![Man ultramarathon runner in the mountains he trains at sunset](https://d2csxpduxe849s.cloudfront.net/media/E32629C6-9347-4F84-81FEAEF7BFA342B3/0B4B1380-42EB-4FD5-9D7E2DBC603E79F8/webimage-C4875379-1478-416F-B03DF68FE3D8DBB5.png)
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Genet.
Sec. Livestock Genomics
Volume 16 - 2025 | doi: 10.3389/fgene.2025.1501876
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Testes are crucial for male reproduction, and transcriptomic and metabolomic analyses can help identify genes and pathways linked to reproductive performance differences in pig breeds. The present study was conducted to identify the differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) through transcriptomic and metabolomic analyses of testicular tissues in Chuanxiang Black and Landrace pigs. Six testis tissue samples from each pig breed were used for transcriptomic analysis. Further liquid chromatography-mass spectrometry analysis was performed for targeted metabolomic analysis to identify differential metabolites in both breeds. RNA-sequencing data identified a total of 6,233 DEGs, including 3,417 up-regulated and 2,816 down-regulated genes in Chuanxiang Black compared to Landrace pigs. Comparative pathway enrichment analyses revealed that many DEGs and DAMs were associated with critical reproductive pathways, especially those related to male gametogenesis, spermatogenesis, sexual reproduction, development, and reproductive processes. Three major pathways related to signal transduction (PI3K-Akt, Rap1, and MAPK signaling pathways), lipid metabolism (linoleic acid and arachidonic acid metabolism), and cytokine-cytokine receptor interaction were identified as differentially enriched pathways in Chuanxiang Black pigs. Differential circRNA target gene enrichment analysis revealed 4,179 DEGs, including 3,022 genes involved in biological processes, 477 in cellular components, and 680 in molecular functions. Differential analysis of miRNA between the two groups revealed 2,512 DEGs, including 1,628 up-regulated and 884 down-regulated genes. Both miRNA and circRNA were involved in enriched KEGG pathways mainly including signaling pathways (cAMP signaling pathways, calcium signaling pathways), endocrine secretion (aldosterone synthesis and secretion and GnRH secretion), and signaling molecules and interaction (ECM-receptor interaction). These findings revealed that both circRNA and miRNA play a crucial role in regulating the differential gene expression related to reproductive processes in Chuanxiang Black compared to Landrace pigs.
Keywords: Transcriptome, Metabolome, Testis, DEGs, Landrace pigs, Chuanxiang Black pigs
Received: 25 Sep 2024; Accepted: 07 Feb 2025.
Copyright: © 2025 Li, Zhang, Zhao, Wang, Liu, Chen and He. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Jiangling Li, Key Laboratory of Sichuan Province Animal Breeding and Genetics Institute, Sichuan Animal Science Academy, Chengdu, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.