effects.

4.4 Connection with the original findings

The original paper (Hammer et al., 2024) including these
zebrafish data conducted an analysis on the mediating role
played by the gut microbiome on the relationship between
gastrointestinal metabolites and parasitic infection outcome. This
section highlights how our findings can further inform the
longitudinal aspect of the relationship between the gut
microbiome and parasite burden. Many of the genera the
mediation study comments on as interesting are also found by
our approach, and we expand upon these genera below.

Hammer et al. (2024) identified taxa in the Pseudomonas and
Mycobacterium genera to be mediators in the relationship of the
important Vitamin E metabolite γ-tocopherol and final worm
burden. These genera are also present in our results. We found
that abundance of Pseudomonas has a time-lagged and negative
association with worm burden, where notably, the association only
exists at the first time point (pre-antibiotic and parasite exposure).
We also find thatMycobacterium has an instantaneous and negative
association with worm burden and see that it gets stronger as the
time is closer to the final time point.

Our findings also unite previous research which used these data
by uncovering temporal changes in microbial association that help
explain microbiota connections to parasite infection burden. For
instance, results from Hammer et al. (2024) show that
salicylaldehyde, which may be partially controlled by Pelomonas,
has particularly strong effects on egg larvation and development.
Our finding here that there exists an association between Pelomonas
and infection burden on day 3 is both novel and important because
this is the time fish hosts were exposed to parasite eggs and based on
experimental evidence from stemming from this earlier work it is
expected that salicylaldehyde-related inhibition of helminth
maturation would be most pronounced at this time point in the
study. Thus, this association from O-GrMCP points to time-
dependent activity of Pelomonas that could help to explain and
unite a connection between Pelomonas and salicylaldehyde to in vivo
and in vitro results that implicate salicylaldehyde as an
anthelmintic agent.

Additionally, results of applying these methods highlight a
possible route by which gut microbes might regulate host
intestinal structure to limit helminth infection, by regulating tight
junction integrity. Results from both O-GrMCP and GEL point to
day-3 associations in Cetobacterium are inversely related to
helminth parasite infection. Prior work using the zebrafish model
has shown that taxa within Cetobacterium synthesize vitamin

B12 which mechanistically enhances gut barrier tight junction
integrity to prevent microbial pathogen infection and improve
gut microbiome structure stability (Qi et al., 2023). These
findings are also relevant to nematode infection, where it has
been shown using other infection models that early parasite
exposure results in loss of epithelial barrier integrity as a result of
changes in tight-junction related protein expression (Fernández-
Blanco et al., 2015). Similar tight-junction regulating activity could
underscore our results which point to early time points of
Cetobacterium relative abundance negatively associating with
parasite infection burden, potentially as a result of vitamin
B12 biosynthesis.

Overall, we identify similar taxa associating with parasite worm
burden as in Hammer et al. (2024), but our results provide
important nuance to these findings by revealing time-dependent
microbial associations with infection burden. For instance, our
finding that Pelomonas is inversely associated with infection
parasite burden on day 3 could help explain distinct results from
Hammer et al. (2024) that revealed a connection between Pelomonas
with salicylaldehyde, and salicylaldehyde to egg larvation.
Furthermore, the connection between Cetobacterium and
infection burden also uncovers a testable hypothesis regarding
the relationship between microbes to metabolites and parasite
infection that was not previously identified in the Hammer et al.
(2024) analysis, and points to an additional route by which microbes
could regulate helminth parasite infection. Together, clarifying the
time during which a microbe might produce potent anthelmintic
products or influence host response to infection can elucidate
insights into the activity of microbes across the time range of
parasite infection, possibly imparting new ways the gut
microbiome may be harnessed to combat helminth
parasite infection.

4.5 Metabolite validation analysis

To validate the microbial taxa that were identified to be
associated with parasitic infection, we conduct a validation
analysis using the additional measurements of metabolites in the
zebrafish study (see Figure 6). We focus our analysis on the two
metabolites that were found to be linked to parasite infection and
whose effect on infection burden is mediated by members of the gut
microbiome (Hammer et al., 2024), namely, salicylaldehyde and
γ-tocopherol. We refer to Section 4.4 for detailed discussion on the
role of these two metabolites in the microbiome-parasite ecosystem.
Instead of worm burden used as a response, we now use each of the
two metabolite measurements as the response and investigate the
(potentially time-lagged) effects of microbial taxa on these
metabolites. This additional analysis serves as the validation of
the identified microbiome-parasite associations.

In the validation analysis, the response Y is the final metabolite
measurement on day 32. Therefore, we use a Gaussian regression
model for Y, with the link function in (1) chosen as the identity
function. Metabolite measurements were log transformed. Since
parasite burden is not included in this analysis, we include all
groups of fish used in the initial study, i.e., using both the
parasite and control groups. After filtering for die-off, we have
59 overall fish.
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TABLE 7 Coefficient estimates of microbial main (M) and interaction (I) effects on γ-tocopherol.

Genus Overlapping group selection methods

O-GrLasso and O-GrSCAD O-GrMCP GrLasso

M I M I M I

t0 t3 t32 I3 I32 t0 t3 t32 I3 I32 t0 t3 t32 I3 I32

Acinetobacter −0.100 0.262 −0.197 −0.093 −0.088

Aeromonas

Bosea

Bradyrhizobium

Candidatus Accumulibacter

Candidatus Odyssella

Candidatus Protochlamydia

Cetobacterium 0.273 0.076 −0.253 −0.161 0.176

Chitinibacter

Cloacibacterium 0.360 0.216 −0.591 −0.683 0.247

Dechloromonas

Defluviimonas 0.073 −0.123 −0.240

Dinghuibacter

Ensifer

Flavihumibacter

Flavobacterium

Gemmata

Legionella 0.013 0.003 −1.249

Mycobacterium

Pelomonas

Phenylobacterium −0.446 0.520 0.975 −1.663 −0.098

Phreatobacter

Plesiomonas

(Continued on following page)
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TABLE 7 (Continued) Coefficient estimates of microbial main (M) and interaction (I) effects on γ-tocopherol.

Genus Overlapping group selection methods

O-GrLasso and O-GrSCAD O-GrMCP GrLasso

M I M I M I

t0 t3 t32 I3 I32 t0 t3 t32 I3 I32 t0 t3 t32 I3 I32

Pseudomonas 0.577 −0.024 0.372 −0.037 −0.934

Reyranella

Rhizidiomyces 0.324

Rhizobium

Rhodobacter 0.460 0.113 −0.516 −0.591 0.756

Uliginosibacterium

Group/Bi-level selection methods

GEL cMCP GrBridge

M I M I M I

t0 t3 t32 I3 I32 t0 t3 t32 I3 I32 t0 t3 t32 I3 I32

−0.221 0.427 −0.492 −0.294 0.147 0.195 −0.323 −0.009 0.156 −0.270 0.014 0.294

−0.320 0.314

−0.351 −0.284

0.326 −0.180

−0.067 0.015

−0.191 0.125

0.393

−0.370

−0.285 −0.217 0.556 −0.307

−0.489 −0.514 0.136

0.239 −0.379 −0.367 0.187 0.171 −0.316 −0.122 0.176
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TABLE 7 (Continued) Coefficient estimates of microbial main (M) and interaction (I) effects on γ-tocopherol.

Group/Bi-level selection methods

GEL cMCP GrBridge

M I M I M I

t0 t3 t32 I3 I32 t0 t3 t32 I3 I32 t0 t3 t32 I3 I32

−0.658 0.066 −0.470 0.032 0.344 −0.556 −0.091 0.301

−0.303 −0.042 0.219 0.245 −0.090 −0.397 −0.199

−0.663 −0.120 −0.007

−0.246 1.197 0.088 −1.486 0.208 0.923

−0.577 0.206 0.100

0.217 −0.189 −1.189 0.740 0.655 0.040 −1.726 0.033 −0.127 −1.693 0.090 0.681

−0.594 0.054

−0.192 −0.265 −0.212 −0.129 −0.278

−0.049 0.253 0.635 −1.435 0.431

−0.069

−0.100 0.042 −0.479

−0.479

−0.084 −0.162

0.250 −0.627 −0.306 −0.098

−0.624 0.295 0.054 0.008 0.293 0.860

Genera in bold font are also identified in the parasite worm burden analysis.
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We use these data to find time-lagged associations between
genus abundances measured on day 0, 3, 32 and final metabolite
levels of the zebrafish measured on day 32. Since our samples are
split into four groups, those exposed and not exposed to antibiotics,
as well as those exposed and not exposed to parasites, we take
potential effects of antibiotic and parasite exposure into account in
our modeling. Compared to the model in (3), we include parasite
exposure as an additional main effects (P as an indicator function for
parasite exposure). Thus, themodel for the validation analysis can be
written as:

Y|A, P,X1, . . . ,Xp~ N μ, σ2( ),where μ
� α0 + Aα1 + Pα2 + X1′β1 +/ + Xp′βp + AX1′γ1 +/ + AXp′γp,

(4)
where βj � (βj,0, βj,3, βj,32)′ and γj � (γj,3, γj,32)′ for j � 1, . . . , p.

Similar to Section 4.2, we use bi-level/group-level selection
methods and overlapping group selection methods to estimate
the coefficients in (4). We do not penalize the main effects α0,
α1, and α2, and penalize the main effects β1, . . . , βp and the
interaction effects γ1, . . . , γp. The same groups of coefficients are
formed as in Section 4.2 for group-level/bi-level selection methods
and overlapping group selecion methods. The results of this
validation analysis are presented in Tables 4–7. Tables 4, 5 show
the time lags of microbial effects on salicylaldehyde and
γ-tocopherol, respectively; Tables 6, 7 report the coefficient
estimates of the above associations.

Notably, of the eleven identified genera in the parasite
burden analysis, eight were also identified and thus partially
validated by the metabolite analysis. This result provides
additional evidence for the critical role of the identified genera
in the microbiome-metabolome-host relationship. Similar to
Hammer et al. (2024), we also found an association between
Pelomonas and salicylaldehyde, further supporting their
relationship and joint roles in parasite infection burden as
discussed in Section 4.4. Additionally, Hammer et al. (2024)
identified Pseudomonas and Mycobacterium as mediators in the
relationship between γ-tocopherol and final worm burden. We
also identified Pseudomonas and Mycobacterium as associated
with both final worm burden in the parasite burden analysis and
γ-tocopherol in the metabolite validation analysis, validating the
role of Pseudomonas and Mycobacterium as mediators in the
relationship between γ-tocopherol and final worm burden.

5 Discussion

In this paper, we present a novel framework for identifying time-
lagged associations between time-varying covariates and a static
response, which enables the investigation of dynamics of host-
microbiome interactions. Simulation studies demonstrate the
efficacy of the framework in accurately identifying time-lagged
associations.

Applying our framework to real zebrafish data further
validated its utility. We identified eleven microbial taxa that

exhibit associations with zebrafish parasite burden, four of
which were instantaneous and seven others were lagged. Three
identified taxa overlapped with those identified in the original
study, two were instantaneous and one had a lag, reinforcing
previous findings and highlighting new insights into time-
lagged associations. For example, some associations changed
their signs depending on the time lag, suggesting that the
timing of intervention is as crucial as selecting the appropriate
microbial target. The microbial taxa identified offer insights into
potential mechanisms underlying the interplay between the gut
microbiome and parasitic infections. This work contributes to a
body of research that aims to clarify host-microbiome-parasite
dynamics and informs future research toward developing targeted
interventions for parasite control.

While this framework offers a practical approach to
estimating time-lagged associations, there are a few limitations
when using this framework. First, we argue that if there is an
association present, it is measurable from the first time point
sampled, and is present up until the lagged time point. In cases
where this structure is not applicable, such as having only an
instantaneous association, and no association from previous time
points, the bi-level selection methods offer more flexibility in
the temporal structure of which covariates are included. The
definition of what it means to have a lag may need to be
revisited or redefined depending on the context.

Second, another limitation relates to the length of available
longitudinal data. Our method includes the entire timeframe of
the data in search for lags, as our method assumes all prior covariates
to the lag remain relevant. This assumption could be problematic if
researchers are working with extended datasets spanning several
years. The researchers would need to determine the reasonable
timescale for a lag for their application. In some cases, a lagged
association of 2 years would be reasonable, but in others only a 2-
month lagged association would be reasonable.

Third, our framework uses different group penalizationmethods
that can identify a set of interesting taxa. Future work can improve
the prioritization of which of the model-identified taxa are
interesting taxa to focus on. It is possible that different group
penalization methods will identify either different sets of taxa or
different lags, or both. Our framework encourages the researchers to
use the set of identified taxa from the framework, but future work
can help narrow down the focus.

Our application of this framework focused on advancing the
understanding of microbial ecology and its influence on host health.
However, this framework can be applicable to a much broader range
of scientific fields, as it can be used whenever there is an interest in
looking for time-lagged associations between longitudinal data and a
static response.
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from positive and negative ion modes are available here (https://
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