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Introduction: COVID-19 severity has been linked to immune factors, with
excessive immune responses like cytokine storms contributing to mortality.
However, the genetic basis of these immune responses is not well
understood. This study aimed to explore the genetic connection between
COVID-19 severity and blood cell traits, given their close relationship
with immunity.

Materials and methods: GWAS summary statistics for COVID-19 and blood cell
counts were analyzed using Linkage Disequilibrium Score Regression (LDSC) to
estimate genetic correlations and heritabilities. For traits with significant
correlations, a Multi-Trait GWAS Analysis (MTAG) was performed to identify
pleiotropic loci shared between COVID-19 and blood cell counts.

Results: Our MTAG analysis identified four pleiotropic loci associated with
COVID-19 severity, five loci linked to hospitalized cases, and one locus related
to general patients. Among these, two novel loci were identified in the high-risk
population, with rs55779981 located near RAVER1 and rs73009538 near CARM1.
In hospitalized patients, two previously unrecognized loci were detected, namely,
rs115545251 near GFI1 and rs3181049 near RAVER1, while in general patients,
rs11065822 near CUX2 emerged as a newly identified locus. We also identified
potential target genes, including those involved in inflammation signaling
(CARM1), endothelial dysfunction (INTS12), and antiviral immune response
(RAVER1), which may require further investigation.

Conclusion: Our study offers insights into the genetic overlap between COVID-
19 and immune factors, suggesting potential directions for future research and
clinical exploration.
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1 Introduction

COVID-19 is an extreme and clinically homogeneous disease
phenotype (Gao et al., 2021; Oran and Topol, 2020). Infection with
the coronavirus triggers the onset of the disease through a series of
immune responses (Jackson et al., 2022). According to data from the
World Health Organization (WHO), over 760 million cases and
6.9 million deaths have been recorded globally since December 2019,
although the actual numbers are believed to be higher. The
pandemic has not only disrupted global economic and trade
development but has also imposed a significant socioeconomic
burden on individuals, families, and societies worldwide. While
most infected individuals experience mild to moderate
respiratory illness and recover without specialized treatment,
older adults or those with pre-existing conditions such as
cardiovascular disease, diabetes, chronic respiratory diseases, or
cancer are at a higher risk of severe outcomes or hospitalization.
Notably, COVID-19 can affect individuals of any age and may lead
to severe illness or death (Gao et al., 2021).

Epidemiological studies have identified severe risk factors
associated with COVID-19, such as hypertension, coronary heart
disease (Espiritu et al., 2024), type II diabetes (Hopkins et al., 2024),
and thrombosis (Lindström et al., 2019). Furthermore, emerging
evidence suggests that genetic factors play a significant role in
determining susceptibility to COVID-19 (van der Made et al.,
2020). To uncover the genetic basis of COVID-19, various
genome-wide association studies (GWAS) have been conducted,
with the largest study identifying 49 significant loci involving
24,202 severe cases (Pairo-Castineira et al., 2023). Recently, the
development of GWAS multi-trait analysis (MTAG) provides a
powerful approach to explore the genetic overlap and common
etiologies between complex traits. By jointly analyzing multiple
genetically correlated traits, MTAG can identify pleiotropic
genetic variants that influence related phenotypes, revealing
shared biological pathways and genetic interactions among
various conditions.

Many studies have highlighted changes in blood measurements
of COVID-19 patients (Zhou et al., 2021). COVID-19 is closely
associated with various hematological abnormalities, including
lymphopenia, elevated inflammatory markers such as C-reactive
protein (CRP) and ferritin levels, as well as abnormalities in the
coagulation pathway. These hematological changes provide
important clues for understanding the mechanisms of the virus
and its effects on the body. Notably, lymphopenia, although the
underlying mechanisms remain unclear, has increasing evidence
suggesting that lymphocytes play a crucial role in the
pathophysiology of viral infections (Hegde, 2020; Song et al.,
2024). Immune factors are closely related to blood cell counts,
particularly white blood cell counts, indicating a strong
relationship between the virus and the immune system, with
immune factors playing significant roles in viral infections and
disease progression (Jackson et al., 2022). Additionally, endothelial
dysfunction is associated with COVID-19, and angiogenic T cells
(Tangs) play a key role in endothelial repair (Liu et al., 2024). The
emergence of a hypercoagulable state is also linked to COVID-19
(Valencia et al., 2024). Overall, this series of hematological risk
factors interact to influence the course of COVID-19, with each
factor potentially having a unique genetic background.

This study aims to quantify the genetic correlation between
COVID-19 and related hematological traits. By conducting a
comprehensive multi-trait genome-wide association study
(MTAG), we identified common pleiotropic loci that influence
both COVID-19 susceptibility and blood cell counts, providing
deeper insights into the shared genetic architecture of COVID-19
and immune-related blood traits. These findings may help identify
potential genetic markers that contribute to the clinical
manifestations of COVID-19, thereby informing the development
of targeted treatments.

2 Methods

2.1 GWAS data

The COVID-19 GWAS data used in this study are from the
COVID-19 Host Genetics Initiative (HGI), specifically from the
round seven release, using European population data. The study
includes data on three different COVID-19 phenotypes: very severe
respiratory confirmed COVID-19 vs. population (COVID-19-a2)
with a total sample size of 1,072,442 and 13,769 cases; hospitalized
COVID-19 vs. population (COVID-19-b2) with a total sample size
of 2,062,805 and 32,519 cases; and general COVID-19 vs. population
(COVID-19-c2) with a total sample size of 2,475,240 and
122,616 cases. The release date for this data is 8 April 2022. The
study encompasses contributions from numerous research partners,
including but not limited to Estonian Biobank (EstBB), UK Biobank
(UKBB), FinnGen, Generation Scotland, deCODE, and the Million
Veterans Program (MVP). Each dataset has been filtered and
standardized to ensure consistency and reliability in the analysis.
Specific details and descriptions of the datasets are provided in
Supplementary Table S1.

For the study on hematological traits, data was sourced from the
trans-ethnic and ancestry-specific blood-cell genetics study
published in Cell. This comprehensive study investigated blood-
cell genetics across 746,667 individuals from five global populations
(Chen et al., 2020). For our research, we focused on the European
subset, including data on lymphocyte count (524923 Europeans),
basophil count (474,001 Europeans), eosinophil count
(474237 Europeans), neutrophil count (519,288 Europeans), and
monocyte count (521,594 Europeans). Specific details of the datasets
are provided in Supplementary Table S2.

2.2 Global genetic correlation analysis

The cross-ancestry genetic correlation (Rg) between each pair of
COVID-19 phenotypes and blood-cell traits was evaluated using LD
Score Regression (LDSC) and GWAS summary statistics. LDSC is
an established method that identifies genetic correlations between
complex traits and diseases, providing etiological insights and
helping to prioritize likely causal relationships. The primary
challenges in estimating genetic correlation from GWAS data
with traditional methods include the unavailability of individual
genotype data and widespread sample overlap among meta-
analyses. LDSC overcomes these challenges by using a technique
called cross-trait LD Score regression, which requires only GWAS
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summary statistics and is not biased by sample overlap (Bulik-
Sullivan et al., 2015). The formula used in LDSC is as follows:

E βjγj[ ] �
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√
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√

where βj and γj represent the effect sizes of SNPj on the two traits
being tested, N1 and N2 are the sample sizes for the two traits, Ns is
the number of overlapping samples between the two traits, r is the
phenotypic correlation in the overlapping samples, and, lj is the LD
score. In this analysis, precomputed linkage disequilibrium scores
for HapMap3 SNPs, derived from individuals of European ancestry
in the 1000 Genomes Project (Bulik-Sullivan et al., 2015), were used.
SNP markers with an imputation INFO score lower than 0.9 were
excluded from the analysis (Bulik-Sullivan et al., 2015). This method
allows for robust estimation of genetic correlations despite the
complexities of sample overlap and lack of individual-level data.

2.3 Cell-type-specific enrichment of SNP
heritability

Research has demonstrated that certain functional categories
within the genome disproportionately contribute to the heritability
of complex diseases (Trynka et al., 2013). Stratified LD Score
Regression (s-LDSC) is a method developed to analyze these
contributions by partitioning heritability from GWAS summary
statistics while accounting for linkage disequilibrium (LD). This
approach is computationally efficient and capable of handling large
sample sizes, making it suitable for genome-wide studies involving
extensive datasets. It leverages genome-wide information without
relying solely on SNPs reaching genome-wide significance, allowing
for a more comprehensive analysis. s-LDSC enables the
identification of cell type-specific elements and other functional
genomic regions that significantly contribute to the polygenic
architecture of complex traits and diseases, providing insights
into their biological mechanisms and helping prioritize genomic
regions for further functional characterization (Finucane
et al., 2015).

This study utilized annotation data constructed from six
chromatin marks (DHS, H3K27ac, H3K36me3, H3K4me1,
H3K4me3, and H3K9ac) across 88 cell types or tissues from the
Roadmap project to partition the SNP heritability of various traits.
For each chromatin mark, the cell type-specific annotations were
further divided into nine categories: adipose, central nervous system,
digestive system, cardiovascular, musculoskeletal and connective
tissue, immune and blood, liver, pancreas, and others (Finucane
et al., 2018). The annotation-specific enrichment values for each trait
were converted into a color scale and visualized through hierarchical
clustering.

2.4 Local genetic correlation analysis

To complement the genome-wide genetic correlation estimated
by LDSC, which aggregates information across all variants in the
genome, we employed ρ-HESS to quantify the local genetic
correlation between pairs of traits (Finucane et al., 2018). ρ-HESS

is designed to measure the correlation due to genetic variation at
small regions in the genome, providing a more granular
understanding of the genetic architecture. This technique only
requires GWAS summary data and does not assume any specific
distribution of causal variant effect sizes, while accounting for
linkage disequilibrium (LD) and overlapping GWAS samples.
The analysis using ρ-HESS involves several steps: first, it
computes the eigenvalues of LD matrices and the squared
projections of GWAS effect size vectors onto the eigenvectors of
LD matrices for each trait. Next, it estimates the local SNP-
heritability of each trait using these projections. Finally, ρ-HESS
uses the local SNP-heritability estimates to calculate local genetic
covariance estimates and their standard errors. In our study, all
significant trait pairs identified in the global genetic correlation
analysis (LDSC, P < 0.01) underwent local genetic correlation
analysis using ρ-HESS. This allowed us to investigate which
specific local genomic regions contributed to the global genetic
correlation. A Bonferroni-corrected p-value of less than 0.05/n
was considered statistically significant (n = Hypothesis
testing quantity).

2.5 Multi-trait analysis of GWAS

Multi-Trait Analysis of GWAS (MTAG) is a method designed
for the joint analysis of summary statistics from genome-wide
association studies (GWAS) of different traits, possibly including
overlapping samples. MTAG enhances the power to detect loci by
analyzing GWAS summary statistics from related traits together,
accounting for sample overlap and incomplete genetic correlation. It
begins by filtering variants to remove non-common SNPs,
duplicated SNPs, or SNPs with strand ambiguity (Turley et al.,
2018). MTAG then estimates pairwise genetic correlations between
traits using LD Score Regression (LDSC) and utilizes these estimates
to calibrate the variance-covariance matrix of the random effect
component (Bulik-Sullivan et al., 2015). Following this, MTAG
performs a random-effect meta-analysis to produce SNP-level
summary statistics. In our application, we prioritized nominally
significant pleiotropic SNPs that achieved genome-wide significance
(P < 1.67 × 10⁻⁸) in the multi-trait analysis and suggestive
significance (P < 1 × 10−3) in the original single-trait GWAS.
This threshold accounts for the number of independent tests
conducted based on the traditional GWAS threshold of (P < 5 ×
10⁻⁸), ensuring that the significance level is adjusted to minimize the
risk of false positives. This method not only boosts the discovery of
associated loci but also improves the interpretability of genetic
associations through more informative bioinformatics analyses,
thereby providing deeper insights into the genetic architecture of
complex traits. In this study, our new loci refer to genetic loci that
have not been reported in the relevant subtypes.

2.6 Colocalization and gene-based analysis

Colocalization (Giambartolomei et al., 2014) and gene-based
analysis are critical for understanding the molecular basis of
associations identified in genetic studies. This methodology
integrates multiple association datasets, such as those from
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GWAS and gene expression studies, to assess whether two
association signals are consistent with a shared causal variant. In
our study, we applied this approach to investigate the relationship
between COVID-19 and blood-cell traits. We used the Coloc tool to
perform Bayesian colocalization analysis, aiming to identify loci
where association signals for COVID-19 and blood-cell traits
colocalize. This analysis uses default priors and considers a
colocalization significant when the posterior probability of a
shared causal variant (PP.H4) is greater than 0.8.

2.7 Transcriptome-wide association Study

To identify genes significantly associated with complex traits, we
utilized S-PrediXcan with multiple eQTL datasets from GTEx v8 (a
total of 49 tissues). The expression weights used were derived from
GTEx v8 multi-tissue expression data, and were estimated and
provided by Junghyun Jung from the Mancuso lab. In the
S-PrediXcan analysis (Barbeira et al., 2018), we used gene
expression and genetic variation (SNP) data from a small
reference set of individuals to infer the expression of cis-acting
genetic components in a larger set of phenotyped individuals based
on their SNP genotype data. The predicted expression is presented in
the form of a linear model, with weights determined by the
correlation between SNPs and gene expression in the training
data while accounting for linkage disequilibrium among SNPs.
We associated gene expression with traits by conducting a
transcriptome-wide association study (TWAS) to identify
significant expression-trait associations. Based on Bonferroni
correction, the genome-wide significance threshold for TWAS
was set at P-TWAS <1 × 10−6 focusing on loci established to be
associated with COVID-19 risk that also showed relevance in the
TWAS analysis.

3 Results

3.1 Genetic correlations between COVID-19
and blood cell counts

We investigated the genetic correlation between COVID-19 and
blood cell counts (Figure 1). Interestingly, while the correlation is
weak among general patients (Rg = −0.03, p = 0.36), it becomes
significantly stronger in severe patients (Rg = −0.07, p = 0.04) and
hospitalized patients (Rg = −0.11, p = 2 × 10−4), suggesting a possible
relationship with the severity of the disease. Importantly, our
findings indicate a significant negative correlation between
lymphocyte counts and COVID-19. Beyond lymphocytes, no
significant correlations were found between COVID-19 and white
blood cell counts (Supplementary Table S3). Most viral infections
are associated with an increase in lymphocyte counts. Interestingly,
several epidemiological studies have shown that COVID-19
infection leads to a decrease in lymphocyte levels (Chen et al.,
2023; Niu et al., 2022; Xiong et al., 2020). Notably, this finding aligns
with the results we obtained from our genetic analyses.

3.2 Cell type specific enrichment of SNP
heritability

For pulmonary COVID-19 and its subtypes, we further divided
the heritability of SNP according to six chromatin markers and nine
cell types. We found that each subtype of COVID-19 patients
showed a similar pattern in the six chromatin markers of
lymphocyte count (Supplementary Figure S1). It is worth noting
that the respiratory system tissues or cell types, such as lungs,
significantly enrich the chromatin markers H3K27Ac,
H3K4me3 and H3K4me1 of COVID-19 or its subtypes. We also
observed significant genetic enrichment of COVID-19 and its
subtypes in musculoskeletal/connective tissue, digestive system,
nervous system and other tissue or cell types. Interestingly, we
also observed significant genetic enrichment of T cells, NK cells, and
monocytes related to immune factors in the blood system, consistent
with previous research findings (Ma et al., 2021; Ma et al., 2022).

3.3 Local genetic correlation between
COVID-19 and blood cell count

Building on these significant findings, we conducted a
comprehensive whole genome scan to identify specific genomic
regions that may influence the shared heritability of various
genetically related traits (Supplementary Table S4). During our
statistical analysis, we adjusted for multiple testing to ensure the
accuracy and reliability of our results. Notably, we discovered a
significant correlation between COVID-19 and lymphocyte counts,
particularly in the specific genomic region 19p13.2. This finding is
particularly noteworthy given that previous studies have indicated
multiple GWAS signals in the 19p13.2 region associated with
COVID-19 (Figure 2). This research not only reinforces the
importance of the 19p13.2 locus in the genetic architecture of
COVID-19 but also provides new insights and a deeper

FIGURE 1
The heatmap displays the pairwise genome-wide genetic
correlations between COVID-19 and blood cell counts. COVID-19-
a2 for severe cases, COVID-19-b2 for hospitalized cases, and COVID-
19-c2 for general cases. The matrix shows the strength of
correlation (size of each square), with significant associations marked
by an asterisk (P < 0.05). The shade of each square denotes a positive
correlation (blue) or a negative correlation (red), with the depth of the
shade reflecting the magnitude of the correlation.
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understanding of the genetic mechanisms underlying this disease
(Ferreira et al., 2022).

3.4 Multi-trait analysis of GWAS

The evidence obtained from genetic correlation analysis has
prompted us to further investigate the potential shared pleiotropic
loci between COVID-19 and lymphocyte count. We employed Multi-
Trait Analysis of GWAS (MTAG) to perform a multi-trait analysis of
COVID-19 and its subtypes in relation to lymphocyte count, with

special attention to SNPs achieving genome-wide significance (P <
1.66 × 10−8). To ensure the reliability of our results, we conducted
comprehensive quality control (QC) analyses. The inflation lambda
values for the original GWAS datasets were 1.055, 1.067, and 1.078 for
severe COVID-19 (COVID-19-a2), hospitalized COVID-19 (COVID-
19-b2), and general COVID-19 (COVID-19-c2), respectively, and
1.140 for lymphocyte count. The slightly higher lambda value for
lymphocyte count may be attributed to its highly polygenic nature
and the large sample size of the dataset, which can increase the observed
inflation coefficient. In comparison, the MTAG results showed lower
lambda values of 1.048 (COVID-19-a2), 1.041 (COVID-19-b2), and

FIGURE 2
Local genetic correlation between COVID-19 and lymphocyte count. (A) The Manhattan plot shows the estimates of local genetic correlation,
genetic covariance, and SNP heritability between severe COVID-19 and lymphocyte count. (B) The Manhattan plot shows the estimates of local genetic
correlation, genetic covariance, and SNP heritability between hospitalized COVID-19 and lymphocyte count. (C) TheManhattan plot shows the estimates
of local genetic correlation, genetic covariance, and SNP heritability between general COVID-19 and lymphocyte count. Red bars represent loci
showing significant local genetic correlation after multiple testing adjustment (P < 0.05/sample size).
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TABLE 1 Multi-trait meta-analysis between COVID-19 and lymphocyte.

Type of COVID-19 SNP CHR BP A1 A2 Trait 1 Trait 2 MTAG Genes Annotation PP.H4 (Coloc)

Beta P-value Beta P-value Beta P-mtag

Severe rs7515509 1 77949123 G A 0.0799 7.50 × 10−8 0.0096 6.57 × 10−7 1.8816 1.16 × 10−8 ZZZ3 known 1.00

rs10059611 5 131787278 G T 0.0767 2.24 × 10−7 0.0195 1.27 × 10−21 1.9687 5.08 × 10−9 IRF1 known 0.02

rs55779981 19 10437764 T C −0.0256 1.20 × 10−6 −0.0318 2.76 × 10−35 −2.3831 9.46 × 10−9 RAVER1 new 0.02

rs73009538 19 10996391 C T 0.0832 1.22 × 10−7 0.0120 2.63 × 10−8 2.0260 1.55 × 10−8 CARM1 new 0.94

Hospitalized rs115545251 1 93042753 G A 0.1458 2.10 × 10−7 0.0347 2.23 × 10−11 4.4961 5.08 × 10−9 GFI1 new 1.00

rs7664615 4 25448493 A G −0.0726 6.18 × 10−8 −0.0080 1.46 × 10−3 −1.8722 1.58 × 10−8 ANAPC4 known 0.07

rs72669986 4 106550272 C A 0.0915 2.33 × 10−7 0.0189 2.26 × 10−7 2.8609 1.79 × 10−8 ARHGEF38 known 0.03

rs7254272 19 4069119 G A 0.0657 1.16 × 10−7 0.0123 4.03 × 10−4 −1.9515 2.35 × 10−8 ZBTB7A known 0.00

rs3181049 19 10441117 G A −0.0654 9.06 × 10−8 −0.0318 3.45 × 10−35 −2.1767 3.03 × 10−11 RAVER1 new 0.02

General rs11065822 12 111600134 G T −0.0207 6.46 × 10−5 0.0585 6.90 × 10−180 −1.4317 4.01 × 10−11 CUX2 new 0.16

PP.H4, posterior probability of shared causal variant.
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1.023 (COVID-19-c2), indicating no significant inflation. Manhattan
and QQ plots for these analyses are provided in Supplementary Figures
S2, S3, confirming the robustness and consistency of our findings. These
QC results further validate the reliability of our MTAG analysis and its
ability to identify pleiotropic loci shared between COVID-19 and
lymphocyte count.

In severe cases, we identified four loci, of which two are not
reported previously. Notably, a signal at rs73009538 was discovered
in the CARM1 gene, which is implicated in regulating gene
transcription, growth, and RNA splicing, among other biological
processes (Lai et al., 2021). We also identified a locus (rs55779981)
within the RAVER1 gene region. Subsequently, among the four loci
detected between hospitalized COVID-19 patients and lymphocyte
count, two are not reported previously, specifically rs115545251
(1q22.1) and rs3181049 (19p13.3). The locus rs115545251 near the
GFI1 gene. It is worth noting that another locus associated with
hospitalized patients (rs3181049) and a locus identified in severe
patients (rs55779981) are both located in the RAVER1 gene region.
Interestingly, previous animal studies have suggested that other loci
within the RAVER1 region, such as rs74956615 (19q13.2), increase
susceptibility to coronavirus through complex mechanisms (Fink-
Baldauf et al., 2022). In other words, these three loci, including two
newly identified and one known locus, are densely located within the
RAVER1 region yet remain independent of each other. For the
general patient population, our LDSC analysis did not confirm a
significant genetic correlation between COVID-19 and lymphocyte
count. Despite the lack of significant genetic correlation, we
conducted an MTAG analysis between hospitalized COVID-19
and lymphocyte counts, which revealed a previously unreported
nominally significant loci (rs11065822) in the general population.

3.5 Colocalization

In this study, we employed the Coloc method to assess the
Bayesian colocalization between COVID-19 and lymphocyte counts
for each pleiotropic locus identified in the Multi-Trait Analysis of
GWAS (MTAG). We identified three regions with PP.H4 values
greater than 0.9, suggesting a high level of colocalization between
COVID-19 and lymphocyte counts at these loci. Of the three
colocalized loci, 19p13.2 was also identified in previous local
genetic correlation analyses (Table1), reinforcing the consistency
of our findings. This alignment not only bolsters the credibility of
our genome-wide association results but also sheds new light on the
genetic factors contributing to COVID-19 susceptibility,
highlighting the potential for shared genetic pathways in immune
response. To further explore the 19p13.2 (rs73009538) region in
detail, we utilized the Locuscompare tool to visualize the association
signals within this region. This analysis further confirmed the
colocalization of genetic signals for COVID-19 susceptibility and
lymphocyte counts at 19q13.2 (Figure 3) (Pruim et al., 2010).

3.6 Transcriptome-wide association study
(TWAS) and gene analysis

We conducted a Transcriptome-Wide Association Study
(TWAS) to investigate gene expression profiles associated with

COVID-19 susceptibility and related phenotypes. TWAS
integrates genotype and expression data, allowing for the
identification of genes significantly linked to specific traits,
thereby offering insights into gene regulation and disease
association. Additionally, we have included Manhattan plots and
QQ plots for the TWAS analyses, which can be accessed on Figshare
(DOI: 10.6084/m9.figshare.28005845). In most tissues, the TWAS
inflation factor (λ > 1.2) indicates moderate inflation, likely driven
by the large sample size of the COVID-19 dataset. Similar levels of
inflation have been observed in Alzheimer’s disease studies (Wingo
et al., 2021), reflecting the increased statistical power to detect
polygenic associations in large-scale datasets. These findings
suggest that the observed inflation is primarily attributable to
true signals rather than systematic bias.

The findings were largely consistent with earlier studies (Pathak
et al., 2020) (Supplementary Tables S5–S7). In severe case A2, the
eQTL rs10059611 was associated with ACSL6 in brain tissue,
LncRNA in leukocytes and the stomach, microRNA in lung, and
RAD50 in the uterus, pancreas, and skeletal muscle. These
associations suggest that rs10059611 might have pleiotropic
effects across multiple tissues, influencing diverse biological
pathways relevant to severe COVID-19 outcomes. In hospitalized
case B2, the eQTL rs7664615 was associated with PI4K2B in the
pituitary, a gene involved in early T cell activation and immune
regulation. In the thyroid, it was linked to SLC34A2, which plays a
role in phosphate transport and cellular metabolism, and in the
cerebellum, it was connected to ZCCHC4, a zinc finger protein
involved in RNA processing and regulation. Additionally,
rs72669986, located in the ARHGEF38 gene, was associated with
GSTCD in the breast, esophagus, skin, and tibial nerve; SLC34A2 in
the thyroid; and INTS12 in leukocytes, fibroblasts, prostate,
and thyroid.

Furthermore, the TWAS analysis identified loci that provide
additional insights into discoveries from GWAS studies. In severe
case A2, the locus rs2236645 on chromosome 21 was associated with
ATP5PO in the lung, brain, and skin, as well as MRPS6 in the
esophagus and left atrium. Both genes are involved in mitochondrial
function, a pathway that may play a critical role during early
COVID-19 infection, as the virus relies on enhanced
mitochondrial metabolism to support replication. In hospitalized
case B2, rs3785632 was linked to SNHG26, a long non-coding RNA
(lncRNA), and rs717624 was associated with NCOR1 in the testis,
which regulates transcriptional activity. Additionally, rs3910266 was
connected to SNX19 in the brain, a gene potentially involved in
intracellular trafficking and cellular response mechanisms.

4 Discussion

This study is one of the first comprehensive investigations into
the genetic underpinnings of severe COVID-19, specifically focusing
on the interplay between inflammation-induced lung damage and
genetic susceptibility. It is evident that severe cases are largely driven
by inflammation-mediated by immunological factors, with the
progression and severity of the disease influenced by both
environmental and genetic factors. Our findings highlight the
crucial role of genetic determinants in shaping susceptibility,
disease progression, and mortality in COVID-19, underscoring
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the need for further research to better understand these mechanisms
and inform the development of targeted therapeutic interventions.

Recently, a Genome-Wide Association Study (GWAS) for COVID-
19, launched by the GenOMICC, ISARIC4C, and SCOURGE consortia,
collected genetic data from 24,202 severe COVID-19 patients across
diverse ancestries. This study identified 49 genome-wide significant
associations, of which 16 were newly reported (Pairo-Castineira et al.,
2023). Beyond the known features of COVID-19 immune susceptibility,
we found that several establishedCOVID-19 genetic loci also impact the
inflammatory response, a key risk factor for the progression and
prognosis of COVID-19.

Based on the aforementioned evidence, we investigated the
shared genetic architecture between different COVID-19 subtypes
and other leukocytes. We observed a widespread negative
correlation between lymphocyte counts and COVID-19, with a
stronger correlation and more pronounced reduction in
lymphocyte counts observed in more severe cases, such as critical
and hospitalized patients. This phenomenon can be attributed to the
direct viral infection of lymphocytes, particularly T cells and B cells,
resulting in cellular death and a reduction in lymphocyte numbers
(Rouse and Horohov, 1986). Concurrently, the immune system
initiates a robust inflammatory response, which may escalate into
a cytokine storm. The massive release of inflammatory mediators
can induce lymphocyte apoptosis (programmed cell death), further
diminishing lymphocyte numbers (Delogu et al., 2008;
Peppelenbosch and van Deventer, 2004). Additionally, COVID-
19 infection may cause immune suppression (Abbasi, 2021;
Mehta et al., 2020), especially in severe cases. The increase in
suppressive cytokines, such as IL-10 and TGF-β, may inhibit
lymphocyte proliferation and function, further reducing their
numbers. In summary, lymphopenia induced by COVID-19
infection is a complex process potentially involving direct viral

effects, immune response, and immune suppression, with these
pathophysiological responses being more pronounced in severe
cases compared to milder ones. This suggests that lymphocyte
count may partially reflect disease severity and prognosis. This
finding can complement widely used imaging techniques, aiding
clinicians in more effectively assessing patient conditions and
guiding the design of clinical treatment plans. By monitoring
lymphocyte counts, we can more accurately track disease
progression and adjust therapeutic strategies as needed,
ultimately improving overall patient outcomes.

Given the strong association between viral infection and
lymphocyte count, we conducted deeper analyses to explore the
shared genetic mechanisms between these phenotypes. We
identified significant local genetic associations in the
19p13.2 region among severely ill patients, supported by previous
studies (Ferreira et al., 2022). To deepen our analysis, we employed
the MTAG approach to identify shared genetic loci between
COVID-19 subtypes and lymphocyte count. By enhancing
statistical power, we successfully identified 14 pleiotropic loci
associated with COVID-19 and lymphocyte count, five of which
were newly discovered and previously unreported in this subtype.

In severe cases, four nominally significant loci were identified,
two of which are not reported previously. rs73009538 in the CARM1
region associated with type I interferon, and the deficiency of type I
IFN response is one of the key factors in severe COVID-19 (Hadjadj
et al., 2020). CARM1 is crucial for lung epithelial cell function
(O’Brien et al., 2010), and its deficiency can lead to respiratory
developmental issues, possibly linked to its role in gene transcription
and cell growth. Additionally, CARM1 acts as a transcriptional
coactivator for NF-kappaB, significantly influencing inflammatory
responses (Srour et al., 2022). Notably, research from the Getx study
found that rs73009538 serves as an eQTL for SMARCA4, a key

FIGURE 3
The regional plots of the 19p13.2 locus associated with COVID-19 using Locuscompare. New locus rs73009538. Purple diamond indicates the lead
SNP, and circles represent the other SNPs in the region, with coloring from the linkage disequilibrium (r2, based on the 1000Genomes Project Europeans)
between each SNP and the lead SNP.
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component of the SWI/SNF complex that regulates immune
responses and gene expression (Rhoads et al., 2018), particularly
ACE2, the primary receptor for COVID-19 (Zoufaly et al., 2020).
Mutations in SMARCA4may disrupt mSWI/SNF complex function,
resulting in lower ACE2 levels and potentially reducing cellular
susceptibility to viral infection (Wei et al., 2023). RAVER1 is a key
factor in inducing antiviral responses, capable of promoting the
host’s immune reaction to viruses and enhancing antiviral
capabilities (Chen et al., 2013). Meanwhile, RAVER1 is involved
in mediating inflammation-related cell death processes, thereby
regulating apoptosis or other pathways of cell death (Malireddi
et al., 2023; Zhang et al., 2024). A deficiency in RAVER1may lead to
increased susceptibility of the host to COVID-19, potentially
resulting in a more severe progression of the disease following
infection. Interestingly, rs10059611 is an eQTL of LINC02863.
While lincRNAs usually do not encode proteins, some small
ORFs within them can be translated, though the mechanisms are
unclear (Matsumoto et al., 2017). Additionally, lincRNAs can
regulate protein-coding gene expression by interacting with RNA,
DNA, or proteins (Atianand et al., 2017; Kong et al., 2024),
influencing immune cell development (Brazão et al., 2016) and
inflammation suppression (Atianand et al., 2016; Yue et al., 2020).

We identified five nominally significant loci associated with
hospitalized COVID-19 cases, including two previously unreported
loci: rs115545251 (located at 1q22.1), rs3181049 (located at 19q13.3).
The rs115545251 locus, located near the GFI1 gene, is linked to
hospitalized COVID-19 cases, with colocalization analysis
confirming its association with lymphocyte count. The GFI1 gene,
which encodes a zinc finger protein, promotes the proliferation of
lymphocytes and granulocytes and functions as a transcriptional
repressor involved in various biological activities. Mutations in the
GFI1 gene, which is crucial for lymphocyte proliferation and regulation
(Guo et al., 2021; Möröy and Khandanpour, 2011; 2019),can lead to
lymphopenia and enhanced Th2 inflammatory responses (Sarkar et al.,
2021; Zhu et al., 2006), potentially resulting in immune dysregulation
and severe COVID-19 progression, highlighting the importance of
rs115545251 in this context. The locus identified in hospitalized patients
(rs3181049) and the locus found in severe patients (rs55779981) are
both located in the RAVER1 gene region, further supporting our
hypothesis: The defects in the RAVER1 gene not only reduce
antiviral capability but also increase susceptibility to the disease,
thereby raising the incidence of severe cases.

Additionally, our transcriptome-wide association study
identified the rs72669986 locus in the ARHGEF38 region as a
potential regulator of INTS12 expression, which is predominantly
found in epithelial and cells and plays a critical role in cellular
activity by regulating protein synthesis pathways (Kheirallah et al.,
2017; Obeidat et al., 2013). INTS12 may influence cellular signaling
pathways essential for the proliferation, differentiation, and survival
of cells, thereby impacting COVID-19 susceptibility and disease
severity while interacting with various genes related to lung function
within complex gene networks (Obeidat et al., 2013). These findings
shed light on the molecular mechanisms governing lung function
and suggest potential targets for future interventions and treatments
for related diseases. The eQTL rs7664615, located on ANAPC4 in
GWAS. In the pituitary, it projects to the PI4K2B gene, whose
encoded protein is involved in early T cell activation; in the thyroid,
it projects to SLC34A2, which codes for a protein that regulates

transmembrane protein transport; and in the cerebellum, it projects
to ZCCHC4. COVID-19 can directly or indirectly affect the thyroid,
leading to thyroid-related diseases, possibly secondary to the
hypothalamic-pituitary-thyroid (HPT) axis, which may be related
to the virus’s impact on the immune system (Lui et al., 2024).
Additionally, thyroid hormones play a critical role as regulators of
immune activity at the cellular level (Jaeger et al., 2021), contributing
to lymphocyte homeostasis (De Vito et al., 2011). The zinc finger
protein encoded by ZCCHC4 is involved in the process of viral
clearance and plays an important role in regulating both innate and
adaptive immune responses (Fu and Blackshear, 2017).

While our study provides valuable insights into the shared
genetic architecture between COVID-19 and immune-related
traits, several limitations should be noted. First, the lack of
integration with single-cell RNA sequencing (scRNA-seq) data
limits the resolution of our findings, particularly in identifying
specific immune cell subtypes and pathways. Future research
could leverage methods like scPagwas (Ma et al., 2023) to explore
these aspects further. Additionally, functional validation of the
identified loci was beyond the scope of this study, leaving the
mechanistic roles of these loci to be explored in future
experiments. Another key limitation is the use of binary and
quantitative traits in our MTAG analysis. While this method may
present some challenges in terms of accuracy and interpretability, it
has been widely used in similar studies and remains a reasonable
approach under the current constraints (Chang et al., 2024; Guo
et al., 2020; Jiang et al., 2024). Lastly, the study primarily focuses on
European ancestry populations, and further research is needed to
assess the generalizability of these findings across diverse ancestries.

In this study, we conducted an in-depth multi-phenotype analysis
of various COVID-19 subtypes and lymphocyte counts. By jointly
analyzing these traits and enhancing statistical power, we identified five
not reported previously genetic loci, shedding light on the pleiotropic
genetic architecture between them.While some loci may exhibit vertical
pleiotropy due to the causal relationship between COVID-19 and
lymphocyte counts, others may display horizontal pleiotropy,
directly influencing both traits. Further functional studies are needed
to investigate these loci and their underlying mechanisms, contributing
to a deeper understanding of COVID-19 susceptibility.
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